
ORIGINAL RESEARCH
published: 06 May 2022

doi: 10.3389/fcvm.2022.901240

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 May 2022 | Volume 9 | Article 901240

Edited by:

Yuling Zhang,

Sun Yat-sen Memorial Hospital, China

Reviewed by:

Mai Jingting,

Sun Yat-sen University, China

Zhijian He,

The First Affiliated Hospital of

Guangdong Pharmaceutical

University, China

*Correspondence:

Xiao Huang

drxiaohuang@163.com

Lishun Liu

54lisun@163.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Cardiovascular Therapeutics,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 21 March 2022

Accepted: 05 April 2022

Published: 06 May 2022

Citation:

Huang X, Cao T, Chen L, Li J, Tan Z,

Xu B, Xu R, Song Y, Zhou Z, Wang Z,

Wei Y, Zhang Y, Li J, Huo Y, Qin X,

Wu Y, Wang X, Wang H, Cheng X,

Xu X and Liu L (2022) Novel Insights

on Establishing Machine

Learning-Based Stroke Prediction

Models Among Hypertensive Adults.

Front. Cardiovasc. Med. 9:901240.

doi: 10.3389/fcvm.2022.901240

Novel Insights on Establishing
Machine Learning-Based Stroke
Prediction Models Among
Hypertensive Adults
Xiao Huang 1*†, Tianyu Cao 2†, Liangziqian Chen 3, Junpei Li 1, Ziheng Tan 1, Benjamin Xu 4,

Richard Xu 5, Yun Song 3,6, Ziyi Zhou 7, Zhuo Wang 8, Yaping Wei 8, Yan Zhang 9,

Jianping Li 9, Yong Huo 9, Xianhui Qin 10, Yanqing Wu 1, Xiaobin Wang 11, Hong Wang 12,

Xiaoshu Cheng 1, Xiping Xu 8 and Lishun Liu 3,7*

1Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China, 2 Biological

Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States, 3Department of Data Management,

Shenzhen Evergreen Medical Institute, Shenzhen, China, 4Department of Epidemiology, Harvard T.H. Chan School of Public

Health, Boston, MA, United States, 5Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health,

Baltimore, MD, United States, 6 Institute of Biomedicine, Anhui Medical University, Hefei, China, 7Department of Biomedical

Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China, 8 Key Laboratory of Precision Nutrition

and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional

Engineering, China Agricultural University, Beijing, China, 9Department of Cardiology, Peking University First Hospital, Beijing,

China, 10National Clinical Research Study Center for Kidney Disease, The State Key Laboratory for Organ Failure Research,

Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China, 11Department of Population, Family and

Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States,
12Department of Cardiovascular Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States

Background: Stroke is a major global health burden, and risk prediction is essential

for the primary prevention of stroke. However, uncertainty remains about the optimal

prediction model for analyzing stroke risk. In this study, we aim to determine the most

effective stroke prediction method in a Chinese hypertensive population using machine

learning and establish a general methodological pipeline for future analysis.

Methods: The training set included 70% of data (n = 14,491) from the China

Stroke Primary Prevention Trial (CSPPT). Internal validation was processed with the

rest 30% of CSPPT data (n = 6,211), and external validation was conducted

using a nested case–control (NCC) dataset (n = 2,568). The primary outcome was

the first stroke. Four received analysis methods were processed and compared:

logistic regression (LR), stepwise logistic regression (SLR), extreme gradient boosting

(XGBoost), and random forest (RF). Population characteristic data with inclusion

and exclusion of laboratory variables were separately analyzed. Accuracy, sensitivity,

specificity, kappa, and area under receiver operating characteristic curves (AUCs)

were used to make model assessments with AUCs the top concern. Data balancing

techniques, including random under-sampling (RUS) and synthetic minority over-

sampling technique (SMOTE), were applied to process this unbalanced training set.
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Results: The best model performance was observed in RUS-applied RF model with

laboratory variables. Compared with null models (sensitivity = 0, specificity = 100, and

mean AUCs = 0.643), data balancing techniques improved overall performance with

RUS, demonstrating a more satisfactory effect in the current study (RUS: sensitivity

= 63.9; specificity = 53.7; and mean AUCs = 0.624. Adding laboratory variables

improved the performance of analysis methods. All results were reconfirmed in validation

sets. The top 10 important variables were determined by the analysis method with the

best performance.

