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Abstract: Enterobacter hormaechei is involved in multiple hospital-associated infections and is resistant
to beta-lactam and tetracycline antibiotics. Due to emerging antibiotics resistance in E. hormaechei
and lack of licensed vaccine availability, efforts are required to overcome the antibiotics crisis. In
the current research study, a multi-epitope-based vaccine against E. hormaechei was designed using
reverse vaccinology and immunoinformatic approaches. A total number of 50 strains were analyzed
from which the core proteome was extracted. One extracellular (curlin minor subunit CsgB) and
two periplasmic membrane proteins (flagellar basal-body rod protein (FlgF) and flagellar basal
body P-ring protein (FlgI) were prioritized for B and T-cell epitope prediction. Only three filtered
TPGKMDYTS, GADMTPGKM and RLSAESQAT epitopes were used when designing the vaccine
construct. The epitopes were linked via GPGPG linkers and EAAAK linker-linked cholera toxin
B-subunit adjuvant was used to enhance the immune stimulation efficacy of the vaccine. Docking
studies of the vaccine construct with immune cell receptors revealed better interactions, vital for
generating proper immune reactions. Docked complexes of vaccine with MHC-I, MHC-II and Tool-
like receptor 4 (TLR-4) reported the lowest binding energy of −594.1 kcal/mol, −706.7 kcal/mol,
−787.2 kcal/mol, respectively, and were further subjected to molecular dynamic simulations. Net
binding free energy calculations also confirmed that the designed vaccine has a strong binding
affinity for immune receptors and thus could be a good vaccine candidate for future experimental
investigations.

Keywords: antibiotics resistant; E. hormaechei; reverse vaccinology; docking; molecular dynamic
simulation

1. Introduction

Resistance to antimicrobials by bacteria is an alarming public health issue at present [1].
According to the World Health Organization (WHO), antimicrobial resistance (AMR) is
defined as “a global health security threat that requires action across society and govern-
ment sectors as a whole”. As per a report by the Center for Disease Control and Prevention
(CDC), there is a direct link between healthcare cost and AMR, which is as high as $20 bil-
lion per year [2]. Furthermore, the cost incurred for lost productivity was $35 billion a year
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in just the United States of America alone [3]. Bacteria that are frequently isolated from
clinical samples include Klebsiella species, Escherichia coli, and Enterobacter species [4]. In
Enterobacteriaceae, AMR reached a dangerous level and several community-associated and
healthcare-related infections are hard to treat [5].

In several research studies, the rise of carbapenemase-producing Enterobacteriaceae
(CPE) was reported in recent years. Infections caused by CPE in the US are usually
healthcare-associated, although community-associated infections are now becoming ev-
ident [6]. The threat of CPE is significant as Carbapenems is used for the treatment of
infections which are caused by extended-spectrum β-lactamase-producing Enterobacteri-
aceae (ESBL-E) [7].

Enterobacter hormaechei is a gram-negative bacterial pathogen responsible for nosoco-
mial infections [8]. In recent years, the pathogenic E. hormaechei was isolated from piglets
and foxes [9]. The bacterial strains showed different degrees of resistivity to amikacin,
azlocillin, maxolactam, cefotaxime, ceftazidime, ceftriaxone, chloramphenicol, gentamicin,
mezlocillin, tobramycin, piperacillin, trimethoprim-sulfamethoxazole, sulfisoxazole, thien-
amycin, and trimethoprim [10–12]. All these strains were also resistant to nitrofurantoin
and most of them were resistant to cefoxitin, ampicillin, and cephalothin. [13]. Therefore, a
long lasting and effective therapy is needed to counter the E. hormaechei infections.

