
Research Article
Progressive and Prognostic Performance of an Extracellular
Matrix-Receptor Interaction Signature in Gastric Cancer

Xiangchou Yang,1 Liping Chen,2 Yuting Mao,3 Zijing Hu,4 and Muqing He 1

1Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou
Medical University, Wenzhou, 325000 Zhejiang Province, China
2Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou,
310000 Zhejiang Province, China
3Second Clinical College of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
4College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China

Correspondence should be addressed to Muqing He; 201015@wzhealth.com

Received 25 April 2020; Revised 15 July 2020; Accepted 22 September 2020; Published 30 October 2020

Academic Editor: Stamatios E. Theocharis

Copyright © 2020 Xiangchou Yang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The role of an extracellular matrix- (ECM-) receptor interaction signature has not been fully clarified in gastric cancer. This study
performed comprehensive analyses on the differentially expressed ECM-related genes, clinicopathologic features, and prognostic
application in gastric cancer. The differentially expressed genes between tumorous and matched normal tissues in The Cancer
Genome Atlas (TCGA) and validation cohorts were identified by a paired t-test. Consensus clusters were built to find the
correlation between clinicopathologic features and subclusters. Then, the least absolute shrinkage and selection operator
(lasso) method was used to construct a risk score model. Correlation analyses were made to reveal the relation between
risk score-stratified subgroups and clinicopathologic features or significant signatures. In TCGA (26 pairs) and validation
cohort (134 pairs), 25 ECM-related genes were significantly highly expressed and 11 genes were downexpressed in gastric
cancer. ECM-based subclusters were slightly related to clinicopathologic features. We constructed a risk score model =
0:081 ∗ log2 ðCD36Þ + 0:043 ∗ log2 ðCOL5A2Þ + 0:001 ∗ log2 ðITGB5Þ + 0:039 ∗ log2 ðSDC2Þ + 0:135 ∗ log2 ðSV2BÞ + 0:012 ∗ log2
ðTHBS1Þ + 0:068 ∗ log2 ðVTNÞ + 0:023 ∗ log2 ðVWFÞ. The risk score model could well predict the outcome of patients with
gastric cancer in both training (n = 351, HR: 1.807, 95% CI: 1.292-2.528, P = 0:00046) and validation (n = 300, HR: 1.866,
95% CI: 1.347-2.584, P = 0:00014) cohorts. Besides, risk score-based subgroups were associated with angiogenesis, cell
adhesion molecules, complement and coagulation cascades, TGF-beta signaling, and mismatch repair-relevant signatures
(P < 0:0001). By univariate (1.845, 95% CI: 1.382-2.462, P < 0:001) and multivariate (1.756, 95% CI: 1.284-2.402, P < 0:001)
analyses, we regarded the risk score as an independent risk factor in gastric cancer. Our findings revealed that ECM
compositions became accomplices in the tumorigenesis, progression, and poor survival of gastric cancer.

1. Introduction

As a common tumor of the digestive system, gastric cancer is
the fifth common malignant tumor and the third leading
cause of cancer death in the world [1, 2]. Due to the occult
course of gastric cancer, it is of great significance to clarify
the pathogenesis and find effective markers for gastric cancer.

In recent years, studies have shown that the extracellular
matrix (ECM) remodeling, namely, the synthesis, distribu-

tion, and degradation of ECM, is closely connected to the
differentiation, proliferation, invasion, and metastasis of
malignant tumors [3]. ECM constitutes the main part of
the extracellular microenvironment [4]. It is a complex
organic unity constructed by a variety of insoluble extracellu-
lar macromolecules in a certain proportion and structure. It
is the site of cell survival and activity, with physical functions
such as connection, support, water retention, pressure resis-
tance, and protection. In addition, by integrin or other cell
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surface receptors, it can directly interact with cells to regulate
growth, metabolism, function, migration, proliferation, and
differentiation of cells, thus to adjust functions of the whole
tissue and organs [4]. Recent studies on solid tumors such
as breast cancer and ovarian cancer have suggested that
ECM underwent a remodeling process similar to embryonic
development in tumor progression. The reconstructed ECM
then forms a loose microenvironment for cancer cells, giving
rise to high proliferation, low differentiation, and invasion
and metastasis of tumor cells [5]. Therefore, the identifica-
tion of prominent ECM-relevant tumor markers that derive
the biological perspective into the development and progres-
sion of gastric cancer would be of clinical value. In this study,
the differentially expressed ECM-relevant markers were
identified between gastric cancer and normal tissues. Based
on the selection operator (lasso) regression model, it revealed
that the ECM-relevant markers exhibited a great value to pre-
dict the prognosis of gastric cancer.