Conclusion: Among the tested methods, the most effective stroke prediction model in

targeted population is RUS-applied RF. From the insights, the current study revealed, we

provided general frameworks for building machine learning-based prediction models.

Keywords: machine learning, risk assessment, stroke, primary prevention, XGBoost

INTRODUCTION

Stroke is the leading cause of death in China (1). Stroke
management and prevention methods are urgently needed,
especially in Chinese rural areas, which bear the heaviest stroke
burden (2). Primary prevention of stroke is the top priority,
and more than 85% of strokes are preventable (3). The key
is to develop effective stroke prediction methods and identify
important stroke risk factors.

Machine learning has been validated as an effective data
analyzing method and has seen growing usage in epidemiological
studies and the field of medicine (4, 5). Its strengths include
ease of analysis and the ability to simultaneously consider a
huge number of variables and capture complex interactions
between variables. For these reasons, machine learning has
garnered favor as an analysis method in some research over
traditional regression models (6, 7). However, some important
methodological questions remain unanswered. Across different
studies, the optimal model often differs, and the appropriate
balance of variables to include in the model differs as well.

The current study aimed to explore the optimal stroke
prediction method by using two classic logistic regression
methods and two currently admitted machine learning
models. The main data were obtained from a large-scale
RCT study and a nested case–control study, which shared
similar data characteristics. The targeted population is
Chinese rural area hypertensive adults without a prior history
of stroke. With the large sample size and thorough data
processing process, we also try to establish general framework
for future analysis that builds prediction method using
machine learning.

METHODS

Study Population
Two datasets with similar baseline characteristics investigated
by the same team were selected and analyzed in our study: the
China Stroke Primary Prevention Trial (CSPPT) dataset and
the nested case–control (NCC) dataset which is a subset from

the H-type Hypertension and Stroke Prevention and Control
Project (HSPCP).

In brief, CSPPT is a multicenter, double-blinded, randomized
control trial conducted in 32 communities in Jiangsu (20
communities) and Anhui (12 communities) provinces from May
19, 2008, to August 24, 2013, in China. This study has been
thoroughly described before (8). Eligible participants of the
CSPPT study included hypertensive men and women aged 45–75
years, with hypertension defined as seated resting SBP (systolic
blood pressure) of 140 mmHg and higher; or DBP (diastolic
blood pressure) of 90 mmHg and higher during screening and
follow-up visits; or using antihypertensive medication. HSPCP,
which has also been thoroughly described previously (9), is
an ongoing community-based, multicenter, non-interventional,
prospective, observational, real-world registry study. Eligible
subjects for the HSPCP study were men and women aged 18
years or older with essential hypertension, defined as seated
resting SBP more than or equal to 140 mmHg or DBP more than
or equal to 90 at baseline. Both studies were approved by the
Ethics Committee of the Institute of Biomedicine, AnhuiMedical
University, Hefei, China, and all participants from both studies
provided written informed consent.

Predictors and Data Processing
Baseline data, including demographic characteristics, traditional
risk factors, medication usage, questionnaire information,
physical examinations, and laboratory tests, were collected by
trained employees. After careful selection, important variables
that presented the most in both the training and validating
datasets (intersection) were entered into the final analysis, such
as blood pressure, laboratory data, cardiovascular risk factors,
and medication use. Furthermore, to explore the additive value
on model performance, laboratory variables were excluded in
one subgroup analysis and included in another (with or without
laboratory test data).

Outcome Assessment
The primary outcome was new nonfatal and fatal stroke
(ischemic or hemorrhagic) occurring between baseline and
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FIGURE 1 | Analysis flow for the development and evaluation of models.

follow-up (a median of 4.2 years). Silent stroke and subarachnoid
hemorrhage were excluded. All source data of suspected stroke
cases, including imaging data, event reports, andmedical records,
were collected and further validated by the event adjudication
committee (8).

Analysis Methods Tested
Four data analysis methods were tested which included two
logistic regression methods: logistic regression (LR) and stepwise
logistic regression (SLR) and two machine learning methods:
random forest (RF) and XGBoost.

Two logistic regression analysis methods:
Logistic regression (LR) analyzed the relationship between

multiple independent influencing factors and a categorical or

binary outcome. By controlling confounding influencing factors
and seizing important factors, logistic regression is able to make
probabilistic predictions toward the selected outcome (10).

