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Abstract

Neurological disorders significantly outnumber diseases

in other therapeutic areas. However, developing drugs

for central nervous system (CNS) disorders remains the

most challenging area in drug discovery, accompanied

with the long timelines and high attrition rates. With the

rapid growth of biomedical data enabled by advanced

experimental technologies, artificial intelligence (AI) and

machine learning (ML) have emerged as an indispensable

tool to draw meaningful insights and improve decision

making in drug discovery. Thanks to the advancements in

AI and ML algorithms, now the AI/ML‐driven solutions
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to BZ have an unprecedented potential to accelerate the pro-

cess of CNS drug discovery with better success rate. In

this review, we comprehensively summarize AI/ML‐
powered pharmaceutical discovery efforts and their im-

plementations in the CNS area. After introducing the

AI/ML models as well as the conceptualization and data

preparation, we outline the applications of AI/ML tech-

nologies to several key procedures in drug discovery,

including target identification, compound screening,

hit/lead generation and optimization, drug response and

synergy prediction, de novo drug design, and drug re-

purposing. We review the current state‐of‐the‐art of AI/
ML‐guided CNS drug discovery, focusing on blood–brain

barrier permeability prediction and implementation into

therapeutic discovery for neurological diseases. Finally,

we discuss the major challenges and limitations of cur-

rent approaches and possible future directions that may

provide resolutions to these difficulties.
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1 | INTRODUCTION

Disorders of the central nervous system (CNS) are responsible for multiple disease states of significant eco-

nomic and social impact. Despite huge progress in our understanding of the structure and functions of the

CNS, the development of new drugs for CNS disorders poses unique challenges. CNS drugs have lower success

rates than other drug classes due to multiple factors, including an insufficient understanding of the patho-

physiology of complex CNS conditions, poor target selection/engagement, lack of efficacy in early stages of

development, and the presence of a blood–brain barrier (BBB). Such challenges have led to significantly longer

development time for CNS drugs, which is, on average, 15–19 years to advance from discovery to regulatory

approval.1 The whole process of developing a new drug generates a lot of data. Over the past decades, the

advances in “omics” technologies, high‐throughput screening (HTS), and chemical synthesis have led to a

dramatic increase in the amount of available data on chemical activity2 and functional genomics.3,4 As a result,

how to efficiently combine, correlate, and analyze existing large‐scale data has become a crucial problem for

CNS drug discovery.

Artificial intelligence (AI) concepts such as machine learning (ML) have the potential to accelerate pharma-

ceutical research by extracting novel and important information from the vast amount of complex data generated

from the drug discovery process. In recent years, AI/ML‐based methods have been widely applied to many ther-

apeutic areas and achieved state‐of‐the‐art performance in addressing diverse problems in drug discovery.
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Such applications of AI/ML algorithms also have shown promise in the development of CNS therapeutics—the most

challenging area in drug discovery. However, we have only just begun to explore the potential of these technol-

ogies for discovering novel therapeutics and repurposing old ones for CNS diseases. Therefore, this review will

focus on AI/ML‐assisted drug discovery applications in this promising direction.

Here, we provide an overview of recent developments and applications in AI/ML‐assisted drug discovery,

particularly for CNS diseases. This review is intended for biomedical researchers who are curious about

the potential of AI/ML for advancing CNS drug discovery and consider AI‐based tools in their research. We

first provide a broad overview of AI/ML approaches in drug discovery and then review AI/ML solutions to the

issues in drug discovery specific for CNS diseases. We start with a brief introduction to AI algorithms and

their input molecular descriptors and then summarize AI/ML‐based methods in various stages of drug dis-

covery, including target identification and characterization, virtual screening, lead discovery, and physico-

chemical pharmacokinetic property prediction. We further review recent AI/ML applications in de novo

design, predicting drug sensitivity and response, drug synergy prediction, and drug repurposing. For CNS

diseases specific drug discovery, we focus on AI/ML solutions to key challenges such as BBB permeability and

introduce AI/ML‐assisted applications to neurological diseases, including neurodevelopmental disorders,

depression, Parkinson's disease, Alzheimer's disease, anesthesia and pain treatment. We conclude the review

by highlighting challenges, limitations, and future directions of AI/ML‐aided drug discovery, especially for

CNS diseases.

2 | AI/ML APPLICATIONS IN DRUG DISCOVERY

AI/ML has been utilized at three different stages of early drug discovery process, including target identification,

lead generation and optimization, and preclinical development (Figure 1). In target discovery, AI‐based approaches

have been used to integrate heterogeneous data sets to identify patterns so as to understand molecular me-

chanisms underlying diseases and drug activities. For lead generation and optimization, AI/ML algorithms improve

the scoring functions and quantitative structure–activity relationship (QSAR) models in virtual screening pipelines

and support the automation and optimization of the de novo drug design processes. In preclinical development,

AI/ML approaches are employed to generate predictive models of physicochemical properties by efficiently pro-

cessing large amount of chemical data and further optimize absorption, distribution, metabolism, and excretion—

toxicity (ADME‐T) profiles.

F IGURE 1 AI/ML applications in the drug discovery pipeline. AI/ML approaches provide a range of tools that
can be applied in all the three stages of early drug discovery to improve decision making and speed up the
process. ADME, absorption, distribution, metabolism, and excretion; AI, artificial intelligence;
ML, machine learning; QSAR, quantitative structure–activity relationship [Color figure can be viewed at
wileyonlinelibrary.com]
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2.1 | Overview of the AI/ML algorithms

To help the reader better understand AI/ML applications in CNS drug discovery, we provide a summary of AI‐
based algorithms that are widely used in drug discovery. AI uses a large variety of models to build up intelligent

systems, which can be classified by learning procedures. AI is frequently used to denote ML algorithms—yet they

are not the same. So, it would be worth clarifying both terms at first. In this review, we follow the US Food and

Drug Administration's (FDA) definition of AI. They describe AI as “the science and engineering of making intelligent

machines”, while ML is “an artificial intelligence technique that can be used to design and train software algorithms

to learn from and act on data”,5 adding that all ML techniques are AI techniques, but not all AI techniques are ML

techniques. Here, we provide brief definitions of the basic learning algorithms in Table 1, as these are most

relevant in the context of drug discovery. AI‐related learning techniques are broadly categorized as supervised,

unsupervised, semisupervised, active, reinforcement, transfer, and multitask learning. Different algorithms are

used in those learning architectures to perform specific tasks such as classification or clustering. However, success

with AI requires more than training an AI model. A robust AI workflow involves (i) formulating a problem,

(ii) preparing data, (iii) extracting features, (iv) selecting training and testing data sets, (v) developing a model,

(vi) training the model and testing its performance (cross‐validation), and (vii) applying the model to testing data

sets and refining the model. Figure 2 displays the basics steps of building an AI architecture.

2.2 | Molecular descriptors and fingerprints for input data preparation

A key consideration in early drug discovery is to identify drug candidates with the desirable initial characteristics,

which are then further developed into chemical structures with the desirable potency against the target molecule.

Molecular descriptors and fingerprints are used for quantifying such physicochemical characteristics of both

chemical entities and their biological target molecules. Molecular descriptors are experimentally quantified or

theoretically characterized properties of a corresponding molecule that represent the physical, chemical, or

topological characteristics, while molecular fingerprints are more complex descriptors that are encoded as binary

bit strings.6,7 Both molecular descriptors and fingerprints have crucial functions in ML‐based applications in

drug discovery processes such as target molecule ranking,8,9 similarity‐based compound search,10–15 virtual

screening,16,17 QSAR analysis,18,19 ADME‐T prediction of lead molecules.20–23

There are various tools for molecular descriptor and fingerprint calculation, and each has a different set of

features. Here, we explain the molecular descriptors (i.e., target protein descriptors and compound descriptors)

and compound fingerprints, and provide the highly used programs for generating them (i.e., sequence‐based tools

and structure‐based tools) in the Supporting Information. Additionally, Chuang et al.24 comprehensively discussed

how AI‐based methods (i.e., deep learning [DL]) could address limitations of molecular descriptors and fingerprints

and thereby improve the predictive modeling of compound bioactivities.

2.3 | AI/ML applications in target identification

A dominant approach to drug discovery is to design drug molecules that will reverse a disease course by

modulating the activity of a target.25 Drug development often begins with identification of a novel target

whose modulation can lead to a therapeutic benefit with an acceptable safety margin. This is followed by

validating the role of the selected target in disease in in vivo models and, ultimately, in clinical trials.

Therefore, the ultimate success of a drug development project depends on early identification of promising

drug targets.
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TABLE 1 AI‐related learning techniques used in drug discovery

Category of learning Definition

Supervised learning • A predictive model trained on data points with known outcomes (“labeled data”)

• Two types of problems:

Regression: Model finds outputs that are real variables

Classification: The model divides inputs into classes or groups

Algorithm Task Description

Naïve Bayes Classification • A “probabilistic classifier” that determines the

probability of the features occurring in each class by

treating every feature independently to return the most

likely class based on the Bayes rule.

• Particularly suited when the dimensionality of the inputs

is high.

Support vector machines Classification • A discriminative classifier that outputs an optimal

hyperplane to categorize new examples. The vectors that

define the hyperplane are the support vectors.

Random Forest Classification/

Regression

• An ensemble of simple tree predictors that vote for the

most popular class for classification problems. In the

regression problems, the tree responses are averaged to

obtain an estimate of the dependent variable.

• Overfitting is less likely to occur as more decision trees

are added to the forest.

K‐nearest‐neighbors Classification/

Regression

• A nonparametric algorithm based on feature similarity by

assuming that similar things exist in close proximity.

• Useful for a classification study when there is little or no

prior knowledge about the distribution data.

Artificial neural networks Classification/

Regression

• A method that learns from input data based on layers of

connected neurons consisting of input layers, hidden

layers, and output layers.

Deep neural network Classification/

Regression

• A collection of neurons organized in a sequence of

multiple layers.

• Type of artificial neural network with several advantages

(i.e., shared weights [parameter sharing), spatial relations,

and local receptive fields

• Learning can be supervised, unsupervised, or

semisupervised.

• End‐to‐end learning and transfer learning are the major

approaches performed by the deep neural network.

• Autoencoders and generative adversarial networks are

the two specific forms of deep neural networks.

Multiple regression Regression • A statistical approach to find relationships between

dependent variables and one or more independent

variables.

Unsupervised learning • A self‐organized model that organizes the data in some way or describe its structure

to learn underlying patterns of features directly from unlabeled data.

Algorithm Task Description

K‐means clustering Clustering • A classification method that divides data into k groups by

minimizing within‐group distances to the centroid

(Continues)
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TABLE 1 (Continued)

Category of learning Definition

Fuzzy clustering Clustering • A form of clustering (Fuzzy C‐means clustering) in which

each data point can belong to more than one cluster.

• It computes the coefficients of being in the clusters for

each data point.

Hierarchical clustering Clustering • A classification method that builds a hierarchy of clusters

by merging two close clusters into the same cluster. This

algorithm ends when there is only one cluster left.