2. Methods

2.1. Datasets. We downloaded The Cancer Genome Atlas-
Stomach Adenocarcinoma (TCGA-STAD) data from the
UCSC Xena browser (https://xena.ucsc.edu/) [6]. The RNA-
sequencing data were unified into log2 ðFPKM + 1Þ (frag-
ments per kilobase million (FPKM)). The validation data
GSE29272 [7] and GSE62254 [8] were downloaded from
Gene Expression Omnibus datasets (https://www.ncbi.nlm
.nih.gov/geo/).

2.2. Genes of Researched Signatures. We investigated all
ECM-receptor interaction-related genes (KEGG hsa04512)
from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (https://www.kegg.jp/) [9]. Besides, genes of cell
adhesion molecules (CAMs) (KEGG hsa04514), complement
and coagulation cascades (KEGG hsa04610), TGF-beta sig-
naling pathway (KEGG hsa04530), base excision repair
(KEGG hsa03410), DNA replication (KEGG hsa03030),
nucleotide excision repair (KEGG hsa03420), and mismatch
repair (KEGG hsa03430) were also identified from KEGG
(Table 1).

2.3. Building a lasso RegressionModel.We conducted the uni-
variate analysis of each ECM-receptor interaction-related
genes. Then, the genes with P < 0:05 were selected in the
establishment of a lasso regression model. The lasso regres-
sion model was built by the package “glmnet” of R [10].
According to the lasso model, each patient is assigned a risk
score. We defined patients with a risk score ≥median value
in the high-risk group (N = 175); otherwise, in the low-risk
group (N = 176).

2.4. Statistical Analyses.We identified differentially expressed
genes between tumorous and matched normal tissues in
TCGA and validation cohorts by a paired t-test. Consensus
clusters were built by the package “ConsensusClusterPlus”
of R [11]. We identified a consensus matrix of TCGA for k
from 2 to 9. Gene set enrichment analysis (GSEA) was used
to analyze the most enriched gene sets of the high- and
low-risk groups [12, 13]. Packages “clusterProfiler” [14],

“org.Hs.eg.db,” “enrichplot,” and “GO plot” [15] of R were
applied to perform GO analyses and visualize the results.
The package “GSVA” was applied to get single-sample gene
set enrichment analysis (ssGSEA) of relevant signatures
[16]. The package “survminer” was used to visualize the sur-
vival time of high- and low-risk groups. A P value > 0.05 was
considered to indicate a statistically significant difference. All
analyses were conducted with R (https://www.r-project.org/).
The hazard ratios were shown with 95% confidence interval
(95% CI).

3. Results

3.1. Differentially Expressed Genes of an ECM-Receptor
Interaction Signature. In TCGA cohort, there were 26 pairs
of tumorous and matched normal tissues enrolled in the
study. As shown in Figure 1(a) and Supplementary
Figure 1, the expressions of 46 ECM-receptor interaction-
related genes were significantly different in contrast to
adjacent tissues. In an independent cohort with 134 pairs of
tumorous and matched normal tissues, 36 genes had the
obvious uniformity with the expression changes. The
expressions of AGRN, CD47, COL11A1, COL1A2, COL3A1,
COL4A1, COL4A2, COL5A1, COL5A2, COL5A3, COL6A3,
COMP, DAG1, HMMR, ITGA2, ITGA4, ITGAV, ITGB8,
LAMB1, LAMB3, LAMC2, SPP1, THBS2, VWF, and SDC1
were significantly highly expressed in gastric cancer, while
11 genes CD36, CHAD, COL4A6, ITGA8, ITGA9, LAMA2,
RELN, SV2C, TNXB, LAMB4, and LAMC3 were
downexpressed in tumorous tissues (Figure 1(b) and
Supplementary Figure 2).