The process which involves the discovery of antigens from a genome is called reverse
vaccinology [14]. From its first application of a successful vaccine developed against Neis-
seria meningitidis group B, this approach progressively evolved and was accepted as an
attractive method of vaccine discovery [15]. This discovery led to the development of vac-
cines against different bacterial and other pathogens [16,17]. Existing reverse vaccinology
approaches comprise the comparative in silico analyses of multiple genome sequences to
identify the conserved antigens within a heterogeneous pathogen population; they are also
used for the identification of antigens that are distinctive to pathogenic isolates but not
present in commensal strains [18]. Moreover, transcriptomics and proteomic datasets are
integrated into a selection process that yields lists of antigens to be tested in animal models,
thus decreasing the time and costs of downstream analyses [19]. This study specifically
aimed to explore the core proteome of E. hormaechei complete strains for designing a novel
multi-epitope-based vaccine against E. hormaechei using subtractive proteomics, reverse
vaccinology, and immunoinformatics to identify suitable candidates for vaccine design.
The identified vaccine targets and multi-epitopes vaccine design are experimentally tested
against the bacterial pathogen, using in vivo and in vitro studies. Our results will serve as a
pioneer work that attempts to identify an immunogenic vaccine model against E. hormaechei
infections.

2. Research Methodology

The complete flow chart used for the design of an in silico multi-epitope-based vaccine
targeting E. hormaechei is presented in Figure 1.
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Figure 1. In silico approach used for the design of multi-epitope vaccine against E. hormaechei.

2.1. Retrieval of Complete Proteome and Core Proteome Identification of E. hormaechei

In the first phase of the study, a total number of 50 fully sequenced genomes were ex-
tracted from the National Center for Biotechnological Information (NCBI) database [20] and
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subjected to core proteome identification using the bacterial pan-genome analysis (BPGA)
pipeline [21]. BPGA is an ultra-fast software and can provide all-inclusive pan-genome
analysis of bacterial species i.e., profile of core genome and core/pan plot phylogeny [21].
After retrieval of the core proteome from the complete proteome of E. hormaechei, the
core proteome was subjected to CD–HIT analysis using the official online CD–HIT web-
server [22]. CD–HIT is an online webserver developed by Dr. Weizhong Li, mainly used
for the comparing and clustering of proteins and nucleotide sequences [23]. In the CD–HIT
analysis, non-redundant protein sequences were extracted [22]. The non-redundant protein
sequences were further considered for surface localization analysis and surface-localized
proteins were identified using an online PSORTb server [24]. In subcellular localization
analysis, only outer membrane, periplasmic membrane, and extracellular membrane pro-
tein sequences were considered and cytoplasmic and membrane protein sequences were
discarded as cytoplasmic proteins can only be used as drugs targets [25]. Surface proteins
are exposed to the host immune system and can generate proper immune reactions and
can, therefore, be used as suitable vaccine candidates [26]. Virulent proteins have the ability
to cause infection and can be used as good vaccine candidates to produce a proper im-
mune response [27]. To identify virulent proteins, the virulent-factor database (VFDB) [28]
approach was used and only those hit having a bit score greater than 100%, as well as a
sequence identity greater than 30% were selected, while the remaining all non-virulent
proteins were discarded [29]. After VFDB analysis, all the virulent proteins were checked
for helices using TMHMM-2.0 webserver [30]; the selection criteria were set as: (i) proteins
having more than one transmembrane should be discarded, and (ii) only those proteins
having zero and one transmembrane helices should be selected [31]. Furthermore, physio-
chemical properties analysis and homology checks against human (taxid: 9606) and three
normal microbiota species Lactobacillus. casei (taxid: 1582), L. rhamnosus (taxid: 47715) and
L. johnsonii (taxid: 33959) were performed. This task was achieved via the online BLASTp
webserver [32]. After all the above checks, proteins were shortlisted and considered as
good vaccine candidates [33].

2.2. B- and T-Cell Epitope Mapping

Several bacterial species that cause infections in humans are counteracted by humoral
and cellular immunity [34]. Herein, B-cell epitopes were predicted from shortlisted proteins
using immune epitope database analysis and a resource (IEDB) webserver [35]. In B-cell
epitope selection, linear B-cell epitopes were predicted choosing Bepipred Linear Epitope
Prediction 2.0 on the IEDB server [36]. Subsequent to B-cell epitope prediction, T-cell
epitopes were then predicted in order to generate cellular immunity [37]. In T-cell epitopes,
both MHC-I and MHC-II epitopes were predicted using the epitope analysis resources
tab in the IEDB webserver; all the epitopes were considered good based on the lowest
percentile rank [38].