Principal component

analysis

Dimensionality

reduction

• A nonparametric statistical technique that uses an

orthogonal procedure to transform a set of correlated

features to new independent variables called principal

components

Independent component

analysis

Dimensionality

reduction

• A statistical method that separates a multivariable

output into statistical independent additive components

Autoencoders Dimensionality

reduction

• A deep neural network trained with backpropagation to

reconstruct its original input

Deep belief nets Dimensionality

reduction

• Probabilistic generative models with many layers of

stochastic, latent variables. Each layer is a Restricted

Boltzmann machine.

Generative adversarial

networks

Anomaly detection • Deep generative models that use two neural networks,

pitting one against the other (thus the “adversarial”) to

generate new synthetic but realistic instances of data.

Self‐organizing map Dimensionality

reduction

• A competitive learning network that reduces the input

dimensionality to represent its distribution as a map.

Semisupervised learning • A combination of supervised and unsupervised learning methods that uses a small

amount of labeled data and also a large amount of unlabeled data during training to

gain more understanding of the sample population.

Active learning • A particular case of semisupervised learning, where the algorithm is allowed to query

the user for the label of a subset of training instances

• Used to construct a high‐performance classifier while keeping the size of the training

data set to a minimum by actively selecting the valuable data points

Reinforcement learning • Dynamic programming that trains algorithms using a system of reward and

punishment to maximize the performance.

Transfer learning • A deep learning technique enables developers to harness a neural network used for

one task and apply it to another domain.

• It allows the reuse of a pretrained deep neural network on a new task with only a

small amount of data.

• Useful when the data is insufficient for a new domain to be handled by a neural

network, and there is a big preexisting data pool that can be transferred

Multitask learning • An approach to inductive transfer that improves generalization performance of

multiple related tasks by leveraging useful information among them.

• Useful when there are multiple related tasks, each of which has limited training

samples

Multiple kernel learning • A flexible learning method that use a predefined set of kernels and learn convex

combinations of kernels over potentially different domains.

• Used when there are heterogeneous sources of data for the task at hand
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A good drug target need be relevant to the disease phenotype as well as be suitable for therapeutic

modulation (“druggable”). Biological and technological advances have continuously driven the generation of

high‐throughput biomedical data, which present new opportunities for early identification of potential drug

targets. However, the analysis of such large‐scale multidimensional biological data requires effective tech-

niques that can produce accurate predictions for target identification. AI/ML has emerged as a powerful

technology for analyzing the rapidly increasing multiomics data in the identification of potential therapeutic

targets.

In literature, the “target identification” term is often used in two different contexts: Target discovery and

target deconvolution.26 The first is the discovery of a new disease target whose modulation would have ther-

apeutic effects. The second is the identification of a target with a known active compound, which is also called

“target fishing.” To avoid confusion, we will use context‐specific terms of target discovery and deconvolution rather

than generic target identification.

TABLE 1 (Continued)

Category of learning Definition

Ensemble learning • A meta‐algorithm that combines decisions from multiple models into one predictive

model to decrease variance (bagging), bias (boosting), or improve predictions

(stacking).

End‐to‐end learning • A deep learning process in which all of the parameters are trained jointly, rather than

step by step. It allows the training of a deep neural network based on raw data

without descriptors. Since the pipeline is replaced with a single learning algorithm, it

goes directly from the input to the desired output and thereby overcome limitations

of the traditional approach.

Note: The rows with gray backgrounds show the basic learning categories and their definition, while the rows following

supervised and unsupervised learning parts display the different algorithms used in these categories.

F IGURE 2 The basic steps of building an artificial intelligence (AI) platform for drug discovery. The process for
developing an AI model as follows: (1) Define the problem appropriately (objective, desired outputs, etc.), (2)
prepare the data (collection, exploration and profiling, formatting, and improving the quality), (3) transform raw
data into features and select meaningful features (a.k.a. feature engineering), (4) split data into training and
validation sets, (5) develop a model, (6) train the model with a fraction of the data, test its performance (cross‐
validation) and tune its parameters with the validation set (7) evaluate model performance on the validation set
and refine the model, and (8) evaluate the model on independent data not used for method development [Color
figure can be viewed at wileyonlinelibrary.com]
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2.3.1 | Target discovery

Drug discovery begins with the identification of a novel target candidate that is followed by a target evaluation

consisting of experimental target validation and theoretical assessment of its ability to bind small molecule drugs

(druggability).27 The target discovery process includes identification of targets that play a role in the disease

pathophysiology,28 assessment of druggability, and prioritization of candidate targets. However, because of

the complex nature of human diseases, this process often requires more comprehensive approaches that integrate

available heterogeneous data and information to understand the molecular mechanisms underlying disease phe-

notypes and identifying the patient‐specific changes.29 To overcome such difficulties, researchers have applied

AI/ML methods to predict “reliable” drug targets. The following sections demonstrate the AI/ML applications in

different stages of the target discovery process (Figure 3).

Disease subtype prediction

In complex heterogeneous diseases, classifying patients into clinically and biologically homogenous subtypes is

critical for understanding disease pathophysiology and developing appropriate subtype specific therapies.30

Researchers have developed AI/ML algorithms that can integrate multiscale data to identify different etiological

subtypes of complex diseases. For example, Shen et al.31 developed iCluster, a joint latent variable model for

integrative clustering analysis, which was applied to breast cancer and lung cancer and identified subtypes char-

acterized by concordant DNA copy number changes and gene expression.31 Yuan et al.32 also integrated copy

number variation and gene expression data by using a nonparametric Bayesian model and discovered prognostic

subtypes in prostate cancer and breast cancer.32 Zhang et al.33 revealed the prognostic subtypes in neuroblastoma

using DL‐based integration of multi‐Omics data and K‐means clustering analysis. Recently, Gao et al.34 described a

cancer classification method, deep cancer subtype classification (DeepCC), based on DL of functional spectra,

which is a vector of gene set enrichment scores associating with biological functions for each patient sample.

Overall, in recent years, AI/ML methods have been employed to analyze large‐scale genomic and other molecular

profiling data in cancer for the identification of distinct, molecular disease subtypes. However, such AI‐based
subtyping analysis have not been widely applied to other complex diseases. Implementation of robust and scalable

AI/ML techniques for discovery of disease subtypes paves the way for developing more efficacious therapeutic

strategies.

Prediction of disease driver genes

One of the most challenging tasks in target discovery is the prediction of disease‐causing genes from huge amount

of genetic and functional genomic data. To predict these disease‐associated genes from multiomics data, re-

searchers have employed various ML classifiers,35–38 including Random Forest (RF)‐,39,40 support vector machines

(SVM)‐,41,42 and decision tree (DT)‐based classifiers.43 More detailed information about those applications can be

found in the Supporting Information. Besides the ML‐methods using multiomics data, DriverML,44 a supervised

F IGURE 3 AI‐guided target discovery. AI/ML methods can efficiently analyze all available information to speed
up the discovery of disease‐related drug targets. Specifically, AI/ML methods are utilized for disease subtyping,
identification of disease driver genes and microRNAs, alternative splicing prediction, triaging of novel drug targets,
modeling of three‐dimensional target structures, and druggability assessment. AI, artificial intelligence;
ML, machine learning [Color figure can be viewed at wileyonlinelibrary.com]
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learning tool, identified cancer driver genes based on DNA sequence alterations from The cancer Genome Atlas

(TCGA) data with superior performance over the other tools such as DriverDBv2 database.45

In addition to ML classifiers, DL‐based methods have been implemented in more recently developed tools. For

example, deepDriver46 trained similarity networks and a convolutional neural network (CNN) on mutation data

simultaneously to predict driver genes with better performance than the competing approaches when applied in

breast cancer and colorectal cancer. In another example, Peng et al.47 used deep neural network (DNN) to reduce

the dimensionality of transcriptomics data to predict Parkinson's disease genes. This DNN‐based tool, namely,

N2A‐SVM, consists of three steps, including extraction of vector representation of each gene in the

protein–protein interaction (PPI) network, dimension reduction for the obtained vector with autoencoder, and

prediction of the genes associated with Parkinson's disease using SVM.

Multitask learning has also been employed for the prediction of cancer driver genes. LOTUS, an ML‐based
algorithm, predicts cancer driver genes in a pan‐cancer setting, as well as for specific cancer types, using a

multitask learning strategy sharing information across cancer types.48 For the readers who want to learn more

about opportunities and challenges in predictive modeling for multiomics data sets, we suggest the review paper of

Kim and Tagkopoulos.49

Different from the tools using omics data sets, BeFree50 was developed to extract relations between genes

and diseases from text mining. This supervised learning approach utilized natural language processing (NLP) Kernel

methods to identify gene–disease associations from the abstracts collected by Medline.

Prediction of disease‐associated microRNAs

The challenges in targeting disease proteins have shifted the focus in target selection to disease microRNAs (miR-

NAs), which are small noncoding RNAs that regulate gene expression by targeting messenger RNAs.51 miRNAs are

regarded as high‐potential drug targets due to their involvement in various diseases.52 Therefore, considerable effort

has been devoted in identifying relationships between miRNAs and diseases using ML‐based methods, such as the

network based approach by Xu et al.53,54 and RLSMDA. New strategies in miRNA target discovery have utilized

neural networks (NN). Zeng et al.55 developed a NN method, NNMDA to predict miRNA‐disease associations with

the best performance among the existing algorithms. Application of NNMDA to lung neoplasm and breast neoplasm

predicted novel disease‐related miRNAs. Very soon after that, Zheng et al.56 published a new ML‐based method,

MLMDA, which predicts miRNA–disease associations by integrating miRNA sequence, disease semantics,

miRNA–disease association, and miRNA function but with slightly worse performance than NNMDA.

Prediction of alternative splicing

Alternative splicing (AS) plays a fundamental role in gene expression regulation and protein diversity by causing

the generation of different transcripts from single genes.57 Understanding the genetic variation in splicing signals is

within the scope for AI/ML‐based models to discover therapeutic opportunities through novel targets. For splicing

prediction and analysis, a web tool, AVISPA,58 has been developed. For a given exon and its proximal sequence,

AVISPA predicts if the exon is alternatively spliced and if it has associated regulatory elements by using a Bayesian

NN classifier. However, the method by Leung et al.59 outperformed the Bayesian NN approach for predicting AS by

developing a DNN model inferred from mouse RNA‐Seq data that can predict splicing patterns in individual tissues

and differences in splicing patterns across tissues. Later, Jha et al.60 compared those two previous modeling

approaches, Bayesian and Deep NN, and determined the confounding effects of data sets and target functions. On

the basis of this knowledge, they developed a new target function for AS prediction with higher accuracy. For

further improvement of the prediction, they developed a modeling framework that uses transfer learning to

combine CLIP‐Seq, knockdown, and overexpression experiments. For enabling the usage of unlabeled data and the

latent information, Stanescu et al.61 applied semisupervised learning algorithms to AS prediction. Xiong et al.62

built up a DL model trained to predict splicing from DNA sequence alone and successfully identified new autism‐
linked genes.
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Target prioritization

While increasing effort has been devoted to nominating novel drug targets involved in diseases, experimental

validation of identified target candidates is an expensive and time‐consuming task.63 Therefore, researchers have

utilized AI/ML approaches to support the prioritization of the most promising target candidates for subsequent

experiments. To identify and prioritize novel cancer drug targets, Jeon et al.64 built an SVM classifier that uses

features from various data types (DNA copy number, messenger RNA expression, mutation occurrence, and PPI) to

prioritize drug targets specific for breast, pancreatic and ovarian cancers. To improve the disease gene prior-

itization process, Valentini et al.65 combined different functional gene networks and applied a kernel‐based method

to prioritize genes according to the disease MeSH terms. Then, Ferrero et al.66 took advantage of the publicly

available target–disease association data from the open targets platform training an NN classifier with semi-

supervised learning and predicted novel therapeutic targets. As another publicly available data source, Medline

abstracts also have been benefited for developing prediction tools (i.e., DigSee67) that identify disease–gene

relationships and prioritize the genes based on evidence. Specifically, DigSee uses NLP to extract the relationship

between diseases and genes and ranks the evidence sentences with a Bayesian classifier. Recently, Arabfard

et al.68 predicted and prioritized over 3,000 candidate age‐related human genes using three positive unlabeled

learning algorithms, Naïve Bayes, Spy, and Rocchio‐SVM. They ranked the human genes according to their im-

plication in aging based on binary gene features from 11 human biology databases.68

Target protein structure prediction

AI/ML architectures have been applied in protein structure prediction over 30 years, and several groups have

comprehensively reviewed those strategies.69–73 Therefore, we will focus on recent applications in this field. Also,

we provide a background of conventional protein structure prediction methods (i.e., template‐based and template‐
free) for those who want to learn more about this field in the Supporting Information.