Stepwise logistic regression (SLR) is a semi-automated
analysis method that continuously adds or removes variables
from the model at each step. It is useful in a database with a large
number of independent variables (11).

Two machine learning methods:
Extreme gradient boosting (XGBoost) can generate a

collection of classification trees and assign each variable with
a predictive risk score (12), which is an improved algorithm
based on the GDBT (gradient boosting decision tree). XGBoost
performs the second-order Taylor expansion of the cost function
and adds a regularization item to achieve better performance.
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It adds predictions from weak regression trees sequentially to
maximize model performance and minimize model complexity
while avoiding over-fitting. XGBoost has become one of the most
accepted models for risk identification and event prediction.

Random forest (RF) is a widely used learning method that
produces an ensemble of decision trees with random variables as
branches. By using the majority principle from all of the trees and
branches, RF is able to make predictions with high accuracy with
less over-fitting and strong anti-noise ability (13). It is a combined
classifier algorithm based on the cart decision tree. Following the
principle that a minority is subordinate to the majority, RF votes
decision trees in the forest and the category with higher votes can
be determined.

Two data balancing techniques:
The stroke-to-non-stroke ratio was approximately 1:31, which

suggested an imbalance. Random under-sampling (RUS) and
synthetic minority over-sampling technique (SMOTE) were used
as data balancing techniques in the training dataset. RUS is
a commonly used data balancing technique that randomly
removes samples from the majority dataset until it reaches
a size equivalent to the minority dataset (14). The synthetic
minority over-sampling technique (SMOTE) randomly generates
synthetic data to increase the minority instances based on
similarities between the nearest data neighbors (15).

Internal and External Validation
As mentioned in the study population section (Figure 1), the
total CSPPT dataset was divided into a training set (70%, n =

14,491) an internal validation set (30%, n = 6,211); and the
NCC dataset, which possesses similar data characteristics with
the CSPPT set, was treated as external validation. In brief, a stroke
predictive model was trained on the training set. Then, data from
the internal and external validation sets were used to treat the
aforementioned predictive model to get predictive results. These
predictive results were compared with the actual observed results,
respectively, from which the processed AUCs can be obtained.
At last, AUCs for both validation sets were compared to assess
the accuracy and universality of the trained predictive model. In
addition, 10-fold cross-validation was applied to each analysis
model for derivation and validation. In computational-heavy
analyses, a 10-fold CV can improve the accuracy and efficiency
of the prediction model by reducing the MSE, bias, and variance
(16). Moreover, a 10-fold CV can avoid type III errors (arbitrarily
split data suggested testing hypotheses). Ten-fold CV randomly
divides data into 10 equal folds, and then, each fold in turn is
used as the validation set, while the nine other folds are used as
the training set.

Statistical Analysis
Continuous variables are presented as mean with standard
deviation (SD, normal distribution) and as medians with
inter-quartile range (IQR, skewed distribution). Categorical
variables are presented as percentages. The t-test, Wilcoxon
rank-sum test, and the Chi-square test were used for statistical
comparison between stroke and non-stroke populations.
Sensitivity, specificity, accuracy, kappa, and areas under the
receiver operating characteristic curve (AUCs) were used to

make the model assessment with AUCs the top concerns for
model performance evaluation. Data balancing techniques,
including RUS and SMOTE, were applied to process the
imbalanced dataset (stroke-to-non-stroke incidence was 1:31)
meanwhile separately compared with each other and the null
model (regression coefficients equal to 0). Box plots were
generated to explore the efficacy of the inclusion of laboratory
data. Receiver operating characteristics curves were generated to
examine and compare the performance of four analysis methods
in both the CSPPT and NCC datasets.

Two-tailed P < 0.05 was considered significant in all analyses.
All statistical analyses were performed using R software, version
3.5.2 (http://www.R-project.org/, accessed 20 December 2018).

RESULTS

Baseline Characteristics
CSPPT dataset (training and internal validation dataset): A total
of 20,702 rural Chinese hypertensive participants without a prior
history of stroke at baseline were included. In the targeted
population, 41% were male (n = 8,497) and had a mean age
of 60.0 (SD: 7.5) and a mean SBP of 165.8 (SD 18.3) mmHg at
baseline. During a median follow-up period of 4.5 years, 637 new
stroke cases occurred (3.1% of the total population). The stroke
incidence rate was approximately 3,225.81/100,000. Statistical
significances (P < 0.05) were observed regarding age, BMI, DBP,
SBP, ALB, AST, GGT, CHOL, GLU, CREA, sex, diabetes, smoking,
fruit intake, and antihypertensive drugs usage (P < 0.05).