2.3. Construction and Processing of the Multi-Epitope Vaccine Model

A multi-epitope-based vaccine construct consists of several probable antigenic im-
munodominant epitopes; hence, such a vaccine can be considered an ideal approach to
tackling many bacterial diseases [39]. During the multi-epitope vaccine construction phase,
all the probable antigens that are non-allergic, non-toxin and have good water-soluble
capacity were linked with each other through specific GPGPG linkers [40], and fused with
an adjuvant (Cholera toxin B-subunit adjuvant) via an EAAAK linker in order to make the
vaccine construct more potent [41]. The designed multi-epitope vaccine construct was fur-
ther evaluated for physiochemical property analysis using the ProtParam Expassy tool [42].
After physiochemical analysis, the 3D dimensional structure was predicted through the
Scratch Protein Predictor, which is an online tool [43]. Using SOLpro and ProSA-WEB,
solubility and the Z-score of the designed vaccine were predicted [44,45]. Furthermore, loop
re-modeling and refinement of the vaccine construct 3D structure was performed using
the GalaxyWEB tool [46]. In order to avoid structure instability, the disulfide engineering
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approach was applied using the Design 2.0 webserver [47]. Additionally, in silico cloning
and codon optimization process were performed using SnapGene software [47]. Firstly,
the sequence of the multi-epitope-based vaccine model was reverse transcribed to DNA
using the JCat tool [48] and then reverse transcribed DNA was cloned into E.coli pET-28a
(+) vectors to ensure the best expression system [49]. World and different country-wise
population coverage analysis was also performed using the IEDB server [50].

2.4. Molecular Interaction Analysis Study

Molecular docking studies have been the most important approach in studying vaccine
interactions with immune receptors [51]. This analysis mainly allows the prediction of
interactions between a vaccine and immune cell receptors. Herein, the online Cluspro
2.0 webserver was utilized for docking studies [52]. Firstly, the immune receptors MHC-
I(1L1Y), MHC-II(1KG0), and TLR-4 (4G8A) were retrieved from the protein data bank using
their specific PDB:IDs [53]. In each docking, the number of interactions was set at 20.

2.5. Molecular Dynamic (MD) Simulation and Binding Free Energy Calculation

The molecular dynamic simulation approach is a computer-based in silico approach
for determining the dynamic behavior of docked molecules [54]. In the current study, to
understand the stability, structural quality and dynamic behavior of the docked molecules,
MD simulation was run over a time period of 250 nanoseconds (ns) [55]. The MD analysis
was completed in three stages, which consisted of parameterization of docked molecules,
the pre-processing phase, and the production of the simulation phase. In the initial phase,
an antechamber module of AMBER 20 software was used to set several parameters for the
designed vaccine and immune cell receptors [56]. All the docked molecules were solvated
in a 12 Å TIP3P solvation box and achieved via the AMBER Leap module. The Ff14SB
force field was utilized to describe both the designed vaccine and the immune cell receptor
molecules [57].

The net binding free energies for the vaccine and immune receptors were computed
through MMPBSA.py module in AMBER20 [58]. The average values of these net binding
free energies were assessed as the overall binding free energy of the systems. Mathematical-
based analysis of MMPB/GBSA was performed by following published protocol [59].
Computing of net binding free energies for all three components was completed by either
Poisson Boltzman (MM-PBSA) or Generalized Born (MM-GBSA) [60].

2.6. Immune Simulation

The designed vaccine construct was also subjected to the online C-ImmSim web-
server [61] in silico to check the ability of the vaccine to induce different immune responses
inside the host cells [62]. The C-ImmSim server functions using a position-specific scoring
matrix (PSSM) and a machine learning base to analyze the response of the immune system
against the administered designed vaccine [63].