Since 1994, the Critical Assessment of protein Structure Prediction (CASP) competitions have been organized

biannually for blind evaluation of the state‐of‐the‐art methods that predict three‐dimensional (3D) protein

structures from protein sequences. There, each group submits structure predictions for each of the given protein

sequences for which experimentally determined structures were sequestered. In December 2018, Google's AI firm

DeepMind won the CASP13 competition with its latest AI system, AlphaFold. DeepMind's success generated

significant interest in the protein folding community, where the researchers published several articles discussing

the method.74–77 AlphaFold determines the 3D shape of a protein from its amino acid sequence by merging two

approaches: (i) Inferring physical contact in protein structure from residue covariation in protein sequence based

on coevolution analysis of a multiple sequence alignment and (ii) identifying coevolutionary patterns in protein

sequences as contact distributions by using DNNs and convert them into protein‐specific statistical energy

potentials. AlphaFold system has achieved an unprecedented prediction accuracy among the ab initio methods.

Although AlphaFold's performance represents a big leap in protein structure prediction, its accuracy still needs to

be improved.

Inspired by AlphaFold as well as previous successful applications of DL to residue contact predictions,78

researchers have developed different strategies to improve the protein structure prediction, including a deep

residual network model,79 a fragment library that is built using deep contextual learning techniques called

DeepFragLib80 and a community‐built, open‐source implementation of Alphafold (i.e., ProSPr).81 The emergence of

DL has suggested the rethinking of how to address the problem of protein structure and thereby, encourages the

new approaches. RGN (recurrent geometric network) is an end‐to‐end differentiable model that takes a sequence

of amino acids and position‐specific scoring matrices (a summary of residue propensities for mutation) as inputs

and outputs a 3D structure. In contrast to the complexity of conventional structure prediction models, a trained

RGN model is a single mathematical function that is evaluated once per prediction. Hence, a trained RGN makes

predictions six to seven orders of magnitude faster than other methods. The same lab developed the RGN also

published a data set to provide a standardized resource for training and assessing ML frameworks for predicting
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protein structures. The data set called ProteinNet integrates sequence, structure, and evolutionary information

into preformatted input/output records. ProteinNet is available in a public repository, https://github.com/

aqlaboratory/proteinnet.

Going beyond the structure prediction, researchers have employed the ML for the prediction of protein

dynamics since target proteins are dynamic and sample multiple states. Ung et al.82 used RF to classify pharma-

cologically relevant conformations of protein kinases. Using a 3D‐CNN, Okuno et al.83 developed DEFMap, which

extracts the dynamics information hidden in a given cryo‐EM density map. This approach allows us to grasp the

dynamic changes associated with molecular recognition and the accompanying conformational selections from the

cryo‐EM structure, which derive insights into the protein function as well.

The studies discussed above clearly demonstrate the utility of the AI/ML frameworks to make predictions of

protein structural features from sequence alone. Rost et al.84 comprehensively discussed how ML algorithms help

to understand the effects of protein sequence variants on protein function and pathways. AI/ML algorithms are

readily available for structural biologists to quickly estimate protein structures. Of course, the accuracy and speed

of a framework will depend on the creativity in problem formulation, network design, and data storage. We can

look forward to a rapid growth in the number of AI/ML applications in the prediction of protein structures.

Druggability

In target discovery, another crucial step is the evaluation of the target's druggability, “the likelihood of being able

to modulate a target with a small‐molecule drug”.85 In drug design, a selected target must have the biophysical

properties that allow it to bind small molecules with drug‐like properties. ML‐based models usually estimate a

target's druggability by using different features of it. As one of the earliest applications, SCREEN (Surface Cavity

REcognition and EvaluatioN) webserver86 was built based on an RF classifier trained on geometric, structural, and

physicochemical features of drug‐binding and nondrug‐binding cavities on proteins. The classification process

reveals that the most critical attributes to estimate druggability are the size and shape of the surface cavities of the

protein. In the following studies, SVMs were applied to predict druggable targets based on various physicochemical

properties from protein sequences.87,88 Then, Costa et al.89 constructed a DT‐based meta‐classifier by training on

attributes including network topological features, tissue expression profile, and subcellular localization for each

druggable and nondruggable gene. Later, Wang et al.90 combined a biased SVM with a DL model, stacked auto-

encoders, to identify drug target proteins based on the sequence information of proteins. Recently, Kokh et al.91

developed an ML tool for the druggability analysis of binding pocket variations during the protein movement. They

used a logistic regression model and a CNN to identify potentially druggable protein conformations in trajectories

from molecular dynamics simulations. On the contrary, Dezső and Ceccarelli92 built up RF models for the

druggability prediction of oncology drug targets to prioritize proteins according to their similarity to approved drug

targets. More details on ML‐based tools designed to predict the druggability of targets can be found in the review

from Kandoi et al.93

2.3.2 | Target deconvolution

Target deconvolution (a.k.a. target fishing) is an important step following the discovery of compounds that cause a

desirable change in phenotype. Understanding the binding targets of phenotypic screen‐derived compounds can

help design better analogs, find potential off‐targets, and thereby explain observed adverse events. However,

existing experimental approaches for target deconvolution are labor, resource, and time‐intensive. Researchers
have adapted computational approaches to target deconvolution problems to reduce the required sources for the

experiments. Several studies implemented AI/ML algorithms into computational target deconvolution tools for

higher predictive power. For example, Schneider and colleagues have widely applied self‐organizing maps (SOMs)

to predict the macromolecular targets of compounds.94–97 They preferred to use “fuzzy” molecular
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representations, such as pharmacophoric feature descriptors, since such fuzzy molecular representations de-

monstrated greater scaffold‐hopping potential than atomistic approaches in similarity searches. On the basis of the

similarity of pharmacophoric features, their unsupervised SOM algorithm clustered the query molecules with

unknown targets as well as drug‐like molecules with known targets. Hence, the trained SOM was able to transfer

the knowledge of annotated drug targets to query molecules that are the nearest neighbors to known drugs.94

They have applied this SOM approach to identify the macromolecular targets of de novo‐designed molecules,95

complex natural products,94 fragment‐like natural products,96 and a natural anticancer compound.97 Besides the

SOM models, a multiple‐category Naïve Bayesian model was developed for the rapid identification of potential

targets for compounds based on only chemical structure information, which is the connectivity fingerprints of

compounds from 964 target classes in the WOMBAT (World Of Molecular BioAcTivity) chemogenomics data-

base.98 Moreover, a target‐fishing server named RF‐QSAR was built based on target SAR models that were created

using an RF algorithm to rank candidate targets for a query compound.99 A recent target identification tool,

BANDIT,100 uses a Bayesian approach to integrates six distinct data types—drug efficacies, posttreatment

transcriptional responses, chemical structures, reported side effects, bioassay results, and known targets.

In the identification of the novel targets of drugs, there has been increasing interest in predicting drug–target

interaction (DTI), given its relevance for side effect prediction and drug‐repositioning attempts.101 The availability

of heterogeneous biological data on known DTI has enabled the development of various AI/ML‐based strategies to

exploit unknown DTI,102 including ensemble learning,103–106 tree‐ensemble learning,107 active learning,108 DL,109

end‐to‐end DL,110 and kernel‐based learning.111–115 Such AI/ML‐enabled data integration strategies outperform

the traditional methods in classifying both positive and negative interactions,110 improved the quality of the

predicted interactions, and expedited the identification of new DTI.115

2.4 | AI/ML applications in compound screening and lead discovery

To identify new compounds with potential interactions to target proteins, researchers commonly use HTS, an in

vitro method that automatically tests large compound libraries towards a specific target. However, high cost and

low hit rate of HTS have expedited the development of virtual screening (VS) alternatives, which enable cheaper and

faster screening of larger compound libraries.116,117 VS predicts the compounds that most likely to bind to a

protein of interest using various approaches. Two broad categories of VS are structure‐based VS (SBVS) and

ligand‐based VS (LBVS)—the former takes the structures of target proteins as input,118,119 and the latter uses

information on known inhibitors.120 LBVS is basically “analoging” to some extent based on that similar molecules

tend to exhibit similar properties,121 and it also helps to build better pharmacophore models. SBVS and LBVS

are often used synergistically: Leads from SBVS can be improved with LBVS, and data from improved yields can be

used to refine models for SBVS.122 For achieving better performance in VS workflows, AI/ML‐based methods

have been utilized for both SBVS and LBVS. We will begin with the application of AI/ML methods in SBVS and

continue with their applications in LBVS in the next section.

2.4.1 | Structure‐based virtual screening

SBVS requires the 3D structure of a target protein to predict whether a compound is likely to bind the target. One

widely used method to do this is molecular docking, which models the protein–ligand complex based on

the estimated interaction energy. In recent years, ML methods have been employed in SBVS workflow to increase

the robustness and accuracy of scoring functions (SFs), conformational sampling and ranking. Researchers have

developed SFs using RF‐,123–126 SVM‐,127,128 and NN‐129–134 based learning algorithms and they outperformed the

conventional SF predictions.135 However, no ML‐based SF is superior to all the other approaches in all respects.136
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Indeed, the performance of an SF differs from target to target.137 Therefore, researchers have developed

ML‐based, target‐specific SFs to improve the efficiency of existing SFs for kinases,138–141 histone methyl-

transferases,142 cyclin‐dependent kinases and G protein‐coupled receptors (GPCRs),137 and cytochrome P450

aromatase.143

Moreover, such ML‐based models have been applied to post‐docking processes to improve the accuracy of

molecular docking. For example, ML algorithms142,144–148 improve pose/compound selection by automating the

evaluation of docked ligands, which was done manually before.149 Details about ML‐based scoring functions and

AI/ML applications in the post‐docking stage can be found in the Supporting Information.

