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Abstract

Coherent, voluntary action requires an integrated representation of these actions and

their defining features. Although theories delineate how action integration requiring

binding between different action features may be accomplished, the underlying neuro-

physiological mechanisms are largely elusive. The present study examined the neuro-

physiological mechanisms underlying binding processes in actions. To this end, we

conducted EEG recordings and applied standard event-related potential analyses, tem-

poral EEG signal decomposition and multivariate pattern analyses (MVPA). According

to the code occupation account, an overlap between a planned and a to-be-performed

action impairs performance. The level, to which performance is attenuated depends on

the strength of binding of action features. This binding process then determines the

representation of them, the so-called action files. We show that code occupation and

bindings between action features specifically modulate processes preceding motor exe-

cution as showed by the stimulus-locked lateralized readiness potential (LRP). Con-

versely, motor execution processes reflected by the response-locked LRP were not

modulated by action file binding. The temporal decomposition of the EEG signal, fur-

ther distinguished between action file related processes: the planned response deter-

mining code occupation was reflected in general (voluntary) response selection but not

in involuntary (response priming-related) activation. Moreover, MVPA on temporally

decomposed neural signals indicated that action files are represented as a continuous

chain of activations. Within this chain, inhibitory and response re-activation patterns

can be distinguished. Taken together, the neurophysiological correlates of action file

binding suggest that parallel, stimulus- and response-related pre-motor processes are

responsible for the code occupation in the human motor system.
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1 | INTRODUCTION

Coherent, voluntary action requires a clear representation (plan) of

these actions in the brain. In daily life, this is particularly relevant since

most goal-directed behavior consists of multiple components and

requires a concatenation of different actions to achieve a goal

(Dippel & Beste, 2015; Duncan, 2010; Stoet & Hommel, 1999). More-

over, these different components are defined by multiple features

such as which effector is to be used with a specific speed or force at a

specific time. This feature specification is then also likely to require

multiple brain systems. What follows is that planning voluntary action

requires intricate coordination and integration of information. This

integration and specification of actions, similar to the representation

of perceptions, faces so-called binding problems (Hommel, 2004;

Stoet & Hommel, 1999): that is, how are different features constitut-

ing an action related and connected to each other?

A prominent theory addressing how integration and binding dur-

ing action (planning) may work on a conceptual level, is the Theory of

Event Coding (TEC) (Hommel, 2009; Hommel, Müsseler,

Aschersleben, & Prinz, 2001). Generally, TEC is concerned with the

question of how different features constituting object representations

as well as actions are integrated. Central to TEC is that it assumes

three types of “files”: an “object file,” an “event file” and an “action
file.” An object file is constituted by the features of perceived stimuli

(Treisman, 1996; Treisman & Kahneman, 1984), an action file by the

features defining a response (Hommel et al., 2001). An “event file” in

turn represents the inter-relation of object and action files; that is,

how specific stimulus features are related to specific action features

(Hommel, 2004). Several lines of evidence have corroborated the con-

cept of bindings between stimulus features and between stimulus and

response features (Colzato, Warrens, & Hommel, 2006; Henson,

Eckstein, Waszak, Frings, & Horner, 2014; Moeller, Pfister, Kunde, &

Frings, 2019). Similarly, studies have also delineated the associated

neurophysiological and functional neuroanatomical correlates (Keizer,

Verment, & Hommel, 2010; Kühn, Keizer, Colzato, Rombouts, &

Hommel, 2011; Opitz, Beste, & Stock, 2020; Petruo, Stock, Mün-

chau, & Beste, 2016; Takacs, Mückschel, Roessner, & Beste, 2020).

However, astonishingly little is known about the neurophysiological

(electrophysiological) implementation of action file bindings, that is,

how action-related features are integrated. Similarly, it is elusive how

the representational content of action files is reflected on a neuro-

physiological level. The current study intends to close these gaps in

knowledge.

Twenty years ago, Stoet and Hommel (1999) developed an exper-

imental approach to examine feature bindings in action files. The

approach is based on a code-occupation logic. According to this logic,

action activation is more than just activating various features defining

an action, that is, which effector is to be used with a specific speed or

force at a specific time. Rather, it is necessary to integrate these dif-

ferent codes belonging to an action. For instance, a simple action, like

opening the fridge requires the integration of the feature codes of the

left or right arm, the distance towards the fridge, the moderate speed

of the action, and the power of the grabbing move, and so forth.

Importantly, this integration of features defining an action involves

what the authors call “code occupation” (Stoet & Hommel, 1999). For

example, when one plans to carry out a right arm movement, all fea-

tures related to/defining this planned movement become activated—

including the feature “right.” The important point is that until this

planned “right” arm movement has not been executed, the “right”
code is reserved (occupied) for that specific movement. This pre-

occupation of code makes it difficult to plan/execute another action

that also uses the “right” code. Such an overlap between a planned

and a to-be-performed action impairs performance. The degree, to

which performance is impaired depends on the strength of binding

(integration) of features (Colzato et al., 2006; Stoet & Hommel, 1999).

The experimental approach to examine action file coding processes thus

employs a design, in which an action (A) is planned, but its execution

has to be postponed until another action (B) was planned and per-

formed. This ABBA response execution approach measures the effect

of an already formed action plan on the efficiency to plan and execute

another action/movement. It has been shown that performance is bet-

ter, that is, reaction times (RTs) are shorter, when there is no feature

overlap between the A and the B motor response—that is when there is

no code-occupation (Colzato et al., 2006; Stoet & Hommel, 1999).

From a neurophysiological point of view, and using EEG methods,

movement-related processes can be examined using the lateralized

readiness potential (LRP) (Coles, 1989; Gratton, Coles, Sirevaag,

Eriksen, & Donchin, 1988)—an index of response activation and prep-

aration (Coles, 1989; de Jong, Wierda, Mulder, & Mulder, 1988) gen-

erated in motor cortical areas (Leuthold & Jentzsch, 2001). The LRP

can be formed in two ways—stimulus-locked (s-LRP) and response

locked (r-LRP). The s-LRP is supposed to be a measure of processes

preceding motor execution, that is, pre-motor processes, the r-LRP

reflects processes related to the subsequent motor execution (Beste

et al., 2009; Coles, 1989; Masaki, Wild-wall, Sangals, &

Sommer, 2004; Osman, Moore, & Ulrich, 1995; van der Lubbe,

Ja�skowski, Wauschkuhn, & Verleger, 2001; Wild-Wall, Sangals, Som-

mer, & Leuthold, 2003). Code-occupation processes reflecting the

integration of different action-related features precede the overt

motor response. Therefore, we hypothesize that particularly the s-

LRP is modulated by experimental variations. In other words, the s-

LRP is hypothesized to reflect the impact of an already formed action

plan “A” on the efficiency to plan action “B”. More specifically, we

hypothesize that (a) the s-LRP will be larger and (b) its onset earlier

when there is no code-occupation between actions A and B, com-

pared to conditions when features are shared between actions A and

B. Previous findings suggest that when pre-motor inhibition is

demanding, a correct negative LRP deflection is preceded by a short-

lasting positive deflection that indicates the activation of the wrong

response (Beste, Baune, Falkenstein, & Konrad, 2010; Beste, Saft,

Andrich, Gold, & Falkenstein, 2008; Bryce, Szűcs, Soltész, &

Whitebread, 2011; Falkenstein, Willemssen, Hohnsbein, &

Hielscher, 2006; Gratton, Coles, & Donchin, 1992; Stürmer, Leuthold,

Soetens, Schröter, & Sommer, 2002; Zhang et al., 2018)—in our case
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the response A when there is action file feature overlap between

response A and B. However, it cannot be excluded that also motor

execution processes per se are modulated by the experimental varia-

tions. Therefore, we also explore, how far the r-LRP is modulated by

experimental variations.