3. Results and Discussion
3.1. Complete Proteome Retrieval and Identification of Core, Non-Redundant, Surface-Localized,
Virulent Proteins

In the complete proteome retrieval phase, the proteomic data of 50 fully sequenced
strains of E. hormaechei were retrieved. The core proteome consists of 117,750 core proteins
and 115,394 redundant proteins; 2356 proteins were non-redundant, as mentioned in
Figure 2. Among the 2356 non-redundant proteins, eight were extracellular, thirty-three
were outer membrane, and eighty-one were found as a periplasmic membrane, as shown
in Figure 2. In total, 122 different surface-localized proteins were reported. Twenty-five
were found to be virulent proteins, while among the twenty-five virulent proteins, thirteen
were found to be non-antigenic, as also seen in Figure 2. The genome size of each stain is
shown in Figure 3.
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3.2. Physiochemical Properties, Transmembrane Helices, Allergenicity and Homology Analysis

In the physiochemical property evaluation, three protein sequences were found un-
stable, while in the transmembrane helices filter, two proteins were revealed to have more
than one transmembrane helix, and one protein was found to be allergic in nature. In the
homology analysis, two proteins were significantly similar to human and one showed
similarity to three normal microbiota species, L. casei (taxid: 1582), L. rhamnosus (taxid:
47715) and L. johnsonii (taxid: 33959) [64]; all results are shown in Figure 4.
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3.3. Prioritization of Potential B- and T-Cell (MHC-I, MHC-II) Epitopes

Humoral immunity is mainly mediated by activated plasma and B-cells; in the epitope
prediction phase, B-cell epitopes were, therefore, predicted. One extracellular, curlin minor
subunit (CsgB); two periplasmic flagellar basal-body rod proteins (FlgF); and a flagellar
basal-body P-ring protein (FlgI) were shortlisted for B-cell epitope prediction. All these
help the bacteria in mobility, adhesion, and virulence. One epitope from the curlin minor
subunit CsgB protein, two epitopes from the flagellar basal-body rod protein, and three
epitopes from the flagellar basal-body P-ring protein were predicted. All predicted epitopes
are listed in Table 1. Furthermore, the predicted B-cell epitopes were subjected to T-cell
epitope prediction. In T-cell epitope prediction, both MIH-C class-I and II were considered
and only those epitopes having the least percentile score were shortlisted, as tabulated
in Table S1.
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Table 1. Selected proteins and predicted B-cells epitopes.

Protein Name/Accession Number Predicted Epitopes

>core/8236/1/Org1_Gene1515
(curlin minor subunit (CsgB)) AAAGYDLANSEYNFAVNELSKSSFN

>core/5396/1/Org1_Gene1549
(flagellar basal-body rod protein (FlgF))

HPVVGEAGPIAVPEGAEITIA
GSEVQRGDDDIFRLSAESQATRGPVLQADPT

>core/2987/11/Org11_Gene4825
(flagellar basal body P-ring protein (FlgI))

AGAQAGGSRVQVNQLNGG
GTGDQTMQAPF

NNVVSQPDTPLGGGQTVVVPQTDISVRDRGGSLQSVRSSTD

3.4. Multi-Epitope-Based Vaccine Design and Processing

Designing multi-epitope-based vaccines is a promising approach as it reduces the
limitations associated with pasture vaccinology methods as well as sub-unit vaccines.
Furthermore, due to the limited antigenic ability of single peptide-based vaccines, multi-
epitope-based vaccines proved to stimulate proper immune responses [65]. The multi-
epitope-based vaccine was constructed by joining predicted epitopes from the shortlisted
proteins. The epitopes were joined together through GPGPG linkers. The designed vaccine
construct was further linked with a cholera toxin B-subunit adjuvant to enhance the potency
and immunogenicity of the designed vaccine. The adjuvant was linked to the N-Terminal
site using an EAAAk linker. The GPGPG and EAAAK linkers reduced Beta turn and
increase the alpha region, hence making the vaccine construct less flexible [66]. The
schematic diagram of the designed vaccine construct, along with the GPGPG and EAAAK
linkers, is represented in Figure 5A, while the 3D structure of the designed vaccine construct
is shown in Figure 5B. Additionally, the physiochemical properties of the designed vaccine
construct were successfully predicted, as the construct consists of 166 amino acid residues
having molecular weight (17.97 kDa), a theoretical pI (8.82), an instability index of 31.84,
and an aliphatic index of 73.61.
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3.5. Loop Modeling, Refinement, Disulfide Engineering and In Silico Codon Optimization

