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SUMMARY

Spaceflight missions can cause immune system dysfunction in astronauts with lit-
tle understanding of immune outcomes in deep space. This study assessed im-
mune responses in mice following ground-based, simulated deep spaceflight con-
ditions, compared with data from astronauts on International Space Station
missions. For ground studies, we simulated microgravity using the hindlimb un-
loadedmousemodel alone or in combinationwith acute simulated galactic cosmic
rays or solar particle events irradiation. Immune profiling results revealed unique
immune diversity following each experimental condition, suggesting each
stressor results in distinct circulating immune responses, with clear consequences
for deep spaceflight. Circulating plasma microRNA sequence analysis revealed
involvement in immune system dysregulation. Furthermore, a large astronaut
cohort showed elevated inflammation during low-Earth orbit missions, thereby
supporting our simulated ground experiments in mice. Herein, circulating im-
mune biomarkers are defined by distinct deep space irradiation types coupled
to simulated microgravity and could be targets for future space health initiatives.
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INTRODUCTION

Recent studies indicate astronauts in low-Earth orbit (LEO), such as on the International Space Station (ISS),

experience immune dysfunction, for instance, redox imbalance, elevated inflammation, elevated granulo-

cytes, inhibited lymphocyte proliferation, and reduced lymphocyte functions (Crucian et al., 2015; Douda

et al., 2015; Leliefeld et al., 2016; Martinez et al., 2015; Mehta et al., 2017; Pecaut et al., 2017). However, less

is known about the likely biological (immune system) consequences of deep space exploration.

Solar particle event (SPE) and galactic cosmic ray (GCR) irradiation are charged particle ionizing types of

radiation that will impact humans and spacecraft during lunar and deep spaceflight missions (Sridharan

et al., 2020). High doses of these types of charged ionizing radiation types do not typically pose a threat

to Earth, as we are shielded by the Earth’s magnetosphere (Simonsen et al., 2020); however, astronauts

on future missions to the lunar surface and Mars will have limited shielding from these damaging irradia-

tion. Although doses experienced in deep space do not parallel those of LEO manned missions, health

risks associated with LEO doses are still considerable. For instance, current missions in LEO, such as on

the ISS, experience a low total absorbed dose of irradiation, estimated to be exposed to approximately

0.10–0.52 mGy/day, depending on the mission, as quantified by NASA GeneLab’s environmental data

for spaceflight experiments (Miller, 2020).

SPE irradiation originates fromprotons being emitted during solar flares and coronal mass ejections (Narici et al.,

2018; Sanzari et al., 2015), and although the majority of the ions are protons at different energies during these

events, it can also include other ions such as helium and high- (H) atomic number (Z) and energy (E) ions (Hu,

2017). Limited number of human reports following SPE irradiation exposure are associated with astronauts on

LEO spacewalks and lunar missions from the Apollo era (Romero-Weaver et al., 2013; Sanzari et al., 2013). The

physiological effectsof SPE irradiation exposure include fatigue, acute radiation sickness, long-termskindamage,

elevated cytokine storms, anddecreasedblood and hemopoietic cell numbers (Romero-Weaver et al., 2013; San-

zari et al., 2013).
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Figure 1. Immune Organs and Total Leukocyte Populations Display Disparities following Simulated Deep Space

Exposures

(A) Experimental plan timeline: 15-week-old female C57BL/6J mice were cage acclimated for 3 days (day �3) before

experimental initiation (0). Mice were either normally loaded (NL, shaded) or hindlimb unloaded (HU, not shaded) for

14 days. On day 13 mice were whole body irradiated with Sham (0 Gy, green), galactic cosmic rays (GCR, 0.5 Gy, blue),

solar particle events (SPE, 1 Gy, red), or gamma (5 Gy, yellow) irradiation types (formulas described in Methods). 24 h post-

irradiation (day 14), mice were euthanized and blood and tissues were collected. Body weights were measured on days

�3, 0, 7, and 14. Tissue weights were measured on collection day 14.

(B–G) (B) Body weights were measured on days �3, 0, 7, and 14. Immune organ weights of the spleen (C) and the thymus

(D) were performed on collection day 14 and normalized to total body weight (g/g). Flow cytometric gating scheme to
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Figure 1. Continued

collect singlets, remove doublets, (‘‘DD’’ denotes doublet discrimination), and identify CD45+ events (E). Percent (%)

(F) and absolute counts (G) of total leukocyte populations (CD45+/all doublet discriminated events, DD) displayed for

each exposure group. A Grubbs test was performed on all datasets followed by testing for normal distribution via a

Kolmogorov-Smirnov test. If data were normally distributed, a one-way ANOVA Dunnett test was performed to

compare NL and HU controls to all groups and a parametric unpaired t test with Welsh’s correction was performed to

compare between similar irradiation groups. If normality was not passed, both a non-parametric Kruskal-Wallis test

with a Dunn’s posthoc analysis to compare NL and HU controls with all groups and a non-parametric Mann-Whitney U

test comparing between similar irradiation groups were performed. Data in (B) represent a scatterplot. (C and D) Data

represent a box-and-whiskers plot with minimum and maximum data points. (F and G) Bar graphs data represent

means G SEM (p < 0.05, n = 8–10 per group). ‘‘*’’ denotes significant difference between NL-Sham and associated

groups, ‘‘#’’ denotes significant difference between HU-Sham and associated groups, and intergroup ‘‘brackets with a