Besides, it is important to mention that previous studies exam-

ining the neurophysiology of binding processes within the TEC-

framework obtained most robust effects after applying temporal

signal decomposition methods (Opitz et al., 2020; Takacs,

Mückschel, et al., 2020), that is, residue iteration decomposition

(RIDE) (Ouyang, Sommer, & Zhou, 2015). Applying RIDE, stimulus-

locked data is decomposed into three “clusters”, each reflecting dis-

sociable processes. The “S-cluster” reflects stimulus-triggered pro-

cesses, the “R-cluster” processes related to movement execution

and the “C-cluster” processes between stimulus evaluation and

responding (Ouyang et al., 2015; Ouyang, Herzmann, Zhou, &

Sommer, 2011). Previous studies of event file coding emphasized

the role of the C-cluster (Kleimaker et al., 2020; Opitz et al., 2020;

Takacs, Mückschel, et al., 2020). Translational processes between

stimulus and response codes were detectable in the C-cluster signal,

but not in the S-cluster and R-cluster data (Kleimaker et al., 2020;

Opitz et al., 2020; Takacs, Mückschel, et al., 2020). Moreover, event

file binding related modulations in the P3 ERP component were evi-

dent in the C-cluster as opposed to the undecomposed EEG

(Kleimaker et al., 2020; Opitz et al., 2020), or the P3 effect was

stronger in the C-cluster than in the undecomposed EEG as

reflected by effect sizes and confidence intervals (Takacs,

Mückschel, et al., 2020). Thus, in case of event files, modulations of

the P3 in the C-cluster seems to be the most important neurophysi-

ological marker. However, in case of action files, binding does not

occur between stimulus and response, but between response codes

(Stoet & Hommel, 1999). Therefore, motor components, such as the

LRP, are better suited to study the neurophysiology of action files.

Crucially, RIDE has also been applied to s-LRPs in tasks where dif-

ferent (incompatible) actions are activated (Stürmer, Ouyang, Zhou,

Boldt, & Sommer, 2013). Stürmer et al. (2013) showed that RIDE

applied to s-LRPs allows for dissociation of response activation

effects due to priming from processes of voluntary response selec-

tion. This is also relevant for the action file paradigm since actions A

and B can show feature overlaps making it difficult to select the

required response B. Indeed, Stürmer et al. (2013) showed that par-

ticularly the S-cluster and the R-cluster reflect processes of

response priming and selection, respectively. In contrast, the C-

cluster LRP did not show any modulation related to response prepa-

ration processes. Moreover, as action files should reflect processes

at the response code level, it is expected that the R-cluster will pri-

marily show the action file binding effect. Therefore, we hypothe-

size that particularly the R-cluster s-LRP is modulated by

experimental variations of action file binding as opposed to the C-

cluster which is implicated in event files.

Although the above-mentioned analyses will provide insights into

neurophysiological subprocesses involved in action file binding

effects, these analyses do not yield information with respect to the

neurophysiology associated with the stability of action file represen-

tations. To answer this question, multivariate pattern analysis (MVPA)

applied to EEG (King & Dehaene, 2014) is useful since it decodes the

representational difference between experimental conditions based

on the observed neural patterns (Carlson, Grootswagers, &

Robinson, 2019; Fahrenfort, van Driel, van Gaal, & Olivers, 2018).

Importantly, temporal generalization analyses can provide insights

into the stability of mental representations over time (Fahrenfort

et al., 2018; Grootswagers, Wardle, & Carlson, 2016; King &

Dehaene, 2014), that is, it is possible to examine when and for how

long action file information is detectable in neural activity. Since

MVPA is, in theory, applicable to a variety of EEG data types (time

domain, time-frequency domain, etc.) (Carlson et al., 2019), we use

the undecomposed and RIDE-decomposed data as a basis for the

MVPA analysis. A similar approach was used recently for studying

event files (Takacs et al., 2020). Using MVPA, different temporal gen-

eralization patterns across time can be distinguished (King &

Dehaene, 2014) indicating, for instance, a chaining of processes

(i.e., diagonal-shaped decoding performance) or a continuous activa-

tion of representations (i.e., diagonal and off-diagonal decoding per-

formance). A continuous activation indicates a single representational

activation, which can be fading (jittered activity pattern) or strength-

ening (ramped activity pattern) over time. Conversely, a chain-like

activation indicates multiple components; each of them generalizes

for a brief time only (King & Dehaene, 2014). A previous study

suggested that generalization of event files can be detected predomi-

nantly in the C-cluster data (Takacs, Zink, et al., 2020). During event

file coding, a sustained neural activity was shown in the C-cluster.

The smoothing and temporally jittered nature of the activation

suggested a single, gradually developing representation behind the

event files. The S-cluster showed a similar temporal generalization

pattern, albeit with smaller activity. However, the R-cluster painted a

different picture. Namely, a ramping activity characterized the whole

trial length, except for a non-significant activity corresponding to the

time windows of the main activations in the C- and S-clusters. This

mirror-reversed pattern distinguished the representation of motor

execution processes (R-cluster) from the stimulus-related, and

stimulus–response translational representation (S- and C-cluster).

However, the question remained, what type of neural activity

emerges from binding of motor or action-related features. We assume

that binding processes in action files will be evident for several hun-

dred milliseconds and that diagonally-shaped as well as off-diagonal

decoding performance will be present. The latter is hypothesized to

be evident due to the structure and logic of the experimental para-

digm, in which a chain of different actions has to be planned and

performed.

Taken together, this study uses a multi-methodological approach:

After analyzing standard s-LRP and r-LRPs, signal decomposition

(i.e., RIDE) is used to examined s-LRP processes in more detail before

MVPA is applied to examine the stability of neural processes involved

in action file coding.
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2 | MATERIALS AND METHODS

2.1 | Participants and power considerations

A sample of N = 30 (12 male and 18 female, Mage = 30.4,

SDage = 4.2 years) healthy adults with no neurological or psychiatric

disorder was recruited from the university's voluntary pool for behav-

ioral studies. Participants received 10 € reimbursement and provided

written informed consent.

2.2 | Task

Action file binding was investigated using a previously established

paradigm (Stoet & Hommel, 1999), also known as an R-R task (Colzato

et al., 2006). The action file paradigm is shown in Figure 1.