As too many loops in the protein structure may affect the stability and make it more
flexible, an in-loop modeling process consisting of several runs of loops was performed.
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Three loops of amino acid residues were considered for loop modeling; MET1-GLY7, GLY54-
VAL 73, and SER-GLY157. After loop re-modeling, the first model from the predicted
models was selected based on the best structure values. A list of all generated values for
each predicted model are shown in Table 2.

Table 2. Structural information for generated models of vaccine.

Model Root Mean Square
Deviation (RMSD) MolProbity Clash Score Poor Rotamers Rama Favored GALAXY

Energy

Initial 0.000 3.493 97.9 3.0 84.1 9003.96

MODEL 1 0.922 1.471 2.1 0.0 92.1 −3333.41

MODEL 2 0.880 1.517 2.5 0.8 92.1 −3327.95

MODEL 3 0.882 1.419 1.8 0.8 92.1 −3326.39

MODEL 4 0.786 1.494 2.5 0.0 92.7 −3318.02

MODEL 5 0.768 1.494 2.5 0.0 92.7 −3316.79

MODEL 6 0.804 1.517 2.5 0.0 92.1 −3315.93

MODEL 7 0.829 1.578 2.9 0.0 91.5 −3315.06

MODEL 8 0.874 1.572 3.2 0.0 92.7 −3312.58

MODEL 9 0.667 1.396 1.8 0.0 92.7 −3312.28

MODEL 10 0.831 1.517 2.5 0.8 92.1 −3310.59

Subsequently, disulfide engineering of the designed vaccine construct was accom-
plished for nineteen pairs of amino acid residues, as indicated in the Table 3. Figure 6A,B
represent original and mutant structures of the designed vaccine construct.

Table 3. Pairs of mutated amino acids, Chi3 values and energy values.

Pairs of Amino Acid Residues Chi3 Angle Energy (kcal/mol)

LEU4-TYR-33 −74.84 3.02

LYS5-VAL-8 104.11 4.61

LEU13-LEU-29 118.91 3.55

ALA17-ASN-25 89.76 2.21

GLY21-ASN-25 91.77 4.63

PRO23-THR-40 −68.85 1.64

ILE26-ILE-38 115.25 6.87

LEU29-THR-36 −108.75 6.36

CYS30-THR-30 −67.54 2.88

ASN42-ILE-42 75.73 6.86

PHE46-ALA-59 123.39 7.39

GLU57-GLN-70 109.96 3.47

GLY75-HIS-78 122.15 4.19

LEU98-VAL-103 −80.03 1.94

ILE120-ALA-127 108.49 3.1

ALA127-MET-134 74.1 6.81
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Table 3. Cont.

Pairs of Amino Acid Residues Chi3 Angle Energy (kcal/mol)

LYS133-TYR-136 105.58 2.38

GLY141-ALA-145 −85.33 6.8

ALA145-THR-148 114.28 2.59
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Additionally, computer-based cloning of the multi-epitope vaccine construct was
achieved in a plasmid pET28a (+). Reversed transcribed and optimized codon of the
designed vaccine construct was performed as per E. coli K12 strains as indicated in Figure 6C.
The codon adaptation index (CAI value) of the designed vaccine was noted as 0.9574 which
indicates best expression, while the GC content was 50.50%, which is also equal to the
E. coli K12.