3.2. Building Consensus Clusters and Correlation between
Clinicopathologic Features and Clusters. We identified
consensus matrixes of TCGA for k from 2 to 9 (Figure 2(a)
and Supplementary Figure 3). In consideration of
discrimination and simplicity, we chose k = 2 to build
consensus clusters. Principal component analysis (PCA)
showed that two consensus clusters had a certain degree of
differentiation (Figure 2(b)). Patients in cluster 2 (N = 190)
had worse outcomes than patients in cluster 1 (N = 185)
(P = 0:0032) (Figure 2(c)). Besides, stratified clusters were
slightly related to the histologic grade, cancer type, tumor
stage, and TNM stage, while presenting no correlation with
PIK3CA, KMT2D, PCLO, FAT4, ARID1A, LRP1B, and TP53
mutations (Figures 2(d)–2(f) and Supplementary Table 1).

3.3. Establishment of the lasso Regression Model. To better
predict the outcome of gastric cancer patients, we calcu-
lated the hazard ratio with 95% confidence interval of all
ECM-receptor interaction-related genes and 25 of them
with P < 0:05, which were enrolled in the establishment
of the lasso regression model (Table 2). Figures 3(a) and
3(b) show the solution paths and partial likelihood devi-
ances of the building process of the lasso regression model.
The risk score model = 0:081 ∗ log2 ðCD36Þ + 0:043 ∗ log2
ðCOL5A2Þ + 0:001 ∗ log2 ðITGB5Þ + 0:039 ∗ log2 ðSDC2Þ +
0:135 ∗ log2 ðSV2BÞ + 0:012 ∗ log2 ðTHBS1Þ + 0:068 ∗ log2
ðVTNÞ + 0:023 ∗ log2 ðVWFÞ (Figure 3(c)). GSEA showed
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the top enriched gene sets: protein complex binding,
GTPase activity, organ morphogenesis, integrin binding,
and regulation of biological quality (Figures 3(d)–3(h)).
GO analyses revealed the top enriched biological process
(BP), molecular function (MF), and cellular component
(CC) (Figure 3(i)). The circular plot showed that 17 genes
were highly related to the GO term (Figure 3(j)).

3.4. Predictive Ability of the Risk Model. In TCGA cohort
(n = 351), the risk model could predict the outcome of
patients with gastric cancer (HR: 1.807, 95% CI: 1.292-
2.528, P = 0:00046), whose reliability and credibility were
stronger than those of the consensus clusters (P = 0:032)
(Figure 4(a)). Besides, in another independent cohort
(GSE62254) (n = 300), the risk model could still provide

excellent prediction accuracy (HR: 1.866, 95% CI: 1.347-
2.584, P = 0:00014) (Figure 4(c)). The distribution of survival
time, risk score, and gene expressions showed that patients in
the high-risk group had shorter disease survival time in both
TCGA (Figure 4(b)) and validation cohorts (Figure 4(d)).

3.5. Correlation between Risk Groups and Clinicopathologic
Features. To explore the underlying mechanisms of the risk
group, we compared relevant signatures in the high- and
low-risk groups. As shown in Figure 5(a), we found the sig-
natures angiogenesis, cell adhesion molecules, complement
and coagulation cascades, and TGF-beta signaling enriched
in the high-risk group, while mismatch repair-relevant sig-
natures base excision repair, DNA replication, nucleotide
excision repair, and mismatch repair were not in the group.
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Figure 1: Differential expression of ECM-receptor interaction-related genes between tumor and matched normal tissues in TCGA and
validation cohorts of gastric cancer. (a) The heat map showed differential expression of all ECM-receptor interaction-related genes of 26
pairs of tumorous and matched normal tissues of gastric cancer in TCGA. (b) The heat map validated 45 ECM-receptor interaction-
related genes that were identified in the validation cohort (GSE29272) with 134 pairs of tumorous and matched normal tissues. TCGA:
The Cancer Genome Atlas; N: adjacent tissue to cancer; T: tumorous tissue. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 2: Identification of subclusters stratified by ECM-receptor interaction-related genes and correlation between subclusters and
clinicopathologic features. (a) Identification of the consensus matrix of TCGA cohort for k = 2. (b) Principal component analysis of
subclusters. (c) Survival curve of subclusters stratified by ECM-receptor interaction-related genes. (d, e) Correlation analyses between
tumor characteristics or mutations and the subclusters. ∗P < 0:05, ∗∗P < 0:01.
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Furthermore, the risk stratification was highly correlated with
the histologic grade (P < 0:01), cancer type (P < 0:01), tumor
stage (P < 0:05), and living status (P < 0:01) (Figure 5(b)).