NCC (external validation set): A total of 2,568 hypertensive
patients with a mean age of 70.6 (SD 8.2), 51.1 % being male (n=
1,311), and having a 153.1 (SD 22.8) mmHg mean SBP level were
entered into the final analysis. The stroke cases-to-non-stroke
cases ratio was 1:1 with number equal to 1,284. With identical
variables to the CSPPT dataset, differences were observed in hip,
BMI, DBP, SBP, pulse, calcium, triglycerides, glucose, diabetes,
antihypertensive drugs usage, and hypoglycemic drugs usage
(P < 0.05; Table 1).

The following result description will mainly focus on the
training set.

Performance of Data Balancing Techniques
Before data balancing techniques were applied, we observed
high AUCs (mean 0.643), very high accuracy (97%), very high
specificity (100%), and mean kappa value of 0.97, but very
low sensitivity (0), in all four analysis methods. After including
laboratory data, similar patterns were found with mean AUCs,
accuracy, specificity, kappa, and sensitivity of 0.647, 97%, 100%,
0.97, and 0, respectively.

After data balancing techniques were applied, we can observe
improvements in sensitivity and decreases in specificity and
AUCs. Higher AUCs were obtained from the analysis method
applied with RUS than SMOTE in general (mean 0.623 vs.
0.512). In addition, in RUS-applied models, higher sensitivity
(mean 63.9% vs. 14.4%), higher kappa (mean 0.022 vs. −0.004),
lower specificity (53.7% vs. 84.4%), and lower accuracy (54.0%
vs. 83.3%) were observed compared with SMOTE-applied
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TABLE 1 | Baseline and follow-up characteristics of the study participants.

Dataset CSPPT NCC validation

Total Stroke No stroke P-Value Total Stroke No stroke P-Value

N 20,702 637 20,065 2,568 1,284 1,284

Sex 0.001 0.97

Male 8,497 (41.0) 302 (47.4) 8,195 (40.8) 1,311 (51.1) 656 (51.1) 655 (51.0)

Female 12,205 (59.0) 335 (52.6) 11,870 (59.2) 1,257 (48.9) 628 (48.9) 629 (49.0)

Age, year 60.0 (7.5) 62.2 (7.3) 59.9 (7.5) <0.001 70.6 (8.2) 70.6 (8.2) 70.6 (8.2) 0.99

Hip, cm 94.6 (6.9) 94.7 (7.2) 94.6 (6.9) 0.73 98.1 (8.5) 98.7 (8.4) 97.5 (8.5) 0.001

BMI, kg/m² 24.8 (3.5) 25.1 (3.6) 24.8 (3.5) 0.04 26.3 (4.1) 26.6 (4.3) 26.0 (3.7) <0.001

DBP, mmHg 93.8 (10.9) 95.8 (11.0) 93.8 (10.8) <0.001 85.5 (12.3) 87.4 (12.8) 83.6 (11.5) <0.001

SBP, mmHg 165.8 (18.3) 173.1 (18.5) 165.5 (18.3) <0.001 153.1 (22.8) 157.0 (23.4) 149.2 (21.4) <0.001

Pulse, BMP 72.9 (8.7) 72.9 (8.7) 72.9 (8.7) 0.93 74.5 (12.7) 75.2 (12.8) 73.7 (12.5) 0.006

Laboratory data

Albumin, mmol/L 48.6 (4.2) 48.3 (4.2) 48.6 (4.2) 0.02 47.0 (3.2) 47.0 (3.1) 47.1 (3.2) 0.21

AST, mmol/L 24.5 (6.8) 23.6 (6.8) 24.5 (6.8) 0.001 21.9 (14.4) 21.5 (8.9) 22.4 (18.4) 0.11

γ-GT, mmol/L 21.9 (9.6) 23.3 (10.2) 21.9 (9.5) <0.001 27.0 (27.9) 27.4 (25.7) 26.6 (29.9) 0.49

TC, mmol/L 5.5 (1.1) 5.6 (1.0) 5.5 (1.1) <0.001 5.8 (1.2) 5.8 (1.2) 5.8 (1.2) 0.56