The secondary structure of the designed vaccine construct has seventy-three (44.0%)
alpha helix residues, shown in Figure 7A. The multi-epitope 3D vaccine structure has 87.9%
of residues in the Ramachandran plot favored, 8.3%, in additionally allowed regions, 11.3%
in generously allowed regions, and 0.7% residues in disallowed regions, as indicated in
Figure 7D. The z-score of the vaccine is −4.3, as indicated in Figure 7C and the solubility
score is 0.4, as indicated in Figure 7B.
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3.6. World and Country Wise Population Coverage Analysis of Vaccine

The shortlisted epitopes for designing a multi-epitope vaccine construct shows promis-
ing potency and good worldwide and several country-wise population coverage. A com-
bined MHC-I and MHC-II population coverage method was used for the final selected
epitopes against geographic areas around the world. The findings revealed that MHC-I
and MHC-II have the largest worldwide population coverage, at 99.74%. Furthermore,
according to the webserver, the anticipated values for China, India and other countries are
shown in Figure 8. We conclude that certain epitopes may be viewed as possible aspirants
and should be explored for inclusion in the creation of a multi-epitope vaccine design.
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3.7. Docking and Simulation Analysis

Molecular docking studies is a bioinformatics modeling approach which basically
identifies interactions between ligand and receptors. Here, the designed vaccine molecule
was checked for binding efficacy with MHC-I, MHC-II, and TLR-4 immune cell receptors.
The results revealed that the designed vaccine construct has the ability to interact with
immune cell receptors that can trigger proper immune responses against the targeted
pathogen. Findings of the docking results, including cluster members and the lowest center
energy score, are tabulated in Tables S2–S4, while the docked complexes are presented
diagrammatically in Figure 9A–C.

Among all docked complexes, the top complex of vaccine with MHC-I, MHC-II, and TLR-
4 showed the lowest center energy of −594.1 kcal/mol, −706.7 kcal/mol, −787.2 kcal/mol,
respectively, and were considered for the molecular dynamic simulation study. Molecular
dynamics simulations evaluate the dynamic behavior of docked molecules. Molecular
dynamics simulation analysis of all vaccine-immune receptor complexes show that no
drastic changes occur throughout the simulation time, as indicated in Figure 10A–C. In
root mean square deviation (RMSD) analysis, the TLR-4 construct showed good binding
stability, followed by MHC-I and MHC-II. The graph shows small bit changes due to the
presence of loops in the structure, but after 150 ns the system was found to be stable until the
end of the simulations (Figure 10A). In the root mean square fluctuation (RMSF), vaccine-
TLR-4 complex is 4.7 Å, vaccine-MHC-I is 3 Å, and vaccine-MHC-II complex showed an
RMSF of 1.7 Å, as indicated in Figure 10B. Hydrogen bonding (H.B) is an attractive force
between molecules that is very strong in nature compared with dipole-dipole forces [67].
Herein, several hydrogen bonds are formed between the designed vaccine and immune cell
receptors, which indicates that there are strong interactions between vaccine and receptors.
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The TLR-4 and vaccine molecules produced more than 80 hydrogen bonds, while MHC-I
and the vaccine formed hydrogen bonds between 56–60, and the vaccine and MHC-II
molecules produced above 44 hydrogen bonds, as indicated in Figure 10C.
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3.8. Free Binding Energy Estimation of Docked Molecules

In MMPB/GB-SA, interactions of vaccine and receptor molecules were investigated.
Net free binding energy calculation is more reliable than the docking scoring approach.
The MM-GBSA of vaccine-MHC-II is noted as −255.94 kcal/mol; for vaccine-MHC-I, it is
−284.74 kcal/mol, and for TLR-4, it is −258.99 kcal/mol. On the other hand, the MM-PBSA
net binding energy calculated for vaccine-MHC-II is −260.86 kcal/mol; for vaccine-MHC-I,
it is −279.97 kcal/mol; and for vaccine-TLR-4, it is −260.93 kcal/mol. All the energy
calculation values are tabulated in Table 4.