2.4.2 | Ligand‐based virtual screening

When the 3D structure of a given target is available, SBVS approaches (i.e., molecular docking) can be employed.

However, LBVS methods are the only option if the 3D structure of the target protein is not known. In contrast to

the molecular docking that predicts the binding pose of ligands to the target protein using the protein structure,

LBVS is based on the principle that ligands structurally similar to an active compound tend to have similar

activity.150 Hence, LBVS requires the information of known active compounds rather than the target protein

structure. In drug discovery efforts, researchers often have a set of active compounds generated from testing

molecules in biochemical or functional assays without knowing the target protein structure. In such cases, the

LBVS approach can be utilized to find new ligands by assessing the structural similarity of candidate ligands to the

known active compounds. The challenge is thereby to find an appropriate model for similarity that relates com-

pound features to assay outcomes. In recent years, ML has emerged as an attractive approach to boost the

predictive power of LBVS models. The specific aims of ML approaches include prediction of the active compounds

against a particular target using models trained on input data sets, discrimination of drug modules from nondrug

ones, and prioritization of compounds based on the probability of activity. For these purposes, researchers have

used SVMs, Bayesian architectures, and artificial neural networks (ANNs) (Table S2). Further information regarding

AI/ML applications in LBVS is available in some comprehensive review papers.136,151,152

On the contrary, one of the most recent advances in AI/ML‐based LBSV was made by Stokes et al.153 They

successfully discovered new antibiotics by employing graph convolutional networks (GCN), whose outstanding

performance over conventional ML models in predicting molecular properties was confirmed by two studies.154,155

Using their GCN model, the authors performed a large‐scale screening and identified a promising new antibiotic,

halicin.153

In conclusion, the advances in selection and design of AI/ML algorithms for LBVS and the availability of large

bioactivity data sets have enabled more accurate and faster selection of compounds that are predicted to be active

against a particular target and will undergo further experimental assays eventually. Although traditional ML

classifiers had been widely used in LBVS, recent successful applications have shown GCN's potential to become a

popular approach for LBVS.151

2.4.3 | QSAR prediction

QSAR models are developed to identify a mathematical relationship between the physicochemical properties,

which are represented by molecular descriptors, and biological activity of chemicals. These models play a pro-

minent role in drug optimization, providing a preliminary in silico evaluation of essential attributes related to the

activity, selectivity, and toxicity of candidate compounds.156–158 By doing that, they significantly reduce the

number of candidate compounds to be tested by in vivo experiments. QSAR models can be based on regression or

classification models that depend on the underlying computational strategy. AI/ML approaches (i.e., RF,159,160
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SVM,161–163 Naïve Bayesian,164–173 and ANN143,174–184) have been extensively employed in QSAR modeling (For

the detailed discussion of the applications, see the Supporting Information). Notably, the RF algorithm is commonly

used as a classification and regression tool159 and considered to be the golden standard in QSAR studies.185 Hence,

the performance of new QSAR prediction tools often is compared with that of RF. Many RF‐based QSAR models

have been developed, such as pQSAR,186 a method for the soluble epoxide hydrolase,187 and a model for Janus

kinase 2.188 When the predictive performance and interpretability of RF‐based QSAR models are compared to

those of two widely used linear modeling approaches—SVMs and partial least‐squares, RF not only yields better

predictive performance but also enables an amenable chemical and biological interpretation.189

In the applications of NN to QSAR prediction, researchers use the data from a single assay using molecular

descriptors as input to train an NN and record activities as training labels. However, the efficiency of those simple

single‐task NN models depends on having sufficient training data in a single assay. To benefit from the data

obtained from multiple assays, researchers aim to develop multitask QSAR models. Several groups constructed the

multitask learning structures based on plain feed‐forward NN to avoid overfitting by learning multiple bioassays

simultaneously.190–196 Moreover, multitask QSAR models were also utilized for predicting the activity against

multiple targets.197–199

In 2012, a data science competition (www.kaggle.com/c/MerckActivity) was organized to find state‐of‐the‐art
methods for QSAR. Using multitask DNNs, the winning team improved the prediction accuracy by 15% over the

baseline RF method.200 Since its introduction into the QSAR modeling,159 RF has served as a “golden standard” and

no QSAR methods other than DNNs outperform it. On the contrary, in the following DREAM challenges on

predicting kinase‐drug‐binding,201 the models based on DL algorithms did not perform better than the other

learning algorithms.202 In the next study, using the DNNs, Ma et al.185 showed that DNNs could make better

prospective predictions than RF, on large and diverse QSAR data sets. However, they could not propose a clear

strategy for choosing between multitask and single‐task DNNs. Xu et al.203 focused on demystifying multitask

DNNs and explored why multitask DNNs perform significantly better or worse for some QSAR tasks. They found

that multitask DNNs can boost the predictive performance if the assistant tasks have molecules in a training set

with structures similar to those in the test set of the primary task and the activities between these similar

molecules are correlated. Contrarily, if the assistant tasks do not include compounds structurally similar to those in

the primary task test set, multitask DNNs show no improvement in prediction, regardless of correlated or un-

correlated activities. Recently, Zakharov et al.204 combined multitask DNNs with consensus modeling to generate

large‐scale QSAR models with improved prediction accuracy over the state‐of‐the‐art QSAR models.

Ensemble‐based ML approaches combining several basic models have also been used to overcome the

weaknesses of individual learning models and thereby improve the overall performance of the QSAR predictors.

There are various ensemble learning applications in QSAR predictions, including data sampling ensembles, method

ensembles, and representation ensembles. Recently, Kwon et al.205 proposed a model that is a combined ensemble

of sampling, method, and representation with an end‐to‐end NN‐based individual classifier. Their ensemble model

achieved better performance than the individual models in QSAR prediction.

2.5 | AI/ML applications in prediction of physicochemical properties and ADME‐T

2.5.1 | Prediction of physicochemical properties

Physicochemical properties indicate all aspects of drug action and profoundly affect the clinical success rates of

drug candidates. A small molecule drug candidate must be sufficiently soluble and permeable to access its site of

action and thereby engage its targets, with optimal safety profiles. Therefore, accurate prediction of the physi-

cochemical characteristics can be beneficial for designing a new chemical entity with suitable pharmacokinetic and

pharmacodynamic profiles. Researchers have adopted ML‐driven approaches to predict some key physicochemical
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properties, such as water solubility, membrane permeability, and lipophilicity. We provide a detailed description of

each property and discuss the ML‐based techniques that specifically predict the water solubility,206–210 membrane

permeability,211–213 and lipophilicity214–219 in the Supporting Information. Although improved ML models have led

to better prediction of molecular properties, the lack of standard criteria for performance evaluation has limited

the progress. To address this, MoleculeNet, a benchmark collection for molecular ML was developed to serve as a

unique resource for the scientific community to create advanced models for learning molecular properties.154 To

further support the comparison and development of novel models, MoleculeNet has implemented various ML

algorithms. Benchmark results have shown that graph convolutional network (GCN) outperforms other traditional

ML methods based on molecular fingerprints and descriptors to predict molecular properties. Recent studies have

supported the superior performance of GCN. Applying GCN, Feinberg et al.155 achieved an unprecedentedly high

accuracy in predicting molecular physicochemical properties.

2.5.2 | ADME‐T predictions

A successful drug development pathway must include the evaluation and optimization of pharmacokinetics,

pharmacodynamics, and safety profiles of a candidate molecule. In early drug discovery, evaluation of the ADME‐
T properties help researchers select good drug candidates for further development. ADME‐T properties are

estimated to be responsible for half of all clinical failures.220 In this context, in silico ADME‐T prediction models

have received considerable progress over the past 40 years due to the availability of many compounds with

known pharmacokinetic properties.23,221 Prediction models usually try to build a direct relationship between a

set of molecular descriptors and a given ADME‐T property.222 These methods represent a compound by che-

mical descriptors as input features such as atom counts, surface areas, weight, van der Waals volume, partial

charge information, and the presence or absence of a predefined substructure. The key substructures re-

sponsible for certain toxicity are structural alerts, of which detection in given small molecules could be used for

toxicity prediction.223 On the contrary, in these models, the toxicity properties of input compounds are HTS

assay measurements of toxic effects that are highly relevant to human health, including nuclear receptor

pathway assays (i.e., aryl hydrocarbon receptor, aromatase, androgen and estrogen receptor, PPAR‐gamma) and

stress response pathway assays (i.e., ATAD5, antioxidant responsive element, heat shock factor response

element, mitochondrial membrane potential, p53).224 While the conventional approaches have yielded physio-

logically based pharmacokinetic and pharmacokinetic‐pharmacodynamic/quantitative systems pharmacol-

ogy models, researchers have applied AI/ML algorithms to produce high‐quality models with improved accuracy

and thus provide meaningful predictions of ADME‐T responses using chemical structure information. For pre-

dicting regulators of drug ADME‐T properties, the classification models—DT, K‐nearest‐neighbor (KNN), SVM,

RF, and NN have been extensively used. Even beyond that, the introduction of DL models has led to further

developments in this area. As a good example of recent advancements in AI. ML‐aided ADME‐T prediction,

Alchemite225—a DL model—predicts ADME‐T properties by imputing heterogeneous drug discovery data, in-

cluding multitarget biochemical activities, phenotypic activities in cell‐based assays, and ADME‐T endpoints.

Moreover, the introduction of capsule networks, a new class of DNN architectures, has remarkably improved

the ADME‐T prediction. To predict the cardiotoxicity of drugs, Wang et al.226 developed two capsule network

architectures, including a convolution‐capsule network (Conv‐CapsNet) and a restricted Boltzmann machine‐
capsule network (RBM‐CapsNet). Both models showed excellent performance with an accuracy of 91.8% for Conv‐
CapsNet and 92.2% for RBM‐CapsNet. As the volume and chemotype coverage of the available ADME‐T databases

are continually growing, we have witnessed a great progress in AI/ML‐guided ADME‐T prediction in recent years.

Such advances in the field have been extensively reviewed.136,227–232
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2.6 | AI/ML applications in de novo drug design

In de novo drug design, scientists generate novel chemical entities with desired chemical and biological char-

acteristics from scratch, aiming to achieve particular efficacy and safety profiles in a cost‐ and time‐efficient
manner. Advanced AI/ML‐based tools have enabled the automated generation of new chemical entities with

suitable properties. As a result of such achievements, application of AI/ML to de novo discovery has become a

popular topic over the last few years. Particularly, generative molecular design based on AI/ML has aroused

considerable attention. In this section, we summarize the AI/ML algorithms utilized for de novo drug design with a

focus on generative models. Those who want to learn more about this subject can check other comprehensive

sources in the literature.136,233,234

Traditional methods for generating novel chemical structures depend on the previously defined reaction or

transformation rules, which bias the chemical space towards prior chemical knowledge. AI/ML‐based generative

models are entirely data‐driven without relying on any explicit rules and can generate new molecules that are not

present in a training set. Briefly, these generative models first learn from data, then create an abstract re-

presentation of the data, and finally use this representation to generate new data instances.235 Thus, these

generative models demonstrate all aspects of an artificially intelligent system (i.e., problem‐solving, learning from

experience, and coping with new situations).235

Recent de novo molecule‐generative models with an ML structure include adversarial autoencoders

(AAE),236–238 variational autoencoders (VAE),239,240 and recurrent neural networks (RNN).241–244 In generating

novel molecules represented by simplified molecular input‐line entry system (SMILES) strings, RNN is a promising

approach for learning from large sets of SMILES strings and generating ligands with similar activities to those of

the training set templates, but with novel scaffolds. However, the percentage of valid SMILES, internal diversity,

and the similarity of molecules to the training data set in the libraries generated by any given approach have been a

matter of debate. To address these issues, Reinforcement learning (RL) has been embedded in ML archi-

tectures.239,245–248 Introducing a task‐specific reward function, RL‐assisted models are able to produce chemically

feasible and predominantly novel molecules with appropriate molecular properties. For the generation of novel

small molecules with the desired characteristics, generative adversarial networks (GAN) also have been employed.