3.6. Univariate and Multivariate Analyses of the Risk Score
and Clinicopathologic Features. In the univariate analysis,

age (1.641, 95% CI: 1.140-2.362, P = 0:008), the lymph node
stage (1.318, 95% CI: 1.124-1.545, P < 0:001), the TNM stage
(1.535, 95% CI: 1.233-1.910, P < 0:001), the tumor stage
(1.277, 95% CI: 1.020-1.601, P = 0:033), and the risk score
(1.845, 95% CI: 1.382-2.462, P < 0:001) were risk factors for
gastric cancer (Figure 6(a)). In the multivariate analysis, age

Table 2: Univariate analysis of the hazard ratio with 95% confidence interval of each gene.

Gene Hazard ratio HR.95%L HR.95%H P value Gene Hazard ratio HR.95%L HR.95%H P value

AGRN 0.980 0.814 1.181 0.8352 ITGA8 1.101 0.939 1.292 0.2352

CD36 1.344 1.133 1.595 0.0007 ITGA9 1.158 0.985 1.362 0.0753

CD44 1.134 0.982 1.310 0.0864 ITGAV 1.405 1.112 1.777 0.0044

CD47 0.824 0.626 1.086 0.1689 ITGB1 1.192 0.941 1.510 0.1450

CHAD 0.997 0.785 1.267 0.9793 ITGB3 1.286 0.991 1.669 0.0587

COL11A1 1.115 0.987 1.260 0.0795 ITGB4 0.870 0.762 0.995 0.0418

COL11A2 0.843 0.679 1.046 0.1212 ITGB5 1.329 1.030 1.715 0.0287

COL1A1 1.138 1.017 1.273 0.0243 ITGB6 1.102 0.971 1.251 0.1315

COL1A2 1.168 1.033 1.322 0.0135 ITGB7 1.040 0.810 1.334 0.7596

COL2A1 1.089 0.960 1.234 0.1850 ITGB8 0.995 0.813 1.219 0.9635

COL3A1 1.173 1.041 1.321 0.0087 LAMA1 1.044 0.830 1.312 0.7142

COL4A1 1.251 1.042 1.502 0.0164 LAMA2 1.288 1.085 1.529 0.0038

COL4A2 1.196 1.006 1.421 0.0427 LAMA3 1.033 0.902 1.183 0.6366

COL4A4 1.118 0.911 1.373 0.2860 LAMA4 1.298 1.080 1.560 0.0054

COL4A6 1.134 0.916 1.404 0.2471 LAMA5 0.937 0.790 1.112 0.4558

COL5A1 1.163 1.013 1.335 0.0319 LAMB1 1.244 1.014 1.526 0.0363

COL5A2 1.233 1.060 1.433 0.0065 LAMB2 0.999 0.814 1.227 0.9948

COL5A3 1.104 0.909 1.340 0.3173 LAMB3 0.987 0.859 1.133 0.8490

COL6A1 1.135 0.972 1.326 0.1091 LAMB4 2.320 0.762 7.066 0.1386

COL6A2 1.170 1.014 1.349 0.0312 LAMC1 1.277 1.064 1.532 0.0086

COL6A3 1.162 1.013 1.333 0.0319 LAMC2 1.056 0.936 1.191 0.3788

COL6A6 1.361 0.661 2.802 0.4030 LAMC3 0.954 0.741 1.226 0.7113

COMP 1.040 0.949 1.139 0.3989 RELN 1.183 0.976 1.435 0.0874

DAG1 0.985 0.787 1.234 0.8958 SDC1 0.951 0.823 1.099 0.4968

FN1 1.144 1.028 1.273 0.0139 SDC2 1.381 1.144 1.667 0.0008

GP1BA 1.026 0.772 1.364 0.8576 SDC3 0.904 0.740 1.103 0.3203

GP5 1.652 0.676 4.035 0.2708 SDC4 1.068 0.903 1.265 0.4417

GP6 1.187 0.603 2.338 0.6198 SPP1 1.047 0.962 1.139 0.2848

GP9 1.862 0.666 5.210 0.2362 SV2A 1.205 0.967 1.502 0.0962

HMMR 0.917 0.756 1.113 0.3811 SV2B 2.033 1.269 3.257 0.0032

HSPG2 1.087 0.929 1.272 0.2990 SV2C 1.144 0.433 3.027 0.7859

IBSP 1.182 0.957 1.461 0.1212 THBS1 1.210 1.069 1.369 0.0025

ITGA1 1.193 1.001 1.421 0.0484 THBS2 1.138 1.023 1.265 0.0171

ITGA10 1.439 0.958 2.161 0.0792 THBS3 1.220 0.936 1.590 0.1417

ITGA11 1.163 0.994 1.361 0.0602 THBS4 1.058 0.979 1.144 0.1515

ITGA2 0.989 0.837 1.168 0.8945 TNC 1.082 0.978 1.197 0.1245

ITGA2B 1.801 0.666 4.876 0.2466 TNN 1.252 1.020 1.536 0.0314

ITGA3 1.069 0.900 1.270 0.4475 TNR 1.436 0.616 3.349 0.4024

ITGA4 1.175 0.953 1.449 0.1318 TNXB 1.102 0.964 1.261 0.1549