The participants sat at a distance of 60 cm in front of a

17-in. CRT screen. During the trials, participants had to perform two

tasks, task A and task B. Task B was embedded in task A. Stimuli were

presented as white fonts on black screen background. Stimulus A was

presented with the instruction not to react to it immediately, but only

after presentation of stimulus B and the corresponding response

B. Thus, task A had to be planned and withheld, while task B could be

carried out immediately after presentation of stimulus B. The exact

timing of the task was as follows. First, a fixation cross was displayed

for 50 ms. Then, stimulus A appeared for 2,000 ms. Stimulus A con-

sisted of a left- or right-pointing arrowhead and an asterisk either

above or below the arrowhead. The arrowhead direction indicated

whether the left or right hand was to be used for task A. The asterisk

indicated the response direction. Next, the fixation cross was shown

for another 50 ms, which was followed by stimulus B that was pres-

ented for 200 ms: it was either a symbol “&” indicating a left button

press or a symbol “#” indicating a right button press. Once stimulus B

was presented, participants had to perform task B followed by the

already planned task A. Task A consisted of a sequence of three but-

ton presses. First, participants pressed the “home key” 4 or 6. This

was indicated by the direction of the arrowhead in stimulus

A. Second, the button above or below the home key had to be oper-

ated corresponding to the position of the asterisk in stimulus A. Third,

the home key had to be pressed again. Thus, if stimulus A was a left-

pointing arrowhead with an asterisk below it, the participants had to

plan the following response sequence: 4 (left home key)—1 (position

below)—4 (left home key). If stimulus A was a right-pointing arrow-

head with an asterisk above it, the correct sequence was: 6 (right

home key)—9 (position above)—6 (right home key). The combinations

of the side of task A (left vs. right) and the side of task B (left vs. right)

resulted in compatible (left–left or right–right) and incompatible (left–

right or right–left) trials. Participants used keyboards to make their

responses. The numerical pad on the right side of the keyboard was

used: 1, 4, and 7 for left side responses, and 3, 6 and 9 for right side

F IGURE 1 Schematic illustration of the paradigm. The figure represents the order of the stimuli during the trial including the timing of events.
Below the timing information, the layout of the response buttons is displayed. Participants were required to use their left and right index fingers
corresponding to the side of response
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responses. Participants were instructed to use their left index finger

on the left side of the pad, and their right index finger on the right side

of the pad. Regarding the reaction times for response A, the first part

of response A is measured from response B, the second part from the

1st part of response A, and the 3rd part is measures from the 2nd part

of response A. After a practice of 40 trials, participants had to perform

256 trials during the experiment, in which half of them were compati-

ble (overlap between response A and B) and half incompatible

(no overlap between response A and response B). The possible map-

pings of task B were counterbalanced across participants.

2.3 | EEG recording and analysis

The EEG was recorded using 60 Ag/AgCl electrodes (500 Hz sampling

rate; electrode impedance <5 kΩ) (EasyCap, Wörthsee, Germany) with

equidistant cap layout. The signal was collected with a “QuickAmp”
amplifier and the “Brain Vision Recorder” software (Brain Products,

Gilching, Germany). Ground and reference electrodes were positioned

at coordinates of θ = 58, φ = 78 and θ = 90, φ = 90. The latter one is

corresponding to electrode position Fpz. Data pre-processing was

conducted in Brain Vision Analyzer (Brain Products, Gilching, Ger-

many). First, the recorded signal was down-sampled to 256 Hz and

band-pass filter (IIR) was applied with 0.5 Hz to 20 Hz and an order of

8. Then, the data were re-referenced to the average activity of all

electrodes. In the next step, the data was manually inspected to

remove potential technical artifacts. Remaining, periodical artifacts

(vertical and horizontal eye movements, blinks, pulse artifacts) were

removed by an independent component analysis (ICA, Infomax algo-

rithm). Components with identifiable spectrum and topography, such

as vertical and horizontal eye movements, cardiovascular and muscle

artifacts have been removed. The pre-processed, continuous data

were segmented by using epochs locked either on stimulus B (−500

to 1,500 ms) or response B (−500 to 1,500 ms). Only trials with cor-

rect response B and response A were segmented. For all combinations

of overlap levels (feature overlap vs. no feature overlap trials) and the

response direction of the response B (left vs. right response), separate

segments were generated. Thus, left feature overlap, left no feature

overlap, right feature overlap and right no feature overlap segments

were created both for stimulus- and response-locked segmentations.

Differentiating between left- and right-sided responses in the EEG

analysis was necessary due to the potential motor lateralization

effects. Then, an automatic artifact rejection method was applied

(time window: 500 ms before and 1,500 ms after the Stimulus B or

Response B). In this step, all segments were discarded with amplitudes

>150 μV, or <−150 μV, or activities <0.5 μV over a time interval of at

least 100 ms. This threshold rejection was meant to remove any

remaining larger artifact, such as saccade components or brief motor

noise. After the artifact rejection, one participant was removed from

the analysis due to insufficient number of kept segments. Then, a cur-

rent source density (CSD) transformation was used (Kayser &

Tenke, 2015; Perrin, Pernier, Bertrand, & Echallier, 1989) with four

order of splines to generate reference-free data. The CSD

transformation creates a spatial filter, which then highlights the scalp

topography of neural activity. Thus, CSD transformation helps with

identifying stimulus- or response-locked activities on individual elec-

trodes (Nunez, Pilgreen, Westdorp, Law, & Nelson, 1991; Tenke &

Kayser, 2012). Then, the segmented data were baseline corrected

(time window: −300 ms to 0 ms prior Stimulus B onset). After the

temporal decomposition (see Section 2.4) the baseline was adjusted

to −500 ms to −300 ms prior to the onset of Stimulus B. Then, the

data was averaged separately for each condition and participant.

According to the hypotheses for the standard time-domain data ana-

lyses, especially the LRP was of interest. The LRP was calculated

according to the definition by Coles (1989):

ER−ELð Þ left hand response+ EL−ERð Þ right hand response
2

Where EL signifies the brain potential recorded over the left and

ER over the right motor cortex. In the current study, the most com-

monly used channels, C3 and C4 (Coles, 1989) were used to calculate

the LRPs. The original waveforms on the channels C3 and C4 are

depicted in the Supporting Information. According to Coles'

(Coles, 1989) definition, a negative deviation in the stimulus-locked

LRP (s-LRP) indicates correct response activation, a positive deviation

indicates incorrect response activation. After visual inspection of the

s-LRP waveforms, we identified a negative deviation, which was then

analyzed in the time window of 220 to 420 ms after the presentation

of Stimulus B. A potential incorrect response activation was quantified

preceding the correct response activation: that is, between 50 and

200 ms after the presentation of Stimulus B. Similarly, post-response

processes were quantified in 500–1,000 ms after stimulus presenta-

tion. Please, note, that this time window proceeding the response B

also overlaps with the response As. Amplitudes in all the analyzed

time windows differed from zero (all p's < .032). After inspecting the

response-locked LRP (r-LRP) waveform, we identified a negative devi-

ation in the time window preceding the response B with 300 ms to

investigate lateralized response preparation. Additionally, a positive

deflection was observed 80–200 ms after the response onset. This

post-movement reafferent potential was used to analyze the sensory

feedback after motor execution (Di Russo, Pitzalis, Aprile, &

Spinelli, 2005; Kornhuber & Deecke, 2016; Rauchbauer, Pfabigan, &

Lamm, 2018). Within these intervals, the mean amplitude was quanti-

fied for each single subject. Furthermore, to examine the oscillatory

neural activity potentially related to LRP activities, such as low and

high mu (Freeman, Itthipuripat, & Aron, 2016; Kelly &

O'Connell, 2013) we performed time-frequency decomposition ana-

lyses. The description of related Methods and Results are available in

the Supporting Information.