For example, druGAN237 (drug‐generative adversarial network) has been developed for producing new molecules

with specific anticancer properties.

Another commonly used drug design approach is to generate new analogs/similar drugs of a given set of drugs.

In such cases, the transfer learning models have been integrated into NN architectures to increase the prediction

accuracy by taking knowledge acquired from training on a previous problem and applying them to a new but

related problem.249,250

In the generative drug design models above, many ML architectures use the SMILES as molecular re-

presentation. SMILES provides a linear representation, referred to as a SMILES string that can be translated into a

graph and enables a straightforward application. However, it has one or more limitations: Generated SMILES may

not represent a chemically feasible structure, and even a single character alteration in a SMILES representation can

change the underlying molecular structure significantly.251 To overcome its limitations, researchers proposed

several solutions like converting SMILES strings into a new SMILES‐like syntax252 or utilizing grammatical eva-

luation of the SMILES syntax.253 Besides the SMILES string representation, molecular graphs have also been used

to train ML‐based molecule generation algorithms.254 In molecular graph generators, structures are directly re-

presented as graphs in every step and substructures are inferred from the partially generated molecular graphs.255

Examples of such ML models to design de novo molecules based on graph representation includes GANs256,257 and

VAEs.258,259

In addition to the models mentioned above, some AI/ML‐driven de novo molecule design tools are dis-

tinguished by introducing novel approaches. An automated de novo molecular design tool, DINGOS,260 has been

developed to emulate the approach of a synthetic chemist. It assembles drug‐like new compounds through modular
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and synthetically feasible design schemes, considering the synthetic feasibility of each step. In brief, the DINGOS

algorithm combines a rule‐based approach with an ML model trained on known successful synthetic routes, while

the former ensures the synthesizability and the later provides a directed approach to limiting the output molecules

to compounds with desirable similarity to the template. Another remarkable ML‐based generative approach

is proposed by Méndez‐Lucio et al.,261 which bridges systems biology and molecular design. To our knowledge, it is

the first AI/ML‐based drug design tool that combines transcriptomic and structural data. Conditioning a GAN

architecture with compound‐induced transcriptomic data (i.e., L1000 data set), they can automatically design

molecules that potentially produce the desired transcriptomic outcome. Their model allows the design of active‐
like molecules for a desired target using just gene expression signature of target perturbation. However, the

current version is not capable of generating compounds that can reverse disease‐related gene expression

signatures. Also, its performance has not been evaluated in a real drug‐discovery setting yet.

Among all the studies of AI/ML‐based generative molecular design, maybe the most‐mentioned262 one is

published by Insilico Medicine,263 showing how AI for generative chemistry can be used to drive rapid drug

discovery. The goal of the study was to demonstrate that efficacious drugs can be developed in just 21 days for a

new target. For this purpose, they have developed a generative tensorial reinforcement learning (GENTRL) model,

which can be seen as an advanced version of their earlier algorithms on VAE238 and GAN,247 to design DDR1

kinase inhibitors. Notably, this study has two major limitations: First, DDR1 is considered to be the most pro-

miscuous kinase264; thus, developing compounds targeting this protein may be considered low hanging‐fruit.
Second, the seemingly novel compound is highly similar to the widely used cancer drug ponatinib, indicating the

limitation of the approach265 in assessing truly novel scaffolds. Therefore, there is still room for improvement of

AI/ML‐inferred small molecules to obtain a clinical candidate.

2.7 | AI/ML applications in prediction of drug sensitivity and response

Personalized drug response prediction aims to improve the targeted therapy response in complex diseases like

cancer.266 However, the limited application of candidate drugs in clinical settings and the heterogeneity among

cancer patients make it difficult to tailor therapy for each individual cancer patient. Personalized treatment design

requires predictive methods that are capable of exploiting large, heterogeneous, and sparsely sampled data sets.

Accurate AI/ML‐based models employing in vitro and in vivo data sets have the potential to improve the prediction

of response of cancer cells to a given compound. There are various AI/ML models to predict drug sensitivity and

anticancer drug response. In such efforts, elastic net regression,267–269 ensemble‐based approaches,270,271 transfer

learning,272 autoencoders,266,273–275 and multitask learning approaches276–278 have been widely used. The details

about these AI/ML applications can be found in the Supporting Information.

2.8 | AI/ML applications in prediction of drug–drug interactions

In the treatment of complex diseases such as neurological disorders, diabetes, cancer, or cardiovascular disease,

drug combinations are highly utilized for medical intervention. Coadministration of drugs in the treatment aims to

enhance efficacy, reduced toxicity, and prevent the emergence of resistance. Drug combinations are classified as

synergistic, antagonistic, or additive. Drug synergy is the interaction of two or more drugs, causing the total effect

of drugs to be greater than sum of individual effects of each drug.279 If drugs act synergistically, lower doses of

each drug could potentially be enough to provide the desired outcome allowing for less adverse effects. Opposite

to synergism, the antagonistic combination means that the combined activity of the drugs is lower than the

response of the individual agents.280 Finally, a drug combination is considered to be additive when the response of

each drug neither masks nor enhances the efficacy of others.281 Although combinatorial therapy has advantages
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over monotherapy, developing a new drug combination regimen that can be transferred to the clinic is still

challenging. So far, the effective drug combinations have been suggested based on either clinical experience or HTS

of drug pairs at different concentrations on cell lines. However, the former involves the risk of harm to patients,

and the latter is unfeasible to test the complete combinatorial space.282 To accelerate conventional combinatorial

therapy efforts, AI/ML algorithms have begun to be utilized for prioritizing the drug pairs and exploring the larger

combinatorial space. Tonekaboni et al.283 introduced some examples of various ML‐based prediction frameworks

for drug–drug interactions. To avoid duplication, we overview the AI/ML applications in combinatorial therapy

after that time, including the applications in cancer284–288 and depression treatment,289 antimalarial,290 and an-

tibiotic291 discovery, along with the available AI/ML‐based tools to predict the synergistic effects of drug com-

binations292–294 in the Supporting Information.

In addition to the synergistic effects, drug–drug interactions can induce unexpected adverse drug reactions.

Such adverse reactions caused by drug–drug interactions could lead to death in some extreme cases.295 Therefore,

AI/ML‐based models have been developed to predict the risk of side effects due to drug–drug interactions.

Applications of GCN,296 DNN,297 and ML architectures298 showed promising results for predicting adverse drug

reactions of drug combinations. Lee and Chen299 extensively discussed the role of ML approaches in detection and

classification of side effects caused by drug–drug interactions in their review of previous studies. In a recent study,

Shankar et al.300 predicted the adverse drug reactions of coadministered drug pairs using an ANN trained on

transcriptomic data, compound chemical fingerprint, and Gene Ontologies.300

2.9 | AI/ML applications in drug repurposing

Drug development and trials in animals and humans is a time‐consuming and expensive process. In general, the

whole process for developing a new FDA‐approved drug requires 10–17 years of period and the tremendous cost

of $2.6 billion.301 However, high expenditures for drug development has not been able to increase the rate of

approved drugs.302 Among the reasons for this limited approval rate, a key factor is the continued adherence to the

classical “one gene, one drug, one disease” paradigm in the traditional drug development.303 Since drug targets do

not operate in isolation from the biochemical system, each DTI must be studied in a broader integrative context.304

This approach provides new insights into “off‐target” effects (i.e., side effects), resistance to precision therapy, and

drug mechanism of action that can inform drug‐repurposing efforts.

Drug repurposing, also known as drug repositioning, denotes the new indications of existing drugs and is an

alternative over the de novo drug development. Although the unknown underlying complex biology and phar-

macology has challenged the drug‐repurposing attempts, intelligent computer algorithms offer a strategy for

detecting potential drug indications by integrating large‐scale heterogeneous data (i.e., genomic, transcriptomic,

phenotypic, chemical, and bioactivity) from hundreds of approved drugs. Various specially designed AI/ML models

have been proposed for detecting novel drug indications. Here, we classify the ML applications for drug re-

positioning into the following three categories: (i) Similarity‐based methods that employ different types of clas-

sifiers like logistic regression,305,306 SVM,307–309 RF,310,311 KNN,312 and CNN,313 (ii) feature vector‐based methods

that utilize supervised314–318 and semisupervised319–321 learning algorithms, and (iii) network‐based methods that

mainly use semisupervised learning algorithms (e.g., Laplacian regularized least square,322–324 label propagation,325

random walk,326 and RF310). We provide an in‐depth discussion of these three classes of AI‐based drug re-

positioning applications in the Supporting Information. Particularly, in early 2020, researchers at MIT published a

milestone paper using a DL approach to antibiotic discovery.153 They trained the deep GCN model based on

molecular features and predicted halicin as an antibacterial molecule from the Drug‐Repurposing Hub. Halicin

showed a broad‐spectrum activity against drug‐resistant strains in mice. This is the first time an AI/ML‐assisted
tool was used to identify thoroughly new types of antibiotic from scratch, without the need for any previous human

assumptions.
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3 | AI/ML APPLICATIONS IN CNS DRUG DISCOVERY

CNS diseases are a group of neurological disorders that impose a significant economic and social impact. Devel-

opment of new drugs for CNS diseases poses unique challenges compared to other diseases, including the com-

plexity of brain anatomy and function, incomplete understanding of the biology of the complex nature of CNS

diseases and the presence of BBB. In this section, we present an overview of AI/ML‐based approaches to meet

challenges such as BBB permeability in CNS drug discovery (Figure 4).

3.1 | BBB permeability prediction

Despite significant progress in our understanding of CNS diseases, the development of novel therapies for CNS

diseases faces some great challenges. In addition to the difficulties in CNS target identification, designing new

molecules with the ability to penetrate the BBB is also a major obstacle. The role of the BBB is to protect the brain

from variations in blood composition (e.g., hormones, amino acids, and potassium) and circulating pathogens. It

consists of capillary endothelial cells that are lined by the basal lamina made from structural proteins (i.e., ex-

tracellular matrix proteins collagen and laminin), pericytes, astrocytic endfeet, and microglial cells.327 This biologic

membrane allows the uptake of water, glucose, and essential amino acids, the efflux of small molecules and

nonessential amino acids from the brain to the blood and the passage of some molecules by passive diffusion.328

While negligible penetration is desirable to minimize the brain side effects for peripheral drugs, high penetration is

needed for CNS‐active drugs. To improve success rates in CNS drug discovery, the BBB permeability of drug

candidates needs to be addressed early in the drug discovery process.