ITGA5 1.129 0.977 1.306 0.1006 VTN 1.134 1.041 1.235 0.0040

ITGA6 0.876 0.729 1.052 0.1561 VWF 1.285 1.085 1.521 0.0036

ITGA7 1.041 0.901 1.202 0.5864
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(1.951, 95% CI: 1.337-2.849, P < 0:001) and the risk score
(1.756, 95% CI: 1.284-2.402, P < 0:001) were the main risk
factors for gastric cancer (Figure 6(b)).

4. Discussion

Gastric cancer is characterized by insidious onset, easy
metastasis, early misdiagnosis, and high recurrence rate

[17]. Due to the lack of a simple domestic screening system,
most patients with gastric cancer are in the late stage when
first diagnosed, greatly influencing their clinical therapeutic
effect and survival quality [18]. Within this context, tumor
markers, in the field of biochemistry, have received increas-
ing attention for their characters such as noninvasive, safe,
simple, inexpensive, and easy to monitor dynamically [19].
For gastric cancer, many tumor markers have been detected
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Figure 3: Construction of the lasso regression model with ECM-receptor interaction-related genes and enrichment analyses. (a) The relation
between partial likelihood deviances and number of genes involved in the risk model. (b) The solution paths of the risk model. (c) The
coefficients of each gene involved in the risk model. (d–h) Top five enriched gene sets between high- and low-risk groups identified by the
risk model. (i) The GO analysis between high- and low-risk groups identified by the risk model. (j) Top genes refer to the top BP. GO: BP:
biological process; MF: molecular function; CC: cellular component; logFC: log2(fold change).
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P = 0.00046, HR:1.807, 95% CI (1.292-2.528)
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Figure 4: Survival analyses and distribution of the risk model in the training and validation cohorts. (a) Survival curve of the high- and low-
risk groups identified by the risk model in TCGA cohort. (b) The distribution of survival month, risk score, and gene expression in TCGA
cohort. (c) Survival curve of the high- and low-risk groups identified by the risk model in the validation cohort (GSE62254). (d) The
distribution of survival month, risk score, and gene expressions in the validation cohort (GSE62254).
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Figure 5: Relevant signatures and clinicopathologic features of the risk groups. (a) The violin plot showed high- and low-risk groups
identified by different signatures. Within each group, the middle line represents the mean value of signature genes, and the bottom and
top lines represent the 25th and 75th percentiles, respectively. (b) Correlation analyses between tumor characteristics and the risk groups.
∗∗P < 0:01.
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from the perspective of genetic traits or genetic modification.
In this study, we revealed that in gastric cancer, many ECM-
relevant molecules also were effective tumor markers, posses-
sing an important value in clinical application.