2.4 | Residue iteration decomposition

Residue iteration decomposition (RIDE) is based on the assumption that

different superimposed components with variable inter-component
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delays can be differentiated within ERPs (Ouyang et al., 2015). The

RIDE method decomposes the recorded single-trial ERPs into N = 3

component clusters with either static or variable latencies. The created

components can be tied to various stages of information processing.

RIDE uses an iterative temporal decomposition, which has been used

with robust results before (Mückschel, Chmielewski, Ziemssen, &

Beste, 2017; Wolff, Mückschel, & Beste, 2017). Decomposition was

applied to each electrode separately. Since RIDE performs the decom-

position irrespective of the scalp distributions (Ouyang et al., 2015), the

CSD-transformation does not affect the decomposition. In the current

study, RIDE was performed according to established procedures

(Chmielewski, Mückschel, Ziemssen, & Beste, 2017; Verleger, Metzner,

Ouyang, Śmigasiewicz, & Zhou, 2014) applying the RIDE toolbox (see

manual at http://cns.hkbu.edu.hk/RIDE.htm) in Matlab (Mathworks,

Inc., Massachusetts). Latency information of the stimulus and response

onsets were used to generate the S (“stimulus”) and R (“response”) clus-
ters. The C (“central”) cluster's latency was estimated on a single-trial

basis and iteratively improved. RIDE requires predefined time windows

to extract the waveforms for each cluster (Ouyang, Schacht, Zhou, &

Sommer, 2013). Each of these has to cover the range within each com-

ponent is expected to occur (Ouyang et al., 2013; Ouyang et al., 2015).

The following intervals were used: for the S-cluster, 200 ms before and

until 700 ms after Stimulus B; for the R-cluster, 300 ms before and after

the Response B; for the C-cluster, 150 ms to 800 ms after Stimulus

B. Using the stimulus and response markers, RIDE applies an iterative

decomposition. This procedure creates median waveforms. For the C-

cluster estimation process, RIDE subtracts R and S from each trial and

aligns the residual of all trials to the latency information of C. This cre-

ates the waveform for the C-cluster. The same procedure is repeated to

generate the clusters of R and S. The whole process is iterated until the

convergence of all components. A detailed description of the method is

available in Ouyang et al. (2015). For the obtained RIDE clusters, we

used the same amplitude extraction method as described above

(Stürmer et al., 2013). s-LRPs were calculated separately for the C-, R-,

and S-clusters. For the r-LRP, an R-cluster could not be obtained since

the response occurred at the zero point of the segments. Moreover,

stimulus presentation could precede the segment of the r-LRPs, thus

calculating the S-cluster would have been unreliable. Thus, we analyzed

RIDE clusters only for the s-LRPs and not for the r-LRPs. Please, note,

that the R-cluster of the s-LRP captures response-related activities, and

thus, it can be viewed as a decomposed equivalent of the r-LRP.

2.5 | Multivariate pattern analysis

We performed MVPA on the pre-processed and segmented,

undecomposed EEG and also on the RIDE decomposed data using the

ADAM toolbox (version 1.05, Fahrenfort et al., 2018) in Matlab

(Mathworks). Before the MVPA, the EEG data was down-sampled off-

line to 55 Hz. A linear discriminant classifier was trained and tested

on each time point by using five-fold cross-validation. That is, the clas-

sifier was trained on 80% of the data, and tested 20% of the data,

repeating this process until all data chunks had been tested. The Area

Under the ROC Curve (AUC) was used as a measure of classification

accuracy. Larger area indicates more accurate classification perfor-

mance (Fahrenfort et al., 2018). The final performance metric was

computed by creating the average of five test folds. Two categories

were used to train the classifier: feature overlap and no feature over-

lap. In the case of unbalanced trial numbers in the categories, the

majority class was down-sampled to avoid skewed classification

(Fahrenfort et al., 2018). The EEG amplitudes at individual electrode

channels were used as classification features, creating 60 features in

both stimulus classes. A backward decoding model (BDM) (Fahrenfort

et al., 2018) was used for training and to computing metric on testing.

Next, temporal generalization matrices were calculated by using

cross-classification across time. In this step, the stability of the

observed pattern (undecomposed EEG, or decomposed C-, R-, and S-

cluster activity) was evaluated over time by training the model in one

time point and testing its discrimination performance in the remaining

time points. Cross-classification was repeated for every time point. As

a result, classification performance above chance level outside the

diagonal axis indicates sustained neural activity. Additionally, topo-

graphical maps were created based on classifier weights for the indi-

vidual electrode channels. Statistical analyses for the MVPA, that is,

group statistics and multiple corrections were performed in ADAM

(Fahrenfort et al., 2018). Two-sided t-tests against chance level

(AUC = .05) were performed for each time sample across subjects.

Cluster-based permutation was used as a correction for multiple com-

parisons as implemented in the ADAM software package.

2.6 | Statistics

Statistical analyses were performed by using JASP 0.11.1 (JASP Team,

2019). Mean accuracy (percentage of correct responses) and means of

RT data (for correct responses) were calculated for each participant

and each condition. To examine action file binding, accuracy and RT

data were analyzed in paired samples t-tests between the feature

overlap and no feature overlap conditions. Similarly, EEG data was

quantified as mean activity in the time windows of 50–200 ms (incor-

rect response activation of Task B); 220–420 ms (correct response

activation of Task B); 500–1,000 ms (response activations of Task A)

on the s-LRP channel. In the RIDE-decomposed data mean activity

was quantified in the same time windows. To quantify the onset

latency of the correct response activation, the fractional peak method

was used. The onset of the component was marked at the time when

30 % of the peak amplitude in the time window of 220–420 ms after

stimulus B onset was reached, retrospectively. EEG data was quanti-

fied as mean activity in the time windows of −300 ms to 0 ms before

and 80 ms to 200 ms after the response B on the r-LRP channel. In

the case of violation of normality, Wilcoxon's test was used. We

report Cohen's d as effect size. The Bayes factor as BF10 is reported

to quantify the evidence for the null hypothesis. In the Bayesian ana-

lyses, the default Cauchy prior was used with the scale of 0.707.

1318 TAKACS ET AL.

http://cns.hkbu.edu.hk/RIDE.htm


3 | RESULTS

3.1 | Behavioral data

Participants performed Response B faster in the no feature overlap

(445.8 ms ± 25.9) than in the feature overlap condition

(465.1 ms ± 25.7), (t[28] = 3.11, p = .004, d = .578, BF10 = 9.43). At

the same time, responses for Response B did not differ in accuracy

between feature overlap conditions (t[28] = 1.80, p = .083, d = .333,

BF10 = 0.81). Participants'cumulated reaction time for “A” responses

did not differ between feature overlap (755.0 ms ± 41.9) and no fea-

ture overlap (760.5 ms ± 41.6), (t[28] = 0.62, p = .541, d = .115,

BF10 = 0.42). However, overall accuracy for “A” responses were bet-

ter in no feature overlap (98.3% ± 2.1) than in feature overlap

(97.2% ± 3.1), (Z = 87.5, p = .026, d = .501, BF10 = 2.24). Reaction time

and accuracy data separately for the three consecutive “A” responses
are available in Table 1.