In recent years, AI‐based predictive models have been proposed to minimize the number of laborious, ex-

pensive, time‐consuming BBB permeability experiments that need be carried out in CNS drug discovery. For the

F IGURE 4 AI/ML‐enabled improvements in the treatment of CNS diseases. DL is a subset of ML, which is a
subset of AI and their applications address a wide range of challenges in CNS drug discovery and development. The
application fields portrayed here are discussed in the Section 3. AI, artificial intelligence; CNS, central nervous
system; DL, deep learning; ML, machine learning [Color figure can be viewed at wileyonlinelibrary.com]
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construction of BBB permeability predictive models, researchers have employed various supervised learning ap-

proaches, such as SVM,222,329–333 recursive partitioning (RP),334,335 Gaussian process,336 DT,337 KNN,338 linear

discriminant analysis,339 consensus classifier,340 and ANN.341–343 All of these methods were developed to process

physical and chemical features, which mainly include molecular weight, hydrophilicity (ClogP), lipophilicity (ClogD),

topological polar surface area, acidic and basic atoms numbers, hydrogen bond donors and acceptors, water‐
accessible volume, flexibility (rotatable bonds), van der Waals volume, and ionization potential.

The predictive capability of all the methods mentioned above is limited to passive diffusional uptake and

predominantly relies on few molecular descriptors. However, many molecules, for example, glucose and insulin,

pass BBB via complex mechanisms that involve specific drug‐transporter/drug‐receptor interactions.344,345 Hence,

such mechanisms are hard to be described by simple physicochemical features of compounds. Moreover, achieving

therapeutic drug concentrations in CNS may be limited by membrane transporters such as the ATP‐binding
cassette and efflux transporter P‐glycoprotein (P‐gp),346 which mediates efflux of drugs from the BBB. Although

the primary role of these efflux transporters is limiting the brain entry of neurotoxins, they also limit the entry of

many therapeutics and may contribute to CNS pharmacoresistance.347,348 Therefore, prediction methods need to

both overcome the limitations of physicochemical features and address the multiple mechanisms associated with

the drugs that pass the barrier and sustain in the brain. For this purpose, Yuan et al.333 developed an SVM model

by combining physicochemical properties and molecular fingerprints: The former is related to passive diffusion

while the latter is associated with specific interactions, such as uptake, efflux, and protein binding. When compared

to other SVM‐based BBB permeability predictors, the improved accuracy of their model shows that integration of

the physicochemical properties and fingerprints can yield better predictions. Actually, all the AI/ML‐based models

we have mentioned so far have been trained only on molecular properties disregarding the other types of in-

formation related to the efficacy of CNS drugs.

Clinical trials of many drug candidates generate a large amount of phenotypic data in CNS, but the relationship

between the CNS side‐effects of drugs and their BBB permeation has not been adequately captured. To bridge the

knowledge gap, Gao et al.349 developed a BBB permeability prediction tool utilizing drug clinical phenotypes (drug

side effects and drug indications). Although they explored the BBB permeability prediction from a new angle by

accounting for passive diffusion as well as putative contributions of active transport and other complex me-

chanisms, the accuracy of their SVM method still needs to be improved. In fact, the features based on physics and

chemistry are different; hence, the relation between drug side effects and therapeutic effects is more abstract and

deeper.350 For this reason, classical classification algorithms are not able to efficiently explore the relationship

between data and results. On the contrary, DL architectures have the ability to extract useful information from

complex data structures with abstract relationships. Therefore, Miao et al.350 built a DL model to predict the BBB

permeability of drugs based on clinical features and achieved better performance than the other existing methods.

3.2 | AI/ML applications in drug discovery for neurological disorders

3.2.1 | AI/ML applications in drug discovery for neurodevelopmental disorders

Schizophrenia is arguably the most puzzling of psychiatric disorders.351 As a neurodevelopmental disorder,352

schizophrenia shows a lifetime prevalence of 0.30%–0.66%,353 generally beginning before age 25 years and per-

sisting throughout life, making it one of the leading factors of global disease burden.354 Despite more than a

century of research, its complex pathophysiology remains unknown,355 and currently, there is no effective drug for

schizophrenia. Therefore, there is a need for alternative strategies to develop innovative drug treatments

for schizophrenia.356 In recent years, AI/ML has seen as a promising technology to inform schizophrenia

diagnosis,355,357 detecting heterogeneity,358–360 subtyping,361,362 and treatment.
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In drug discovery studies for schizophrenia, researchers have utilized AI/ML methods with various

purposes, including drug target identification,363,364 developing QSAR models,365 predicting monitoring dosing

compliance,366 predicting GPCRs targeting compounds,364 and drug repositioning.367 Specifically, schizophrenia

target genes were identified based on publicly available microarray data sets using an SVM‐RFE (recursive feature

elimination)‐based feature selection, where the genes initially ranked by an SVM classifier and the signature was

then identified by discarding the genes that were not differentially expressed. To detect optimal biomarkers of

presynaptic dopamine overactivity, which may cause schizophrenia, an SVM classifier was used.363 SVM classifiers

were also used to predict QSAR models of the GABA (gamma aminobutyric acid) uptake inhibitor drugs, which can

be beneficial in the treatment of schizophrenia.365 Moreover, SVM outperformed the other ML methods in pre-

dicting the repositioning drugs for schizophrenia when trained on drug expression profiles.367 On the contrary, for

schizophrenia subtyping, an unsupervised learning approach, multi‐view clustering, was employed by combining

transcriptomic data with clinical phenotypes.368 Setting a good example of the beneficiary of AI/ML in clinical drug

trials, a novel AI platform AiCure366 on mobile devices was used to assess the dosing compliance in Phase 2 clinical

trial in schizophrenia patients. It, simply, confirms the medication ingestion visually by using facial recognition and

computer vision.

One of the major obstacles in developing AI/ML methods for schizophrenia drug discovery is data avail-

ability.369 Publicly available, large‐scale, well‐structured information on neural phenotypes, genomics, and clinical

stages are greatly lacking, which arouses questions for the generalizability of AI/ML algorithms across different

data sets without performance loss. However, the availability of such integrative databases can encourage the

development of AI/ML‐based methods to investigate personalized therapies by solving the disease heterogeneity.

Another neurodevelopmental disorder is autism spectrum disorder (ASD), which is characterized by deficits in

social communication and social interaction and the presence of restricted, repetitive patterns in behaviors or

interests.370 ML methods have been utilized in ASD research for improving the diagnosis371 and prognosis pre-

diction.371 Also, there are few ML applications in drug discovery for ASD. For example, ML‐based cluster analysis

(i.e., affinity propagation and k‐medoids) of clinical data (i.e., signs and biomarkers) exhibited a good performance in

drug response prediction of ASD patients.372 Moreover, Bayesian ML models trained on HTS data revealed the

potential repurposing of nicardipine or other dihydropyridine calcium channel antagonists for the treatment of Pitt

Hopkins Syndrome, a rare genetic disorder that exhibits features of autistic spectrum disorders.373 Recently, ML

algorithms have been employed to predict the functional effects of variants in voltage‐gated sodium and calcium

ion channels, which have been associated with ASD, schizophrenia and developmental encephalopathy.374 Being

trained on sequence‐ and structure‐based features, the ML model predicted the gain or loss of function effects of

likely pathogenic missense variants in ion channels and the results were validated in exome‐wide data. On the

contrary, the toxic compounds may trigger the recent increases in neurodevelopmental disorders among chil-

dren.375 To identify developmental neurotoxicants, researchers developed ML algorithms to predict the neuro-

developmental toxicity of compounds.376,377

3.2.2 | AI/ML applications in drug discovery for depression

AI/ML‐based methods have been utilized in psychiatric drug discovery, especially for pharmacological decision

support.367,378,379 In a depression study, researchers have developed a gradient boosting machine using the

predictors identified by the elastic net to predict whether a patient will achieve symptomatic remission using

an antidepressant, citalopram.380 This model was also successfully applied to an escitalopram treatment group of

an independent clinical trial.378 In the next study of Chekroud et al.,381 they clustered the symptoms using an

unsupervised learning approach (hierarchical clustering) and predict the responsiveness of each cluster to the

treatment of different antidepressant drugs using the same model in the previous study. To provide decision

support for clinicians to select the best drugs for a given cluster of symptoms, a web‐based application was
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designed. This AI‐based service is prospectively tested in hospital settings and thereby serve as a promising model

for direct research translation.382

On the contrary, the model of Chekroud et al.380 has some limitations. The model only predicts whether a

patient responds to a specific antidepressant without measuring the degree of antidepressant response. Since it

was designed for only one antidepressant, the model is not capable of selecting the most effective drugs among

various antidepressant candidates for patients.383 To address these limitations, Chang et al.383 developed an

Antidepressant Response Prediction Network (ARPNet) model based on an NN architecture. Through the

literature‐based and data‐driven feature selection process, ARPNet predicts the degree of antidepressant

response, whether the patient will reach clinical remission from depression, and a patient's response to a

combination of one or more antidepressants.

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data also have been em-

ployed in predicting drug responses to treatments of depression. Zhdanov et al.384 used an SVM classifier to

accurately predict the outcome of escitalopram treatment using patients' EEG data at the baseline and after the

first 2 weeks of treatment. To identify a robust signature from resting‐state EEG that would predict response to

antidepressants, Wu et al.385 designed an end‐to‐end prediction algorithm with a latent space model. They applied

their algorithm, Sparse EEG Latent SpacE Regression (SELSER), to data from an imaging‐coupled, placebo‐
controlled antidepressant study and identified an EEG signature of patient's response to antidepressant treatment

(i.e., sertraline). Ichikawa et al.386 aimed to develop a melancholic depressive disorder biomarker to extract cri-

tically important functional connections (FCs) from fMRI data. By combining two ML algorithms (i.e., L1‐regularized
sparse canonical correlation analysis and sparse logistic regression), they developed a classifier for melancholic

depressive disorder and found out that antidepressants had a heterogeneous effect on the identified FCs of

melancholic depressive disorder.