In previous research, ECM-relevant molecules have been
identified as progression and prognostic biomarkers in some
other solid tumors that were used for impacting clinical deci-
sions and overall outcomes. For example, in colon adenocar-
cinoma (CAC), COL1A2, THBS2, and COL1A1 were related
to prognosis [20]. In addition, it was found that the level of
ITGA5 in CAC was significantly linked to overall survival
(OS), which might serve as an independent prognostic
indicator [21]. In neuroblastoma, it has been revealed that
there existed an association between SDC3 expression and
improved prognosis [22]. Additionally, the high expression
level of SDC3 was also associated with poor prognosis in
patients with renal cell carcinoma [23]. For lung cancer,
COL5A1 was highly expressed in patients with recurrence
and short survival [24]. SSP1 was upregulated in tumor tis-

sues, and low expression of SSP1 had a significant relation-
ship with the better outcome [25]. Moreover, according to
the reported references, FN1 likely represented a signature
biomarker for lung cancer in the prediction of responses to
treatments [26]. In contrast to these cancer types that we
have discussed, ECM-receptor interaction-relevant genes
have been poorly studied as progressive and prognostic
biomarkers in gastric cancer. Through the KEGG database,
we systematically examined 84 ECM-receptor interaction-
relevant genes in this study and found that most of them
were differentially expressed in gastric cancer tissues. On
the basis of these genes, we divided patients into two sub-
clusters. As we had expected, the subclusters exhibited good
prognostic performance (P = 0:032). For better prediction of
survival with ECM-receptor interaction-relevant genes, lasso
regression analysis was then conducted. Thereinto, we found
that eight significant genes (VTN, SV2B, CD36, VWF,
ITGB5, SDC2, COL5A2, and THBS1) were related to ECM-
receptor interaction and an eight-gene risk score model
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Figure 6: The forest plot of clinicopathologic features and the risk score. (a) Univariate analysis of clinicopathologic features and the risk
score in TCGA cohort. (b) Multivariate analysis of clinicopathologic features and the risk score in TCGA cohort. Hazard ratios are shown
with 95% confidence interval.
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was constructed based on them. The risk score model had its
favorable performance in predicting prognosis of gastric
cancer. The eight genes may be potential prognostic markers
for gastric cancer.

In a variety of tumors, such as cervix neoplasia [27],
ovarian cancer [28], and prostate cancer [29], VTN was con-
sidered a promising biomarker, which encoded vitronectin,
an adhesive glycoprotein that connected cells with ECM.
Recently, a report also revealed that VTN was a poor prog-
nostic factor in gastric cancer [30]. Likewise, VWF, encoding
von Willebrand factor that is a platelet adhesion glycopro-
tein, has been widely used as a biomarker in cancer, and it
also has been identified as a new therapeutic target in gastric
cancer [31]. As for THBS1, encoding thrombospondin 1, it
took part in angiogenesis and tumor progression, whose
increased expression was significantly correlated with tumor
differentiation [32]. COL5A1, encoding an alpha chain of
type V collagen, was a promising prognostic marker consid-
ered to have a good potential for the treatment of patients
with gastric cancer as well [33]. The expression of CD36
was reported in relation to gastric cancer metastasis via O-
GlcNAcylation [34]. However, the current literature mostly
explores the role of one gene in gastric cancer and rarely links
them to explore the combined effect on the gastric cancer
treatment. Besides, ITGB5, encoding integrin-β5, was
thought to be involved in the regulation of tumor initiation
and progression by mediating links between cells and ECM.
The literature reported in glioblastoma [35], hepatocellular
carcinoma [36], and cervical cancer [37] that ITGB5 could
serve as a predictive biomarker. In ITGB5, the gene expres-
sion analysis identified that its expression was elevated in
gastric tumor tissue [38]. Nevertheless, the function of
ITGB5 in gastric cancer is not yet fully elucidated. As for
SV2B and SDC2, encoding a member of the synaptic vesicle
protein 2 and syndecan 2, respectively, both of them have
not been fully studied in gastric cancer. SV2B was identified
as a key prognosis-associated marker in glioblastoma multi-
forme and prostate cancer [39, 40]. In spite of this, the
study of SV2B in tumors is still limited. Relatively speaking,
SDC2 has been well studied in various tumors, especially in
colorectal cancer, lung cancer, prostate cancer, and esopha-
geal squamous cell carcinoma [41–45]. According to the
discussion above, we considered that SV2B and SDC2
deserved to be further studied in gastric cancer. The disrup-
tion in ECM organization lost its regularity, which will
compromise gastric cancer foci. ECM compositions became
accomplices in the tumorigenesis, progression, and poor
survival of gastric cancer. The aberrant ECM signature
should be simultaneously inhibited in the treatment of gas-
tric cancer [46].