3.2 | Neurophysiology

3.2.1 | Lateralized readiness potentials

The s-LRP waveform is shown in Figure 2a, and the r-LRP waveform

is shown in Figure 3.

To examine neurophysiological correlates of the code occupation

effect (i.e., s-LRPs), we analyzed the conditions no feature overlap and

feature overlap in the following time windows after Stimulus B pre-

sentation: 50–200 ms (incorrect response activation of Task B);

220–420 ms (correct response activation of Task B); 500–1,000 ms

(response activations of Task A). In the time window corresponding to

the incorrect response activation (50–200 ms), the mean amplitude

was larger in the feature overlap (2.95 μV/m2 ± 2.2) than in the no

feature overlap condition (−1.42 μV/m2 ± 2.4), (t[28] = 6.10, p < .001,

d = 1.154, BF10 > 999). In the time window corresponding to the cor-

rect response activation (220–420 ms), the mean amplitude was larger

(more negative) in the no feature overlap (−9.00 μV/m2 ± 1.4) than in

the feature overlap condition (−3.15 μV/m2 ± 0.9), (t[28] = 5.43,

p < .001, d = 1.025, BF10 > 999). Moreover, the negative deflection in

the no feature overlap condition (255.0 ms ± 11.1) had an earlier

onset compared to the feature overlap condition (312.6 ms ± 9.2)

(Z = 85.0, p = .007, d = 0.581, BF10 > 999). In the time window

corresponding to the response activation of task A (500–1,000 ms)

the mean amplitude was larger (more positive) in the no feature over-

lap (4.44 μV/m2 ± 1.0) than in the feature overlap condition

(−4.60 μV/m2 ± 1.0), (t[28] = 5.43, p < .001, d = 0.984, BF10 > 999).

Furthermore, we analyzed the code occupation effect on the r-LRP as

a difference between the conditions of feature overlap and no feature

overlap. In the time window of −300 ms prior to the Response B the

conditions did not differ from each other (t[28] = 1.06, p = .299,

d = 0.200, BF10 = 0.33). However, in the time window of 80 ms to

200 ms after the Response B, the positive deviation was larger in the

no feature overlap (16.93 μV/m2 ± 1.4) than in the feature overlap

condition (−3.93 μV/m2 ± 2.5), (t[28] = 6.87, p < .001, d = 1.347,

BF10 > 999).

3.2.2 | Signal decomposition results

The waveforms of the s-LRP decomposed into the S-cluster, the C-

cluster, and the R-cluster are shown in Figure 2b–d.

In the S-cluster, in the time window corresponding to the incor-

rect response activation (50–200 ms), the mean amplitude was larger

in feature overlap (0.91 μV/m2 ± 0.11) than in the no feature overlap

condition (−0.34 μV/m2 ± 0.11), (t[28] = 6.54, p < .001, d = 1.235,

BF10 > 999). In the time window corresponding to the correct

response activation (220–420 ms), the mean amplitude was larger

(more negative) in no feature overlap (−0.95 μV/m2 ± 0.2) than in the

feature overlap condition (0.50 μV/m2 ± 0.2), (t[28] = 7.18, p < .001,

d = 1.357, BF10 > 999). However, the onset latencies between the no

feature overlap and feature overlap conditions did not differ from

each other (Z = 147.0, p = .477, d = 0.162, BF10 = 0.637). In the time

window corresponding to the response activation of task A

(500–1,000 ms) the mean amplitude did not differ from zero (t

[28] = 1.39, p = .176, d = 0.263), therefore, it was not analyzed.

In the C-cluster, in the time window corresponding to the incor-

rect response activation (50–200 ms), the mean amplitude was more

negative in feature overlap (−0.29 μV/m2 ± 0.06) than in no feature

overlap condition (−0.06 μV/m2 ± .04), (t[28] = 3.29, p = .003,

d = 0.622, BF10 = 13.834). In the time window corresponding to the

correct response activation (220–420 ms), the mean amplitude did

not differ between the conditions, (t[28] = 1.65, p = .111, d = 0.311,

TABLE 1 Accuracy and reaction time data of responses for task A and task B. RT for Response B is measured from Stimulus B presentation.
Reaction times of the first Response A is measured from Response B, the second Response A is measured from the first Response A, and the
third Response A is measured from the second Response A

Feature overlap No feature overlap Feature overlap No feature overlap

Accuracy (%) SE Accuracy (%) SE RT (ms) SE RT (ms) SE

1st Response A 97.4 0.5 98.9 0.3 309 22.4 308.9 21.2

2nd Response A 96.5 0.7 97.8 0.5 228 12.9 233.8 13.1

3rd Response A 97.4 0.5 98.3 0.4 217.9 10.7 217.8 11.5

Response B 98.9 0.3 99.3 0.2 465.1 25.7 445.8 25.9
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BF10 = 0.66). Similarly, the onset latencies between the no feature

overlap and feature overlap conditions did not differ from each other

(t[28] = 0.45, p = .657, d = 0.085, BF10 = 0.220). In the time window

corresponding to the response activation of task A (500–1,000 ms)

the mean amplitude was larger (more negative) in the feature overlap

(−0.59 μV/m2 ± 0.06) than in the no feature overlap condition

(0.16 μV/m2 ± 0.12), (t[28] = 4.99, p < .001, d = 0.942, BF10 > 999).

Visually, the time course of the R-cluster revealed strong similari-

ties with the undecomposed s-LRP. In the R-cluster, in the time win-

dow corresponding to the incorrect response activation (50–200 ms),

the mean amplitude was larger in feature overlap (0.40 μV/m2 ± 0.07)

than in no feature overlap condition (0.08 μV/m2 ± 0.07), (Z = 345.0,

p < .001, d = 0.670, BF10 = 9.1). In the time window corresponding to

the correct response activation (220–420 ms), the mean amplitude

was larger (more negative) in the no feature overlap (−0.56 μV/

m2 ± 0.1) than in the feature overlap condition (−0.30 μV/m2 ± 0.1),

(t[28] = 2.39, p = .024, d = 0.451, BF10 = 2.20). However, the onset

latencies between the no feature overlap and feature overlap condi-

tions did not differ from each other (Z = 261.0, p = .190, d = 0.286,

BF10 = 0.320). In the time window corresponding to the response

F IGURE 2 Stimulus-locked LRP waveforms. Time point zero denotes the stimulus presentation. S-LRPs are shown across two conditions:
feature overlap in black, and no feature overlap in red. The analyzed time window of the correct response activation (220 ms to 420 ms) is
marked with a shaded area. For the topography plots, difference waves were created between the contralateral and ipsilateral sides in the feature
overlap and in the no feature overlap conditions, separately in the undecomposed EEG, and in the three RIDE clusters. The scalp topography
plots show the distribution of the mean activity of the contralateral-ipsilateral difference waves of the time window of correct response
activation. Panel (a) presents the standard ERP results. Panel (b) presents the s-LRP calculated from the decomposed S-cluster data. Panel
(c) shows the s-LRP waveforms calculated from the decomposed C-cluster data. Panel (d) presents the s-LRP calculated from the decomposed R-
cluster data. LRP, lateralized readiness potential
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activation of task A (500–1,000 ms) the mean amplitude was larger

(more positive) in the no feature overlap (0.71 μV/m2 ± 0.13) than in

the feature overlap condition (0.45 μV/m2 ± 0.09), (t[28] = 2.67,

p = .013, d = 0.505, BF10 = 3.79).