Calcium, mmol/L 2.6 (0.2) 2.6 (0.2) 2.6 (0.2) 0.30 2.3 (0.2) 2.4 (0.2) 2.3 (0.2) 0.04

Triglycerides, mmol/L 1.5 (0.6) 1.5 (0.6) 1.5 (0.6) 0.81 1.4 (0.9) 1.5 (0.9) 1.3 (0.8) <0.001

Glucose, mmol/L 5.6 (0.8) 5.7 (0.9) 5.6 (0.8) <0.001 6.2 (2.3) 6.5 (2.5) 6.0 (2.0) <0.001

Creatinine, mmol/L 64.6 (13.2) 66.1 (13.8) 64.6 (13.2) 0.005 60.2 (27.8) 61.2 (27.4) 59.2 (28.2) 0.08

Cardiovascular risk factors

Diabetes <0.001 <0.001

No 18,414 (88.9) 521 (81.8) 17,893 (89.2) 2,133 (83.1) 1,019 (79.4) 1,114 (86.8)

Yes 2,288 (11.1) 116 (18.2) 2,172 (10.8) 435 (16.9) 265 (20.6) 170 (13.2)

Smoking <0.001 0.06

Never 14,263 (68.9) 387 (60.8) 13,876 (69.2) 1,745 (68.0) 856 (66.7) 889 (69.2)

Former 1,570 (7.6) 62 (9.7) 1,508 (7.5) 256 (10.0) 122 (9.5) 134 (10.4)

Current 4,869 (23.5) 188 (29.5) 4,681 (23.3) 567 (22.1) 306 (23.8) 261 (20.3)

Alcohol drinking 0.08 0.66

Never 14,283 (69.0) 415 (65.1) 13,868 (69.1) 1,850 (72.0) 923 (71.9) 927 (72.2)

Former 1,459 (7.0) 57 (8.9) 1,402 (7.0) 95 (3.7) 61 (4.8) 34 (2.6)

Current 4,960 (24.0) 165 (25.9) 4,795 (23.9) 623 (24.3) 300 (23.4) 323 (25.2)

Living standard 0.09 0.43

Good 2,476 (12.0) 72 (11.3) 2,404 (12.0) 419 (16.3) 207 (16.1) 212 (16.5)

Common 15,863 (76.6) 476 (74.7) 15,387 (76.7) 2,014 (78.4) 1,003 (78.1) 1,011 (78.7)

Bad 2,363 (11.4) 89 (14.0) 2,274 (11.3) 135 (5.3) 74 (5.8) 61 (4.8)

Noon nap 0.10 0.11

No 14,665 (70.8) 433 (68.0) 14,232 (70.9) 1,154 (44.9) 557 (43.4) 597 (46.5)

Yes 6,037 (29.2) 204 (32.0) 5,833 (29.1) 1,414 (55.1) 727 (56.6) 687 (53.5)

Fruit, kg/week 0.04 0.07

<0.5 553 (2.7) 29 (4.6) 524 (2.6) 117 (4.6) 70 (5.5) 47 (3.7)

0.5–1.5 3,747 (18.1) 116 (18.2) 3,631 (18.1) 705 (27.5) 356 (27.7) 349 (27.2)

>3 16,402 (79.2) 492 (77.2) 15,910 (79.3) 1,746 (68.0) 858 (66.8) 888 (69.2)

Taste 0.11 0.72

Bland 4,208 (20.3) 124 (19.5) 4,084 (20.4) 1,316 (51.2) 664 (51.7) 652 (50.8)

Common 8,699 (42.0) 249 (39.1) 8,450 (42.1) 657 (25.6) 324 (25.2) 333 (25.9)

Heavy 7,795 (37.7) 264 (41.4) 7,531 (37.5) 595 (23.2) 296 (23.1) 299 (23.3)

Medication use

Antihypertensive drugs 0.007 <0.001

No 11,166 (53.9) 310 (48.7) 10,856 (54.1) 1,354 (52.7) 583 (45.4) 771 (60.0)

(Continued)
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TABLE 1 | Continued

Dataset CSPPT NCC validation

Total Stroke No stroke P-Value Total Stroke No stroke P-Value

Yes 9,536 (46.1) 327 (51.3) 9,209 (45.9) 1,214 (47.3) 701 (54.6) 513 (40.0)

Hypoglycemic drugs 0.94 <0.001

No 20,385 (98.5) 627 (98.4) 19,758 (98.5) 2,265 (88.2) 1,091 (85.0) 1,174 (91.4)

Yes 317 (1.5) 10 (1.6) 307 (1.5) 303 (11.8) 193 (15.0) 110 (8.6)

Data are mean (SD) or n (%).