Although some of the recent AI/ML‐aided tools have been rapidly translated into the clinical trials, the AI/ML

methods still are not used widely in clinical practice, while AI has been employed in psychiatric research over 20

years.387 To close the gap between research and clinic, we need to improve the validity of diagnostic and prog-

nostic labels, representability of the features, and generalizability of models.388 As scientists continue to work to

bridge the gap between research and clinic, it will be possible to provide efficient, personalized treatments based

on a patient's unique characteristics.389

3.2.3 | AI/ML applications in drug discovery for Parkinson's disease

Parkinson's disease (PD) is the second most common age‐related neurodegenerative disorder, affecting over 1% of

the population above the age of 60, increasing to 5% in individuals above 85 years of age.390 PD is a prime example

of a multifaceted disease, including a broad range of motor and non‐motor symptoms and possible contribution of

genetic and environmental risk factors.391 Currently, there is no treatment to prevent the progressive depletion of

dopaminergic neurons in the substantia nigra that underlies the movement control and cognitive loss, which is

manifested with tremors and memory loss.392,393 Available drug treatments are based on the administration of

levodopa (L‐dopa) and catechol‐O‐methyltransferase or monoamine oxidase B inhibitors, offering only symptomatic

relief to the patients.392

In PD research, previous AI applications have focused on diagnostic biomarker discovery in cerebrospinal fluid

(CSF) and blood394–397 and remote monitoring of treatment response by using electronic wearables.398–402 On the

contrary, recently, AI/ML has received little attention in PD drug discovery. Particularly, Shao et al.403 initially built

SVM models to quickly select the compounds containing indole–piperazine–pyrimidine scaffold among large

chemical databases and subsequently identified novel compounds that simultaneously bind the two receptors—

adenosine A2A receptor and dopamine D2 receptor—implicated in the PD pathophysiology. In another study,

Sebastián‐Pérez404 utilized several ML techniques to infer QSAR models for the identification of putative
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inhibitors of LRRK2 protein, a key genetic risk factor for familiar and sporadic PD. Moreover, AI‐based technol-

ogies have helped overcome the drug side effects in PD treatment. While L‐dopa has remained the cornerstone of

PD therapy for reducing the symptoms associated with dopamine deficiency, almost half of PD patients treated

with it eventually develop levodopa‐induced dyskinesia (LID), a side effect that causes abnormal involuntary

movements. In a review paper, Johnston et al.405 discussed the use of AI platforms to identify repurposing

candidates for LID treatment and highlighted the potential of AI approaches by designing a drug repositioning case

study. To identify novel repurposing candidates that may reduce LID, they utilized a literature mining approach

based on an IBM Watson engine, where the semantic similarity and a “graph diffusion” algorithm were applied to

score and rank each candidate drug.

Along with the identification of novel and repurposing candidates, AI/ML techniques have been applied to the

development of in vitro and in vivo PD models for drug screening. Monzel et al.406 created a human midbrain

organoid model of PD as an in vitro toxicity assay and built an RF classifier to predict compounds' neurotoxic effect

on organoids based on cellular features. To establish an efficient drug‐testing route, Hughes et al.407 developed a

zebrafish model of PD together with an AI/ML‐based method to classify movement disorders in this model using

high‐resolution video captures. Encouraging results of all the studies discussed above, highlight the potential

benefits of AI/ML applications for the discovery of efficient and multitargeting drugs against emerging targets in

PD as well as the screening of the drug effects on PD models.

3.2.4 | AI/ML applications in drug discovery for Alzheimer's disease

Increasing life expectancy has produced a dramatic rise in the prevalence, and thus impact, of aging‐related
diseases. The most prevalent neurodegenerative disease in older adults is Alzheimer's disease (AD), characterized

by insidious and progressive impairment of behavioral and cognitive functions, including memory.408 The cause of

AD is still unclear; however, generally accepted neuropathological hallmarks of AD include extracellular A‐beta
plaques and intracellular neurofibrillary tangles, along with neuronal and synaptic loss and/or dysfunction.409

Current drugs for AD target cholinergic and glutamatergic neurotransmission, thus improving symptoms, although

they show limited benefits to most AD patients.410 Therefore, new treatments are urgently needed to prevent or

delay disease onset, slow its progression, or improve patients' symptoms.411 However, drug development for

AD has been extraordinarily difficult, with a failure rate of over 99% and no new drug approved since 2003.411 AD

drug failures are likely due to the lack of sufficient target engagement and toxicity, while drug discovery efforts

mainly challenged by an incomplete understanding of AD pathogenesis, multifactorial etiology, and complex

pathophysiology.

In recent years, AI/ML‐based models have become popular in AD research, mostly utilizing for AD diagnosis

and prognosis in dealing with electronic health records and images.412 On the contrary, AI/ML techniques have

not been widely employed in AD drug discovery. However, there have been a few studies that show the potential

benefits of AI/ML applications for the discovery of AD drugs. ML approaches have assisted the target identi-

fication and characterization in AD, which is the initial phase of drug discovery. For example, Cordax413 (https://

cordax.switchlab.org) is a novel structure‐based amyloid core sequence prediction method that implements ML

to detect aggregation‐prone regions in proteins as well as to predict the structural topology, orientation and

overall architecture of the resulting amyloid core. As an aggregation predictor, it uses structural information on

amyloid cores currently available in the protein databank and translates structural compatibility and interaction

energies into sequence aggregation propensity using logistic regression. Along with the characterization of

amyloid fibrils, ML approaches have been utilized for identifying potential drug targets. HENA,414 a hetero-

geneous network‐based data set for AD, integrates distinct data types (i.e., PPI, gene coexpression, epistasis,

genome‐wide association study, gene expression in different brain regions, and positive selection data) through

GCN to predict AD‐associated genes.
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Researchers have built ML models—SVM, ANN, and RF—to predict the inhibitory effect of compounds against

AD‐related proteins—histone deacetylase (HDAC),415 acetylcholinesterase (AChE),416 and S100 calcium‐binding
protein A9 (S100A9),417 respectively. Although these target‐specific models were successful for predicting the

bioactive compounds, a high level of reliability is necessary for prioritizing compounds that are ultimately trans-

lated into assays. To generate hyper‐predictive ML models, Jamal et al.418 have included dynamic properties of

compounds and protein–ligand interactions. Extracting the dynamic descriptors from molecular dynamics simu-

lations of caspase‐8 ligand complexes to train ANN and RF models, they predicted the active compounds against

caspase‐8, which plays a key role in causing AD. The major challenge in developing such predictive models of

inhibitor activity is the lack of data on true‐negative compound–protein interactions. To address this challenge,

Miyazaki et al.419 constructed a graph CNN model to explore compounds specifically targeting proteins without

using the information on the true‐negative interaction and applied the model to identify inhibitors of BACE1

enzyme, a major target for AD.

Although these ML applications have advanced the discovery of single‐target inhibitors, the complex nature of

AD requires the discovery of multitarget drugs to address the multiple pathways contributing to disease patho-

genesis. Therefore, researchers have developed ML algorithms for predicting multitarget‐directed compounds

against AD. Kleandrova et al.420 designed seven molecules as triple target inhibitors of AD‐related proteins, namely

GSK3B, HDAC1, and HDAC6 by combining perturbation theory and ML‐based on ANN. Using a new multitask

QSAR model based on the linear discriminant analysis, Concu et al.421 predicted the inhibitors of the two isoforms

of the monoamine oxidase (MAO) enzymes, MAO‐A and MAO‐B, which are involved in the pathology of AD, PD,

and other neuropsychiatric disorders. As epigenetic therapeutics for AD, HDAC inhibitors have shown promise;

however, nonspecificity and nonselectivity are the major problems of current HDAC inhibitors. Therefore, Gupta

et al.422 combined VS and ML to classify the HDAC inhibitors and identified a novel compound that potentially

inhibits all isoforms of class I and class IIb HDAC for AD therapy. In addition to these, Fang et al.423 built 100

binary classifiers based on the naive Bayesian and RP algorithms to predict active small molecules against 25 key

targets toward AD. Experimental validation of the predicted molecules yielded a compound that is a dual choli-

nesterase inhibitor and H3R antagonist. In their following study,424 the system has been updated by assembling

204 binary classifiers towards 54 critical targets related to AD and the information of the classifiers was shared in

a web server named AlzhCPI. Utilizing this classifier system, another group of researchers425 has identified

multiple targets of a traditional Chinese herbal medicine formula, Naodesheng, for application to AD. Natural

products has continued to generate an increased interest as a mean of discovering novel bioactive compounds

against AD. Grisoni et al.426 proposed a VS protocol based on ML models to explore the bioactive synthetic

mimetics of the natural product galantamine, which is the first natural product‐based AD drug approved by the

FDA in 2001.427 Using an ML‐based selection and target profiling program, they identified galantamine‐mimetic

small molecules with multitarget activity on enzymes and receptors related to AD.

Besides the predictions of multitarget compounds based on their bioactivity against known drug targets in AD,

Jamal et al.428 predicted small molecules that show a high binding affinity for ML‐inferred possible therapeutic

targets. Unlike previous studies that target known AD‐related proteins, they initially predicted the probable

AD‐associated genes using ML classifiers that are trained on network, sequence and functional features. Then, they

used a conventional VS tool to select the compounds that have high affinity for the majority of the predicted

targets.

In addition to applications for identifying small molecules towards therapeutic targets for AD, ML techniques

also have been utilized in drug repositioning efforts. For example, telmisartan has been associated with AD by a

network‐based classification model.310

AI/ML approaches have also been applied to drug response studies to treat AD patients in a more precise,

personalized way. Hampel et al.429 has built an AI/ML‐based precision medicine framework for identifying

the genomic biomarkers of response to AD therapy. Specifically, they studied blarcamesine (ANAVEX2‐73), a
selective sigma‐1 receptor agonist, in a Phase 2a trial, where they obtained the patients' whole‐exome and
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transcriptome data and recorded the measures of safety, clinical features, pharmacokinetics, and efficacy. They

analyzed the relationship between the patient data and efficacy outcome measures using unsupervised formal

concept analysis, which ultimately identified the biomarkers of drug response. On the contrary, Lu et al.430

evaluated the therapeutic effects of Dengzhan Shengmai formula, a traditional Chinese medicine, on AD patients

by analyzing the diffusion tensor imaging data with ML. Their ML classifier revealed significant white‐matter

network alterations after treatment.

3.2.5 | AI/ML applications in anesthesia and pain treatment

The CNC drugs include general anesthetics and the analgesics, as well. In the past few years, we have witnessed

the widespread use of autonomous and AI‐based recommender systems in therapeutic decision making in an-

esthesia and pain management. Especially, pharmacological robots have become an integral part of the anesthesia

field, offering a personalized anesthetic drug dosage for maintaining patient homeostasis during general anesthesia

and sedation.431 These robots use complex ML algorithms based on patient data (e.g., EEG monitor, blood pressure,

heart rate, etc.) and pharmacokinetic features of drugs to provide the optimal drug dosage. The role of pharma-

cological robots and even more intelligent autonomous systems (i.e., cognitive robot, which can recognize crucial

clinical state that requires human intervention) in the anesthesia field has been comprehensively overviewed by

Cédrick et al.432 Besides the robotic systems, ML applications assisted the clinicians433 to monitor the drug‐specific
anesthetic states434–436 and predict the adverse outcomes in anesthesia patients.437–439

Similar to the anesthesia field, AI models have mainly utilized for clinical decision support in pain management.