Table 4. Computed net free binding energy of Vaccine-TLR-4, Vaccine-MHC-I and Vaccine-MHC-II
complexes.

Energy Parameter TLR-4-Vaccine
Complex

Standard
Deviation

MHC-I-Vaccine
Complex

Standard
Deviation

MHC-II-Vaccine
Complex

Standard
Deviation

MM-GBSA

VDWAALS −162.00 6.70 −184.87 7.36 −174.32 5.66

EEL −71.36 2.67 −62.00 1.07 −49.52 2.08

Delta G gas −233.36 7.25 −246.87 5.41 −223.84 6.43

Delta G solv 25.63 1.25 37.87 1.96 32.10 1.24

Delta Total −258.99 8.36 −284.74 3.98 −255.94 7.93

MM-PBSA

VDWAALS −162.00 6.70 −184.87 7.36 −174.32 5.66

EEL −71.36 2.67 −62.00 1.07 −49.52 2.08

Delta G gas −233.36 7.25 −246.87 5.41 −223.84 6.43

Delta G solv 27.57 0.65 33.10 2.08 37.02 3.01

Delta Total −260.93 7.64 −279.97 5.37 −260.86 9.31

3.9. Interactive Residues of Vaccine-MHC-I, Vaccine MHC-II and Vaccine TLR-4

Interactions of vaccine are crucial to generate robust immune responses against a
particular antigen. The designed vaccine construct showed interactions with several key
residues of immune receptors. In Table 5, all the interactive residues of the vaccine to
MHC-I, MHC-II and TLR-4 are indicated.

Table 5. List of interactive residues MHC-I, MHC-II, and TLR-4 receptors.

Vaccine-Complexes Interactive Residues

Vaccine-MHC-I Ala31, Arg88, Asn65, Asn35, Ile45, Lys84, Glu32, Phe69, Met1, Tyr48,
His34, Lys12, Lys3,Tyr29ser4 7, Pro140, Glu480

Vaccine-MHC-II
Asp28, Asp91, Arg97, Ala16, Phe46, Lys44, Tyr39, His115, Tyr97,
Gly121, Lys83, Gln37, Thr22, Tyr18, Lys64, Lys3, Hhis34, Glu34, Thr27,
Glu32

Vaccine-TLR-4 Asn526, Ala479, Asp379, Arg382, Lys477, Tyr451, Gln430, Ser381,
Lys158, Lys420, Val338, Glu336, His334, Lys109, Lys477

3.10. In Silico Host Immune Simulation

The overall finding of the host immune simulation showed that different immune
responses are generated in the form of primary and secondary immune responses against
the antigen. The immune responses against the pathogen consisted of different types, such
as IgG and IgM, IgG1 + IgG2, IgG1 and IgG2. Also, an increase in interleukins production,
as well different types of cytokines titers, was observed as indicated in Figure 11A,B.
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4. Conclusions

In conclusion, we present computational-based research work for the design of a multi-
epitope-based vaccine construct against E. hormaechei by selecting conserved and antigenic
proteins from the core proteome of the E. hormaechei. The selected proteins were used for B-
and T-cell epitope prediction in order to generate cellular and humoral immune responses.
The designed vaccine construct provokes both antibodies and cellular immune responses.
The model vaccine also showed a maximum level of binding to MHC-I, MHC-II, and TLR-4
immune cell receptors, which can provide potent innate and adaptive immune responses
for tackling the pathogen. Furthermore, the binding ability of the vaccine to immune cell
receptors was confirmed by a molecular dynamics simulation approach. Several limitations
exist that require further improvement and investigation in future research work i.e., the
designed vaccine showed best immunogenicity, while the real immune responses against
the targeted pathogen require validation by experimental studies. The criteria for selection
and filtering the proteins targets for vaccine design were quite strict but still need to be
further validated in vivo and in vitro. In conclusion, the designed vaccine model generates
proper immune responses against E. hormaechei and can reduce the chances of infection, but
experimentally evaluation is still required to uncover its real potency against E. hormaechei.
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