We further investigated the possible mechanisms under-
lying the differences between low- and high-risk groups. It
was found that there existed a significant difference in angio-
genesis between the two groups. As you know, it has been
suggested that angiogenesis provided nutrients for tumor
growth and pathways for cell metastasis [47]. Consistent with
our research, the angiogenesis signature was upregulated in
the high-risk group. Besides, the angiogenesis depends on
migration and proliferation of vascular endothelial cells

[48]. In this process, endothelial cells must attach to each
other and to the extracellular matrix to form and expand
new microvessels. ECM is one of the critical influencers in
the survival of vascular endothelial cells [49]. Thus, we spec-
ulated that these differentially expressed genes could pro-
mote the formation of tumor blood vessels and further
affect the development and prognosis of tumors. Moreover,
cell adhesion molecules presented as one of the main media
between cells and ECM. The changes of cell adhesion mol-
ecules could affect multiple signaling pathways, thereby
affecting the pathophysiology of cancer tissues [50]. In
addition to possible changes in angiogenesis and cell adhe-
sion molecules, complement and coagulation cascades were
also affected in gastric cancer, which might participate in
tumor progression and prognosis. Increasing evidence has
indicated that complement and coagulation cascades were
significantly involved in the signaling pathway in gallblad-
der cancer [51], clear cell renal cell carcinoma [52], small-
cell lung cancer [53], epithelial ovarian cancer [54], bladder
cancer [55], and head and neck cancer [56]. In gastric can-
cer, Gu et al. once pointed that complement and coagula-
tion cascades were significantly enriched pathways [57].
However, the research about it in gastric cancer is insuffi-
cient, and there is no direct evidence to clarify that the
upregulation of this pathway connects with the prognosis
of gastric cancer. From the results in this study, we also
found that TGF-β signaling pathway is upregulated in gas-
tric cancer, which was in line with the results of existing
research. The dysregulated pathway could promote the gen-
eration of ECM [58], leading to tissue fibrosis. An overacti-
vated TGF-β signaling pathway could induce tumor growth
and metastasis by promoting epithelial-mesenchymal trans-
formation and angiogenesis [59]. Of course, the results
indicated that we could further research the relationship
between the eight significant genes and TGF-β.

Furthermore, the downregulation of base excision repair
and nucleotide excision repair signatures in the high-risk
group was consistent with the current research in gastric can-
cer. Particularly, DNA mismatch repair is one of the most
prevalent pathways involved in a damaged base excision
repair system. Absence of base excision repair could result
in the accumulation of DNA damage, leading to cancer
malignant transformations and poor prognosis. This imbal-
ance was also associated with DNA polymorphism regula-
tion, and such uncorrected false DNA variant likely had
relation to cancer risk [60]. The defects in nucleotide excision
repair would lead to the increased instability of the genome.
Besides, unrepaired DNA damage possibly increased genetic
susceptibility to cancers and risk of carcinogenesis [61].
Thus, according to the mentioned results above, the associa-
tion between the excision repair and eight significant genes
deserved to be further explored.

Recent research suggested that the impact of age as an
independent risk factor on gastric cancer may differ depend-
ing on the cancer stage [62]. Although the finding of age as an
independent risk factor in this study had a certain particular
value, large-scale clinical data is urgently needed to verify and
thus to direct the establishment of a clinical treating scheme.
We identified a risk score model to predict prognosis of

20 Disease Markers



patients with gastric cancer and validate it in an independent
cohort. For the simple and convenient assessment, we could
choose it to provide some references. However, we need to
acknowledge that the risk score is a relative value, which var-
ies in different institutes and different detection methods.
After unifying the testing methods, we need to collect as
many samples as possible to identify the cut-off value to
guide the oncologists.

5. Conclusions

In conclusion, we produced comprehensive analyses to
investigate the vital role of an ECM-receptor interaction sig-
nature in gastric cancer. ECM compositions became accom-
plices in the tumorigenesis, progression, and poor survival
of gastric cancer.
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