3.2.3 | Multivariate pattern analysis results

First, we present the decoding accuracy results on the performance of

the classification. Next, we present the temporal generalization matri-

ces on the stability of the action file representations. We provide this

information separately for the undecomposed s-LRP, and for the

decomposed s-LRP C-, R-, and S-cluster data. Decoding performance

and temporal generalization results are depicted in Figure 4.

In the undecomposed EEG, significant differences (p < .05) were

found between the classes of no feature overlap and feature overlap

150 ms to 200 ms after the presentation of stimulus B. Additionally,

difference between classes was significant from 375 ms to 800 ms. In

the C-cluster, the classification was significantly above chance for the

whole length of the trial, with the exception of a time window

between 250 ms and 300 ms. Similarly, in the R-cluster, significant

differences occurred between feature overlap and no feature overlap

classes in the whole trial length. Lastly, in the S-cluster, the classifica-

tion performed above chance level for the entire length of the trial.

Thus, both in the undecomposed and in the RIDE-decomposed data,

the MVPA yielded successful classifications, suggesting that action file

representations can be detected in the neurophysiological data.

Consequently, the temporal generalization matrix shows that in

the undecomposed EEG a chain-like diagonal activation was detected

after 400 ms of Stimulus B presentation. Additionally, a smaller cluster

was detected significantly above chance level between 150 ms and

200 ms after Stimulus B onset. In the C-cluster, a jittered diagonal

activity was detected from 200 ms to the end of the trial. This activa-

tion was characterized by the same chain-like pattern as in the

undecomposed EEG matrix. In the R-cluster, the main activation was

detected as a ramping, chain-like above-chance activity from 250 ms

to the end of the trial. This activation was characterized by an increas-

ing activity. The main activation was preceded by an above-chance

activity which started pre-trial and ended 50 ms after the stimulus

presentation. In the S-cluster, the main above-chance activity

occurred as a diagonal, jittered cluster from 200 ms to 700 ms after

the stimulus presentation. Within this activation, the stability of the

neural code was largest between 400 ms and 600 ms after the stimu-

lus B. Similar to the R-cluster data, a smaller activity was detected

starting pre-trial and ending at the beginning of the trial. Moreover, a

smaller, off-diagonal below-chance activity was detected in the time

windows of 150 ms to 600 ms.

4 | DISCUSSION

In the current study, we delineate the neurophysiological correlates of

action file binding processes using EEG methods. To this end, we

applied standard time-domain analyses in combination with temporal

signal decomposition methods and MVPA methods. The behavioral

data revealed stable binding effects in action files replicating previous

findings (Colzato et al., 2006; Stoet & Hommel, 1999), that is, RTs

were longer when task B shared features with task A, compared to

conditions where task B did not share features with task A. Thus, fea-

ture integration impairs performance when a planned and another to-

be performed action share feature codes. This effect is in line with the

notion of the code occupation cost (Stoet & Hommel, 1999)

suggesting that the features defining an action have become inte-

grated. Importantly, the interference between planning a response

and execute a subsequent one supports the TEC (Hommel, 2019;

Hommel et al., 2001), as this interference occurred through the shared

features between the responses.

4.1 | Time-domain results

On a neurophysiological level, code occupation costs present in

behavioral data were reflected in the LRP. Binding effects were rev-

ealed particularly in the s-LRP. The s-LRP was locked to the presenta-

tion of stimulus B. When calculating the s-LRP in two-alternative

choice response tasks, negative deflections indicate the activation of

the correct response, whereas deflections in a positive direction indi-

cate the activation of the incorrect response (Beste et al., 2010; Bryce

et al., 2011; Falkenstein et al., 2006; Gratton et al., 1992; Stürmer

et al., 2002). In the context of the current task, a small positivity

F IGURE 3 Response-locked LRP waveforms. Time point zero
denotes the registration of the response. R-LRPs are shown across
two conditions: feature overlap in black, and no feature overlap in red.
The analyzed time window of the response activation (−300 ms to
0 ms) is marked with a shaded area. For the topography plots,
difference waves were created between the contralateral and
ipsilateral sides in the feature overlap and in the no feature overlap
conditions. The scalp topography plots show the distribution of the
mean activity of the contralateral-ipsilateral difference wave of the
time window of the response activation (−300 ms to 0 ms). LRP,
lateralized readiness potential
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preceding the main negative deflection suggests an early automatic

activation of a response code (Valt, Stürmer, Sommer, &

Boehm, 2017). Specifically, the not-yet-required Response As can be

implicated in the early positivity, and the Response B in the main neg-

ative activation of the s-LRP. Conversely, the behavioral data corre-

sponds to this interpretation. When there was no feature overlap

F IGURE 4 Decoding accuracy
and temporal generalization matrix
for the undecomposed EEG and the
RIDE-clusters. Classification
performances are shown across
time between feature overlap and
no feature overlap conditions.
Significant time windows (p < .05,
after cluster-based permutation)

are indicated by thicker lines.
Temporal generalization matrices
show significant activations in
saturated colors, while unsaturated
colors represent p-values below the
multiple-comparison corrected
threshold
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between responses to stimulus A and to stimulus B, the RTs were

�445 ms, and the EEG data revealed earlier and larger negativity of

the s-LRP around 400 ms after stimulus presentation compared to

conditions with feature overlap, where RTs were slower (�465 ms).

It is likely that the s-LRP reflects pre-motor processes (Beste

et al., 2009; Coles, 1989; Masaki et al., 2004; Osman et al., 1995; van

der Lubbe et al., 2001; Wild-Wall et al., 2003). Thus, in line with the

theoretical framework and our hypothesis, interference of action fea-

ture codes between task A and task B diminishes the efficiency of

processes to prepare task B. It seems that activation of the different

action-related features is slower and less efficient when there is an

overlap between action features codes. Thus, the findings show that

the cognitive concept of action feature binding can be directly

mapped to neurophysiological measures of response activation pro-

cesses. Importantly, in the condition with overlap between task A and

task B action features, an early positive deflection of the curve was

evident in the time window until 200 ms after stimulus B presenta-

tion. Since a positive deflection indicates the activation of a poten-

tially competing (or incorrect) response, the data suggest that once

task B is presented, action features of the not-yet-required response

A become activated, in keeping with the cognitive concept of code

occupation (Stoet & Hommel, 1999). Furthermore, following the nega-

tive peak at 400 ms after stimulus presentation the s-LRP then

became positive when there was no feature overlap (as shown in

Figure 2). This positivity was maximal around 600 ms to 700 ms after

stimulus presentation. In the case of overlapping action feature codes

between task A and B, no strong positive deflection was evident. To

understand this, it is important to consider that after carrying out

task B, participants immediately had to perform the three-step task

A. The average RTs for response As are: �309 ms, �227 ms, and

�217 ms in the condition of action feature overlaps; and �308 ms,

�233 ms, and �217 ms in the condition of no action feature overlaps

between task A and B. The first part of response A is measured from

response B, the second part from the first part of response A, and the

third part is measured from the second part of response A. Therefore,

about 600 ms after stimulus B presentation, activations related to

response A should become evident at the neurophysiological level. As

mentioned, positive deflections in the s-LRP denote the activation of

the incorrect response. Since the s-LRP was calculated based on the

presentation of the task B stimulus, the observed positive deflection

in the s-LRP in the case of no action feature overlaps between tasks A

and B, reflects the activation of responses A, that was “incorrect” or

“competing” with respect to the just completed task B. This neuro-

physiological data thus suggests that the pre-motor activation of task

A after completion of task B is also affected by action feature overlaps

between responses. The r-LRP data reflecting processes of motor exe-

cution (Beste et al., 2009; Coles, 1989; Masaki et al., 2004; Osman

et al., 1995; van der Lubbe et al., 2001; Wild-Wall et al., 2003) corrob-

orated that the findings on code occupation costs are very specific for

the level of pre-motor activation processes mirrored in the s-LRP data.