With the increasing amount of data collected by state‐of‐the‐art monitoring sensors and the Internet of Things, the

AI‐assisted patient‐controlled analgesia has a great potential for personalized pain therapy.440 The other clinical

applications of AI systems in pain management include prediction of pain severity/modality and analgesic

requirements,441–443 individualized medicine decision support in analgesic treatment,444,445 prediction of the

effectiveness of the analgesics,446,447 and prediction of medication overuse.448–450 Besides the clinical applications,

researchers have employed ML methods at the early stages of analgesic discovery, such as identifying novel genes

and pathways associated with acute and chronic pain451 and predicting inhibitors of a drug target for pain

(i.e., NaV1.7 sodium channel).452 To facilitate the prediction of novel multi‐target analgesics or drug combinations

for pain treatment, researchers have established a comprehensive pain‐domain‐specific chemogenomics knowl-

edgebase that includes the analgesics in current use, pain‐related targets with all available 3D structures, and the

compounds reported for these target proteins.453

4 | CONCLUSIONS AND FUTURE DIRECTIONS

Given the complexity of neurological disorders, CNS drug development is still a long, expensive, inefficient, and

challenging process with a low rate of new successful therapeutic discovery. To overcome the challenges of CNS

drug discovery, researchers have utilized AI/ML‐based methods, which have played a promising role in all stages of

drug discovery for a variety of diseases (Table 2). In general, AI/ML practices in pharmaceutical development have

aroused great interest among researchers working in academia and industry. The number of start‐ups in this area

has grown rapidly and reached 230 by June 2020.454 Also, many pharmaceutical companies have invested in

internal AI‐based research programs as well as in collaboration with AI start‐ups and academic institutions.455,456

Recently, we have witnessed a massive collaborative effort by both academia and industry in response to the

COVID‐19 outbreak. Labs and AI firms have shared their data and pipelines in open‐sourced platforms. For

example, Google Deepmind has released the 3D structures of SARS‐CoV‐2 proteins that have been predicted by

their AlphaFold system. Although AI‐enabled solutions have emerged as a crucial tool for transforming the process
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of therapeutic development, the use of AI technologies to improve CNS drug discovery is still at an early

stage. Below, we discuss the limitations as well as the future directions to guide further advancement in this

evolving field.

The main bottleneck in applying AI/ML into CNS drug discovery is the lack of high‐quality, well‐annotated data

sets to train effective algorithms. The data collected in the public databases are generally generated by different

biological assays, methods, or conditions, which are not comparable. Also, multiple data sets on the same subject

may contradict each other. Therefore, filtering the raw inputs to obtain high‐quality data is a crucial step before

performing specific AI/ML tasks.

The “black box” nature of most next‐generation AI architectures an additional challenge in CNS drug discovery.

The lack of interpretability of AI/ML‐generated results limits their applications. While this is not the case for

simpler ML models (i.e., XGBoost, TensorFlow, Lasso, Ridge, Elastic Net), for more advanced ML models (i.e., DNN)

the internal workings remain a mystery. Hence, researchers cannot explain how the model arrives at the result and

understand the underlying biological mechanisms. This also makes it more difficult to troubleshoot these models

when they unexpectedly fail. Therefore, there is a critical need to develop methods for decoding the black boxes

of DL.

Also, the amount of the available data directly affects the performance of AI/ML models, since successful

training of algorithms relies on suitably large amounts of training data. This is a particular challenge in nominating

new targets or drugs for many neurological conditions for which no treatment reverses the disease state. When

there are not sufficient training examples for performing a drug discovery task, transfer learning technology, which

TABLE 2 The promise of AI/ML‐based drug discovery strategies in CNS disorders

Application field Schizophrenia

Autism spectrum

disorder Depression PD AD Anesthesia

Pain

treatment

Diagnosis/prognosis ✓ ✓ ✓ ✓ ✓ ‐ ✓

Subtyping ✓ ‐ ‐ ‐ ‐ ‐ ‐

Heterogeneity detection ✓ ‐ ‐ ‐ ‐ ‐ ‐

Target identification ✓ ‐ ‐ ‐ ✓ ‐ ✓

Inhibitor discovery ✓ ✓ ✓ ✓ ✓ ‐ ‐

Multitarget drug discovery ‐ ‐ ‐ ‐ ✓ ‐ ✓

Drug repositioning ✓ ✓ ✓ ✓ ✓ ‐ ‐

Drug response ‐ ✓ ✓ ‐ ‐ ‐ ‐

Variant effect ‐ ✓ ‐ ‐ ‐ ‐ ‐

Developmental

neurotoxicants

✓ ✓ ‐ ‐ ‐ ‐ ‐

Pharmacological decision

support

‐ ‐ ✓ ‐ ‐ ✓ ✓

Drug response monitoring ‐ ‐ ‐ ✓ ‐ ✓ ‐

Adverse drug effects ‐ ‐ ‐ ✓ ‐ ✓ ‐

Drug screening ‐ ‐ ‐ ✓ ‐ ‐ ‐

Overdose and misuse ‐ ‐ ‐ ‐ ‐ ‐ ✓

Abbreviations: AD, Alzheimer's disease; AI, artificial intelligence; CNS, central nervous system; ML, machine learning; PD,

Parkinson's disease.
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learns from one task and applies it to the other task, can offer a solution. However, in the long term, the most

promising solution to overcome data scarcity would be for the scientific community to share their data. Such large‐
scale sharing of data would make significant improvement in the CNS drug discovery process, with advances in

hardware that lead to faster machines such as quantum computers in the near future.

A particular limitation for the AI/ML applications in CNS drug discovery is the unknown pathophysiology for

many nervous system disorders, which makes target identification very challenging. To explore the complex

disease mechanisms and define the right biological targets, we need better AI/ML tools that can pull information

out of the data sets generated across the different biological layers (e.g., transcriptomics, proteomics, and meta-

bolomics). Here, capsule networks,457 a next‐generation AI architecture where CNNs are encapsulated in an

interconnected module, can provide a solution. As the first application of capsule networks to drug discovery,

capsule networks showed excellent performance to predict the cardiotoxicity of compounds, which highlights their

unique potential in drug discovery efforts.226 Because of the modular representation of the CNNs, capsule net-

works can learn from heterogeneous data sets by preserving the hierarchical aspects of the data itself. Considering

the highly modular nature of CNS data sets with specified layers of genes, proteins, metabolites, capsule networks

can analyze the changes in the functional organization and interplay of these layers upon the diseases.

Another critical issue in the application of AI/ML models into CNS drug discovery is the integration of different

data types, including genotypic data from patients, multiomics data from drug treatments, and chemical data from

bioactivity and toxicity assays. Considering the availability of various databases that include biological, structural,

and chemical information, how to integrate these data to generate AI/ML models becomes a critical question in

CNS drug discovery applications. Multitask learning, learning of different tasks jointly, can be suitable for these

types of applications. Multitask NNs are capable of integrating data from many distinct sources. For example, a

multitask architecture can predict the effects of a drug and its BBB permeability at the same time by learning from

multiomics data sets, physicochemical properties, HTS, and bioactivity assays.

In recent years, we have seen the emergence of novel neuroimaging techniques such as pharmacological

functional magnetic resonance imaging (pharmacoMRI) and pharmacologically induced functional ultrasound

(pharmaco‐fUS), which provide in vivo functional data of specific effects of drugs on the brain. Although phar-

macoMRI continues to play a useful role in neuropharmacology studies as a well‐established technique,458–461 a

variety of challenges (i.e., low sensitivity, the requirement for anesthesia, and blood oxygenation‐level dependent
imaging) limit the preclinical use of it. A newer tool, pharmaco‐fUS enables brain activity imaging through the

local monitoring of cerebral blood volume dynamics at an unprecedented spatiotemporal resolution without the

bias of anesthesia.462,463 Recent studies demonstrated fUS imaging's potential to characterize dynamic profiles

of CNS drugs, including a drug combination of donepezil plus mefloquine for AD464 and atomoxetine for

attention‐deficit/hyperactivity disorder.465 Moreover, Rabut et al.466 adapted ML to analyze the rich data

content provided by fUS connectivity imaging. Their ML model identified the “fingerprint” of drug‐induced brain

connectivity changes in awake mice for scopolamine, a major preclinical drug to model AD. As evident from the

previous applications, AI/ML methods hold the promise of characterization of treatment effects from novel

neuroimaging data sets and thereby improving our understanding of the mechanism of action of drugs in the

brain. Getting drugs across the BBB is an essential step to developing successful therapies to treat CNS dis-

orders. However, it is often overlooked that BBB is not only a physical barrier for drug delivery to the CNS but

also a complex, dynamic interface that might be affected by diseases. CNS disorders may result in dysfunction of

BBB, such as its disruption or dysfunctions related to BBB transporters. To date, AI/ML‐based predictive al-

gorithms have assumed that BBB is a static entity by neglecting the effects of CNS pathologies on it. Therefore, a

prediction model for BBB penetrance that trained on data from non‐CNS diseases may not work for a CNS

disease. To develop better prediction models for BBB permeability, we need to take into account disease‐related
changes in the barrier. This also provides many unique opportunities for developing disease‐specific AI/ML tools

in CNS drug discovery.
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It is important to highlight that CNS drug discovery has a nondeterministic nature, where the neurological

targets involve different pathways and their biological consequences are not the sums of the single functions, most

drugs have diverse activities through multiple biological targets, and drug response is dependent on a range of

factors (i.e., patient's genetic profile and drug's membrane permeability). Moreover, physiologic events are highly

context‐specific: A receptor interaction may take place in the liver but not in the brain. AI/ML systems often fail to

pick up such context‐specific nonlinear relationships and many other unknown contributing factors. As a result of

incomplete domain representation, partial predictability in CNS drug discovery is inevitable. For example, an AI/ML

algorithm may predict drug targets that neuroscientists know will likely have significant side effects in the brain

or generate unsynthesizable molecules. Here, we need the human refinement process and hypothesis‐driven
approach467 to address many of these challenges to achieve better performance. Knowledge acquisition from the

human experts to the AI systems can help the AI/ML system learn and thereby guarantee the best scientific results.

In consequence, this mixture of machine and mind468 will improve decision making as an essential component of

the CNS drug discovery process.

Although AI/ML algorithms have already revolutionized other fields, the adoption of them to drug discovery is

still at an eraly stage. Initially, AI/ML algorithms have been developed and practically used for certain areas such as

image recognition, gaming, and internet search. Inspired by the successful applications in other disciplines,

scientists have applied AI/ML algorithms to pharmaceutical research. And yet, we do not have any AI/ML algorithm

that is developed specifically for a drug discovery problem. But this means that there should be many opportunities

to develop innovative and novel algorithms in the field of therapeutic discovery. In this way, AI/ML methods will

play an increasingly important role in not just the field of general pharmaceutical research but also CNS drug

discovery.

In conclusion, we extensively review the latest AI/ML‐assisted drug discovery applications for the therapy of

CNS diseases. These applications have been overgrowing in the past couple of years, fueled by the unprecedented

success of AI/ML‐based approaches in different fields of science and technology. We envision that in the future,

AI/ML will play more and more critical roles in CNS drug discovery towards personalized medicine, especially in

the following areas: (1) patient subtyping, (2) identification of key disease drivers, (3) prediction of cell type‐specific
drug response, (4) autonomous design of novel drugs, and (5) disease‐specific BBB permeability testing. Today

there are structural constraints in data and algorithms that are limiting the role of AI/ML. Nonetheless, in the long

run, ongoing and emerging developments in AI/ML approaches to neuropharmacology will enable us to develop

more effective drugs for CNS diseases.
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