BMI, body mass index; AST, aspartate aminotransferase; γ-GT, gamma glutamyltranspeptidase; TC, total cholesterol.

methods. Moreover, extreme values were found in SMOTE-
applied models, but not RUS (e.g., SMOTE-applied RF has 4.80
sensitivity, 95.2% specificity, and 92.7% accuracy).

Inclusion of Laboratory Data
Although adding the laboratory variables elevated overall
model performance, no significant improvement was observed
(Table 2). Reductions were only observed regarding specificity
and accuracy in SMOTE-applied LR and SL and AUCs for RUS-
applied XGBoost, but also with a limited range.

With data balancing techniques, the inclusion of laboratory
data improved AUCs (mean 0.58 vs. 0.57), sensitivity (42.2% vs.
39.1%), specificity (69.3% vs. 69%), accuracy (68.5% vs. 68.2%),
and kappa (0.016 vs. 0.008) compared with the exclusion of
laboratory data.

Performance of Analysis Methods
Overall, the RF method appeared to have the highest mean AUCs
(Null + RUS + SMOTE/3) of 0.601, and SLR showed the lowest
average AUCs of 0.587 before adding laboratory variables. After
the inclusion of laboratory data, highest and lowest mean AUC
values were found in SLR and XGBoost with values of 0.612 and
0.589, respectively.

In RUS-applied methods, both with and without laboratory
data, the highest mean AUC of 0.642 was found in RF, which
was also displaced with the highest average sensitivity of 70.7%.
Under the same circumstances, the lowest AUC was found in
XGBoost with a mean value of 0.622. The lowest sensitivity
(59.7%) was observed in the LRmodel. A similar result was found
in SMOTE-applied models as well, with RF having the highest
mean AUC (0.528) and XGBoost having the lowest value (0.520)
both before and after the inclusion of laboratory data.

Before adding laboratory variables, in the methods processed
with both RUS and SMOTE, the RF model showed the highest
mean AUC of 0.577, whereas SLR had the lowest AUC value of
0.561. In the analysis method, including laboratory variables and
applying RUS and SMOTE, SLR was observed to have the highest
mean AUC of 0.589, while XGBoost appeared to have the lowest
AUC of 0.573.

NCC Dataset (External Validation Set)
In general, similar findings to that of the training set were
observed in the NCC dataset as well. The best model performance
was obtained in the RUS-applied RF with the highest AUC value

of 0.584, which outperformed other tested methods (Table 2).
Receiver operating characteristic (ROC) curves were generated
to examine and compare the performance of four RUS-applied
analysis methods in both the CSPPT and NCC datasets with the
inclusion of laboratory data (Figure 2). Results with the exclusion
of laboratory data are presented in Supplement Figure 1.

Selection of Stroke Predictors
Important variables were selected according to the following
techniques: Standardized regression coefficients were used to
evaluate the importance of variables in the LR and SLR models;
the Gini coefficient (average contribution) was calculated for
each variable across all branches in the RF model; the relative
numbers of times of a single variable in the full data distribution;
and the Gini coefficient was identified for the XGBoost model.
The top 25 variables were selected from the most optimal stroke
prediction model, being RUS-applied RF with the inclusion of
laboratory data, as stroke risk predictors. Figure 3 highlights the
most important variables in the RUS-applied RF model with and
without laboratory variables. Supplement Figure 2 presents the
most important variables from RUS-applied XGBoost method
with the inclusion and exclusion of laboratory variables. We can
observe different orders and more diversity when more variables
were added, but SBP, age, creatinine, triglycerides, and DBP were
most commonly identified as the top five important variables.

DISCUSSION

The optimal stroke prediction model was not well established
and often varies across different studies. Our study not only
developed an effective stroke prediction model using machine
learning analysis, but also revealed important insights into
machine learning-based prediction models in general. To our
knowledge, this study is by far the first and largest study that
builds machine learning-based stroke prediction model using
hypertensive population data.