For the r-LRP, no differences in amplitude and/or onset latency were

found.

It may be argued that the r-LRP of response B revealed strong dif-

ferences between the condition with action feature overlaps and that

with no action feature overlap shortly after the response was exe-

cuted. In motor execution paradigms, this post-movement positive

deviation has been described as a Reafferent Potential (RAP) and has

been linked to sensory feedback of the executed action (Di Russo

et al., 2005; Kornhuber & Deecke, 2016; Rauchbauer et al., 2018). It is

conceivable, that sensorimotor information of the just performed

action has a larger functional relevance when it is embedded in other

responses with different action features. This post-response positiv-

ity, however, is likely to reflect overlapping activity with response

activation of the A response. Thus, the current version of the para-

digm does not allow to straightforwardly interpreting the response-

locked post-movement activity. In sum, the LRP data suggest that

code occupation and bindings between action features specifically

modulate pre-motor processes (s-LRP) and not the motor execution

process itself (r-LRP).

4.2 | Time-domain results (decomposed data)

Importantly, we also conducted a temporal decomposition of the s-

LRP data (Stürmer et al., 2013) using RIDE (Ouyang et al., 2015). This

is relevant because Stürmer et al. (2013) showed that also within the

s-LRP, different subprocesses can be distinguished in choice response

tasks and that particularly the S-cluster and the R-cluster in the s-LRP

are modulated. Stürmer et al. (2013) suggested that modulations in

the S-cluster may reflect priming-related processes of response acti-

vation, whereas the R-cluster reflects processes of instruction-related

response selection. In contrast, the C-cluster LRP was not sensitive to

response selection processes, and did not resemble a typical LRP com-

ponent (Stürmer et al., 2013). Similarly, the current findings suggest

that processes in s-LRP are reflected in two functionally and neuro-

physiological distinct activity clusters - the R-cluster and the S-cluster:

By and large, the time course shown in the R-cluster reflects the

time course of the undecomposed s-LRP data: that is, after an initial

negative deflection with a peak �400 ms after the stimulus that was

larger in the condition with no action feature overlap, a pronounced

positivity �700 ms was evident. As with the undecomposed s-LRP,

this positivity was also larger when there was no action feature over-

lap between task A and B. This cascade of neurophysiological modula-

tions is interpreted similarly as for the undecomposed s-LRP data. Yet,

in light of the functional interpretation of the s-LRP R-cluster by

Stürmer et al. (2013), the neurophysiological dynamics may reflect

processes of voluntary/instruction-related response activation and

selection processes. Interestingly, there was no significant positive

deflection of the S-cluster potential in the time window around

700 ms after response B stimulus presentation (see also Figure 2b).

This suggests that functionally different processes related to action

feature binding are reflected by the S-cluster and R-cluster. At the

same time, especially in the condition with overlap between task A

and B action features, a positive deflection of the curve was evident
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in the R-cluster. Since a positive deflection indicates the activation of

the incorrect response (Beste et al., 2010; Bryce et al., 2011;

Falkenstein et al., 2006; Gratton et al., 1992; Stürmer et al., 2002) the

data suggest that once task B is presented, action features of the not-

yet-required response A become activated. This nicely fits the cogni-

tive concept of code occupation as a principle describing action

feature integration (Stoet & Hommel, 1999). Because action features

between task A and B overlap, an incorrect response for B is initially

activated. Stürmer et al. (2013) suggested that the S-cluster reflects

some form of involuntary or priming-related processes in response

activation. Similar processes may underlie the effects when there are

overlaps in action feature codes. In the current paradigm, this

response priming process largely corresponds to the planning of

response A. Thus, while the R-cluster, similarly to the undecomposed

LRP reflects response activation and selection of response B, the S-

cluster is sensitive to the other half of the task. This possibly explains

why the feature overlap and no feature overlap conditions started to

deviate from each other prior to the presentation of stimulus B (but

after the baseline). Of note, the R-cluster s-LRP was sensitive to code

occupation effect while the undecomposed r-LRP was not. This dis-

parity may be counterintuitive given that the R-cluster is created

based on the time interval around the response marker, thus, it should

carry similar information on the task dynamics as the r-LRP. However,

the two components are different in terms of variability. The iterative

latency correction of RIDE made the R-cluster LRP less susceptible to

trial-to-trial variability and consequent blurring effects than the trial

averaged r-LRP (Ouyang & Zhou, 2020). This methodological differ-

ence makes the R-cluster data better suitable to detect changes

between experimental conditions.

Conversely, no effects were seen related to Response B in the C-

cluster. In the time windows corresponding to Response A, the two

conditions differed from each other, however, these components

could not be linked to traditional parts of the LRP. This pattern is in

stark contrast with the recent temporal decomposition results of

event file coding (Opitz et al., 2020; Takacs, Zink, et al., 2020). Both

general stimulus–response binding (Takacs, Zink, et al., 2020) and

distractor-response bindings (Opitz et al., 2020) were seen in the C-

cluster as opposed to the S- and R-cluster. This is not surprising, con-

sidering that the paradigms used in these studies required transla-

tional processes between stimulus and response, and they did not rely

on binding between action features. Moreover, as Stürmer et al. has

already demonstrated, the decomposed s-LRP is only visible in the S-

and R-clusters, the C-cluster does not seem to reflect motor prepara-

tion at all. In contrast, the current experiment operated on the level of

motor programs; therefore, it was not expected to see binding effects

in the C-cluster but in the R-cluster. The difference between the neu-

rophysiological coding levels of event files and action files is in line

with the behavioral findings of Colzato et al. (2006). In that study,

stimulus–response binding and response–response bindings were

uncorrelated, suggesting that integration of feature codes is not a uni-

tary process, but different binding mechanisms may operate parallel.

Altogether, the current and previous studies (Opitz et al., 2020;

Takacs, Zink, et al., 2020) dovetailed our knowledge on the

relationship between the different types of bindings and the tempo-

rally decomposed EEG data. A dissociation can be envisaged in which

integration of object and action features are detectable in the C-clus-

ter, while integration between action features are detectable in the

R-cluster. It remains an open question whether binding of object fea-

tures could be seen predominantly in the S-cluster.