Heo et al.’s (17) study, which focused on acute ischemic
stroke, reported DNN (deep neural network) as the optimal
prediction method. Wu et al.’s (18) study found that SMOTE-
applied RLR outperformed other tested models in an older
Chinese population for predicting the risk of stroke. Ambale-
Venkatesh et al. (4) identified RF to be the most effective
cardiovascular risk (including stroke) prediction model among
nine tested methods in a multiracial population. Moreover,
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TABLE 2 | Performance of machine learning methods in different datasets with different data balancing methods.

Model Balancing

methods

CSPPT NCC validation

AUC Sensitivity Specificity Accuracy Kappa AUC Sensitivity Specificity Accuracy Kappa

No laboratory data RF Null 0.651 0 100 97 0.970 0.565 0 100 50.0 0.500

XG 0.640 0 100 97 0.970 0.552 0 100 50.0 0.500

LR 0.641 0 100 97 0.970 0.595 0.2 100 50.1 0.002

SLR 0.641 0 100 97 0.970 0.610 0 100 50.0 0.500

RF RUS 0.629 69.4 51.7 52.2 0.025 0.562 60.2 46.1 53.2 0.063

XG 0.624 67.2 49.0 49.5 0.018 0.580 72.6 36.1 54.3 0.086

LR 0.626 58.6 57.9 57.9 0.022 0.582 62.4 50.2 56.3 0.125

SLR 0.616 60.2 56.3 56.4 0.022 0.579 65.4 46.3 55.8 0.117

RF SMOTE 0.524 5.4 94.3 91.7 −0.002 0.507 4.6 97.0 50.8 0.016

XG 0.514 9.7 87.4 85.1 −0.011 0.512 12.1 87.7 49.9 −0.002

LR 0.505 21.5 78 76.3 −0.001 0.483 35.9 63.4 49.6 −0.007

SLR 0.505 21 77.9 76.2 −0.003 0.483 36.1 63.3 49.7 −0.006

With laboratory data RF Null 0.654 0 100 97 0.970 0.580 0 100 50.0 0.500

XG 0.621 0 100 97 0.970 0.576 0 100 50.0 0.500

LR 0.656 0 100 97 0.970 0.584 0.2 100 50.1 0.002

SLR 0.657 0 100 97 0.970 0.610 0 100 50.0 0.500

RF RUS 0.640 72.0 52.8 53.4 0.030 0.584 68.5 42.9 55.7 0.114

XG 0.620 67.7 50.9 51.4 0.022 0.577 73.7 32.4 53.0 0.061

LR 0.634 60.8 58.6 58.6 0.026 0.538 62.9 42.8 52.8 0.057

SLR 0.639 60.2 57.4 57.5 0.023 0.579 65.4 46.3 55.8 0.117

RF SMOTE 0.533 4.8 95.2 92.5 0.000 0.531 3.0 97.8 50.4 0.008

XG 0.525 10.8 88.1 85.8 −0.005 0.526 13.9 88.2 51.1 0.021

LR 0.538 30.6 75.9 74.5 0.015 0.498 43.4 56.9 50.2 0.003

SLR 0.538 30.6 75.9 74.5 0.015 0.497 43.0 57.4 50.2 0.004

RF, random forest; XG, XGBoost; LR, logistic regression; SLR, stepwise logistic regression; RUS, random under-sampling; SMOTE, synthetic minority over-sampling technique; and

AUC, area under the receiver operating characteristic curve.

FIGURE 2 | Receiver operating characteristic (ROC) curves for data analysis methods with laboratory data in (A) CSPPT dataset (training set) and (B) NCC dataset

(external validation set).

despite showing poor performance in the current study,
XGBoost has been previously suggested to be the most
effective prediction model for various populations and outcomes

(19, 20). The current study found RUS-applied RF method
with the inclusion of laboratory variables to be the most
effective stroke prediction model in Chinese hypertensive
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FIGURE 3 | Most important variables from RUS-applied RF with both inclusion (A) and exclusion (B) of laboratory variables.

adults. Ascribing to the large sample size and comprehensive
study design, we believe the current study is representative
in the field of machine learning-based prediction method
development. Moreover, with displayed best performance in
both training and validation set, the developed stroke prediction
method in the present study showed robust universality
and accuracy.

Analysis methods, including logistic regression and machine
learning, can be disrupted by imbalanced data (21). Data
balancing techniques are necessary when pre-processing an
imbalanced database (22). The current study had a 1:31 stroke-
to-non-stroke ratio, which indicated an imbalance. Before
data balancing techniques were applied, the sensitivity of all
models was 0, which suggested poor performance regardless
of high AUCs. It would thus be inappropriate to directly
utilize the raw data. Previous studies have demonstrated the
patterns with low sensitivity in the raw model and an overall
improvement after applying data balancing techniques (22, 23),

which is concomitant with the current study. However, the
enhancement effectiveness of applying data balancing technique
varied significantly between individual models. In the current
study, compared with null model, the sensitivity in the RUS-
applied RF with laboratory data model increased from 0 to 72
but was only brought up to 4.8 when the same model was treated
by SMOTE. In addition, different AUCs were observed when the
same analysis model was applied with different data balancing
techniques (18, 24).

To examine the effectiveness of the increment variables on the
overall performance of the analysis model, laboratory variables
included and excluded were analyzed, which is another unique
feature of the present study. To our knowledge, some previous
studies have included laboratory variables as a part of stroke
prediction (4, 25, 26), but few studies have conducted separate
analyses. As given in Table 2, when laboratory results were
included, the overall performance of the analysis method was
improved both before and after data balancing techniques were

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 May 2022 | Volume 9 | Article 901240

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Huang et al. Machine Learning in First Stroke Prediction

applied. Consistent results were reported in An Dinh et al.’s (19)
study, which used machine learning methods to predict diabetes
and cardiovascular disease, and all AUCs had an average increase
of 0.7% after laboratory tests were included.

The targeted participants in our study consisted of population
with a higher risk of stroke compared with previous studies
(Table 1). Ascribing to the nature of strictly processed RCT,
endpoint events were accurately collected, and all variables were
presented with veracity and reliability. Compared with Gu D
et al.’s study, which aimed to develop a 10-year stroke predicting
equation in a Chinese population, our study had a higher baseline
age (48 vs. 60), higher baseline SBP (123.6 mmHg vs. 165.8
mmHg), a more rural population, higher antihypertensive drug
usage, and less current smokers (25). On the contrary, in contrast
to Bharath A et al.’s study, which focused on cardiovascular
event prediction by machine learning, our study solely focused
on the first stroke and had more current smokers, higher usage
of antihypertensive drugs, higher baseline SBP (165.8 mmHg vs.
126.6 mmHg), and lower BMI (24.8 kg/m2 vs. 28.34 kg/m2) (4).

Our study underlines the importance of validation. To
demonstrate a trained model is effective, merely succeeding
on the original data is not sufficient. It is essential to adduce
evidence that such a developed model can perform well in other
datasets. However, many review articles have pointed out the
general lack of validation or insufficient validation (27, 28).
Internal validation enables researchers to quantify and estimate
positives from data processing, while verifying results from
the training set (29). Furthermore, the trained model should
be conducted in the external validation set which contains
different data from the training set to examine and evaluate the
developedmodel’s performance (28). Studies that lack a thorough
validation are relatively less power enough to be convincible of
the developed models.

Our study findings have provided important clinical and
public health implications. The selection of stroke risk predictors
often differs according to various studies (4), even when targeting
the same race. The current study focused on Chinese rural
hypertensive adults and suggested that SBP, age, creatinine,
triglycerides, and DBP are the top five stroke risk predictors.
Nevertheless, the top 5 important variables fromWu’s (18) study
were sex, LDLC, GLU, hypertension, and UA. This difference
could be caused by the fact that Yafei Wu et al. focused on
an elderly population with a median age of 83 years, while
our study has a mean age of 60 years. In addition, Dongfeng
GU et al.’s study, with a mean baseline SBP 123.6 mmHg (SD
19.9), reported age, SBP, current smoking, diabetes mellitus,
and total cholesterol as the most important variables (25). In
comparison, our study has a mean baseline SBP of 165.8 mmHg
(SD 18.3).

CONCLUSION

Among the tested methods, the most effective stroke prediction
model in Chinese rural hypertensive adults without a history
of stroke is RUS-applied RF with the inclusion of laboratory
variables. From the insights, the current study revealed, we

provided general frameworks for building machine learning-
based prediction models.

Limitations
Some limitations are a worth concern. Our analysis was
focused on a targeted population, and thus, despite the high
representation (large sample size, wide age range, and higher
morbidity region), further validation is needed to apply the
model to larger and more diverse data. In addition, this study
only used two currently popular data balancing techniques
and two classic analysis methods to develop the stroke
prediction models. As improvements and novel methodologies
are developed in future, they should be applied and evaluated
as well.
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