4.3 | Multivariate pattern analysis results

In addition to extensive LRP analyses, we also conducted MVPA, in

which we contrasted the conditions with action feature overlap

between tasks A and B with those where there was no action feature

overlap. This approach was based on a previous study (Takacs, Zink,

et al., 2020) in which conditions with different levels of event file

binding were contrasted, and thus, the representation of the event file

binding processes could be studied. Unlike the LRP approach that is

informative about the mental chronometry of response-related pro-

cesses (Beste et al., 2010; Bryce et al., 2011; Falkenstein et al., 2006;

Gratton et al., 1992), the temporal generalization analysis is sensitive

to the stability of neural patterns (Fahrenfort et al., 2018;

Grootswagers et al., 2016; King & Dehaene, 2014). That is, changes of

mental representations can be decoded by using MVPA (King &

Dehaene, 2014). In the current study, the MVPA contrast allowed us

to investigate the generalization of action file binding. The MVPA was

performed for the undecomposed, as well as for the decomposed data

(see Figure 4). The results from the MVPA analysis suggest that there

is a temporally sustained representation of action feature codes in the

neurophysiological signal. Between 400 ms and 800 ms after stimulus

presentation of task B, a temporally stable diagonal-shaped represen-

tation pattern was found in the undecomposed data. Such a diagonal

MVPA coding pattern has been suggested to reflect a chain of repre-

sentations (King & Dehaene, 2014). Since responses to task B were

carried out between �445 and 465 ms after stimulus presentation,

and the instruction was to execute a chain of three tasks A responses

immediately after finishing task B (which took about 750 ms alto-

gether), the temporally sustained activation from 400 ms onwards

very likely reflects the cascade (chain) of task A action feature activa-

tion and execution. Since the execution of task A comprises pre-

motor response activation processes as well the motor execution it is

plausible that temporally sustained and chained representations were

found. However, for the RIDE cluster, and particularly so for the C-

cluster and the R-cluster, not only diagonal activity was shown. For

the R-cluster, sustained activity was present even before the presen-

tation of task B at time point zero. Since task A was presented before

response B this may well reflect task A representations. This sustained

representation was not evident in the undecomposed data. A possible

reason for this is that RIDE reduces intra-individual variability in the

data (Ouyang et al., 2013), which may make it easier to detect tempo-

rally stable patterns of representations in the neural signal. Also, espe-

cially the R-cluster is said to reveal motor-related processes (Ouyang

et al., 2015) and particularly in the R-cluster sustained pretrial activity

was strong. In the undecomposed EEG data, different coding levels
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are intermingled in the neural signal (Chmielewski et al., 2017;

Mückschel et al., 2017), which is a possible reason why this sort of

activity was not evident. Probably, it is a residual action feature repre-

sentation from the A-response of the previous trial are reflected by

this pretrial activation pattern in the R-cluster of the s-LRP. Notably,

similar pre-stimulus intertrial activity was detected also in event file

coding in the C-cluster and R-cluster data (Takacs, Zink, et al., 2020).

Interestingly, in action file binding, for the R-cluster, but also for the

C-cluster, extended off-diagonal (ramping) activity is shown (King &

Dehaene, 2014). This ramping activity was more extended in the R-

cluster than in the C-cluster and more steadily increased throughout

the trial. The S-cluster did not show this extended ramping activity.

This difference in the extended off-diagonal temporally generalized

activity pattern can interpreted that particularly motor or movement-

related codes become steadily activated throughout the trial. This fits

to the structure and logic of the experimental paradigm, in which vari-

ous actions have to be planned, and performed in a cascade. Thus, the

temporal generalization analysis was able to track the representational

time course of motor feature activity in action files. Moreover, the

current study further delineated how different types of bindings are

represented in the neural signal. While event files are characterized

by a continuous, gradually strengthening activity (Takacs, Zink,

et al., 2020), action files consists of chains of the motor features, and

a ramping activity as the response is being executed. This provides an

important evidence for the TEC (Hommel, 2019; Hommel

et al., 2001). While the theory suggested that at the representational

level, object files, action files, and event files can be distinguished

from each other, up to date there was no direct evidence for the exis-

tence of different neural representations of the three file types. How-

ever, the difference between the temporal generalization of event

files (Takacs, Zink, et al., 2020) and action files fills this gap, and sug-

gest that different binding processes can lead to different representa-

tional patterns, such as action and event files.

4.4 | Comparison between time-domain and
multivariate pattern analyses

When comparing the different levels of neurophysiological analyses, it

is important to discuss how they complement our knowledge of the

emergence and processing of event files. The dynamics of creating an

action file, that is, the act of binding, was not directly investigated in

the current study. Instead, the neurophysiological processes were

described time-locked to the point when an action file feature was re-

activated by the presentation of task B. Therefore, the LRP results

reflect the chronometry of response processes as a consequence of

the integration of action file features in response planning. It was rev-

ealed that this integration particularly affects pre-motor processes,

and it can be detected primarily in the response level (R-cluster) and

not in the stimulus (S-cluster) or stimulus–response translational (C-

cluster) levels. That is, action files affected specific response-related

processes at a specific coding level through code occupation between

embedded tasks' responses. Thus, the phenomenon of code

occupation and the existence of action file representations were

confirmed in an indirect fashion, by the behavioral effects and the

ERP correlates. In contrast, MVPA analyses showed that when

action files are activated (in case of feature overlap), sustained neu-

ral activities were detected in the form of chains of motor features,

and a ramping cluster. Thus, the temporal generalization provided

more direct evidence for the existence of action files albeit without

time-precision of the LRP analysis. The current results warrant fur-

ther studies of how these action file representations emerge

(i.e., close-up look at the binding process) and how do they integrate

with the available pool of feature codes. For the latter question, the

action file processes should be studied with different types of fea-

ture codes (Mocke, Weller, Frings, Rothermund, & Kunde, 2020).

Importantly, temporal decomposition provided a more detailed pic-

ture of action file-related processes and action file representations

per se, than the undecomposed EEG signal alone. In both cases,

action file binding could be differentiated from previous results of

event file binding mechanisms (Kleimaker et al., 2020; Opitz

et al., 2020; Takacs, Mückschel, et al., 2020; Takacs, Zink,

et al., 2020). This is in line with previous behavioral results

suggesting the independence of action file binding and event file

binding (Colzato et al., 2006). Thus, the combination of complemen-

tary neurophysiological methods were necessary to confirm that

binding is not a unitary mechanism at the neural level.

5 | CONCLUSIONS

The present study addressed the neurophysiological mechanisms

underlying binding processes in voluntary actions within the TEC frame-

work. It examined the time course, functional different neural activity

clusters, and the stability of the representational content of neurophysi-

ological activity during action file coding. As such the study delineated

the neurophysiological markers of the code occupation concept

assumed to drive binding processes at the motor level (Stoet &

Hommel, 1999). We showed that code occupation and bindings

between action features specifically modulate pre-motor processes.

Conversely, the motor execution processes were not modulated by

action file binding. The temporal decomposition of the EEG signal fur-

ther distinguished between action file related processes: the planned

response, which the code occupation originated from, was reflected in

general response selection (R-cluster) but not in priming-related (S-clus-

ter) response activation. Altogether, the neurophysiological correlates

of action file binding suggest that parallel, stimulus- and response-

related pre-motor processes are responsible for the code occupation.

Moreover, decoded EEG and temporally decomposed neural signal indi-

cated that action files are represented as a continuous chain of activa-

tions. Within this chain, inhibitory and response re-activation patterns

can be distinguished with signal decomposition.
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