&’’ denotes significant difference between each group. Filled circles, boxes, and bars denote normal loaded (NL), and

non-filled circles, boxes, and bars denote hindlimb unloaded (HU).
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GCR irradiation is emitted from the sun, stars, and energetic objects such as supernova (Nelson, 2016) and con-

sists of high-energy protons, helium nuclei, and high-energy high-charge (HZE) ions with intrinsic masses (for

example, iron, silicon, oxygen, and carbon) (Nelson, 2016). As the predicteddose for ISSmissions, in the absence

of SPE irradiation events, is 0.10–0.52mGy/day (Miller, 2020), astronauts in LEOcould thereforebe exposedup to

a roughly estimated 0.1 Gy/year of irradiation. Moreover, during SPE events, astronauts could experience an

extremely high dose of protons (Hu, 2017) possibly up to 1 Gy or more (Wu et al., 2009), which would pose sig-

nificant health risks. NASA estimates that the amount of GCR irradiation exposure during deep space missions

may be 0.3–0.6 mGy/day or more over a 3-year-long mission to Mars (0.245–0.360 Gy) (Nelson, 2016).

Linear energy transfer (LET) is defined as the amount of energy that is deposited or transferred in amaterial from

an ion (Chancellor et al., 2018). High-LET irradiation can causemore damaging ionizing tracks and pose a higher

relative biological effectiveness (RBE) risk compared to low-LET irradiation (Niemantsverdriet et al., 2012). How-

ever, this does not rule out the composite effects of low-LET continuous dose/dose rate involved during space-

flight (Cekanaviciute et al., 2018; Saha et al., 2014), the effects of low LET inhibition of angiogenesis (Grabham

et al., 2013), or the range of cellular damage by low-LET particles (Nelson, 2016). RBE is the relative amount of

biological damage a dose of irradiationwill have on tissue (Chancellor et al., 2018). Thus, identifying the immune

responses following distinct ionizing irradiation types, along with described dosing schemes, RBEs, and pro-

tracted exposures, are essential for future exploration missions to the lunar surface and Mars.

Due to limitations of performing deep space missions, there have been multiple ground-based research

studies examining the effects of ionizing irradiation on immunity. For instance, large disparities in immune

population subtypes, in particular lymphocytes (Fernandez-Gonzalo et al., 2017; Gridley and Pecaut, 2011;

Gridley et al., 2002; Romero-Weaver et al., 2013; Sanzari et al., 2013) and induction of inflammation (Baselet

et al., 2019; Garrett-Bakelman et al., 2019; Li et al., 2014; Teresa Pinto et al., 2016), have been reported.

However, more information is required on the deep space-relevant spectra of irradiation effects on

immunity.

With recent advancements in simulated GCR and SPE dosing schemes at NASA’s Space Radiation Labo-

ratory (NSRL) within Brookhaven National Laboratory, the biological effects of realistic deep space expo-

sures can now be successfully measured in ground-based studies (Simonsen et al., 2020). Therefore, our

study sought to investigate the immediate-early immune effects following acute simulated GCR and SPE

irradiation, singly or in combination with simulated microgravity (hindlimb unloading, HU) in mice. We hy-

pothesized that unique immune signatures and microRNA (miRNA) profiles would be produced by distinct

experimental conditions of simulated GCR, SPE, and gamma irradiation, singly or in combination with HU.

Although this study focuses on immune dysregulation during deep spaceflight, the knowledge gained from

these studies can be applied to related issues on Earth such as, cancer radiotherapy, muscle degeneration,

and immune-related diseases.
RESULTS

Simulated Deep Space Exposures Selectively Caused Reduced Immune Organ Weight and

Total Leukocyte Populations

Mice were exposed to acute, 0.5-Gy simplified GCR simulation (GCR sim), 1-Gy SPE simulation (SPE sim), or

5Gy gamma irradiation, singly or in combination with HU (14-days total) and were weighed on days�3, 0, 7,
iScience 23, 101747, December 18, 2020 3
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and 14 (Figure 1A). Gamma irradiation was included to calculate the RBE of GCR sim and SPE sim. As

charged particles generally have a higher RBE than photons (gamma irradiation) we used an elevated

dose of 5 Gy. The results revealed significant difference in body weight across GCR and SPE irradiation

combined with HU groups at 24 h post-irradiation exposures (i.e., day 14) (Figure 1B). Euthanasia was per-

formed on day 14, and select immune organs were collected and weighed to determine if spaceflight ex-

posures caused weight differences. Interestingly, all irradiation groups with HU had a significant decrease

in spleen weight, compared to NL-Sham controls with intergroup comparisons between GCR and gamma

(Figure 1C). For the thymus, SPE irradiation in combination with HU groups were significantly reduced in

weight, along with both NL- and HU-gamma cohorts, compared with NL-Sham controls (Figure 1D). To

address whether there are fewer white blood cells (WBCs) circulating within blood, which may result in

weight disparities in the immune organs, common leukocyte antigen (CD45), which labels all leukocytes,

was analyzed by flow cytometry within the total doublet discriminated (DD) events (Figures 1E–1G). The re-

sults showed reduced CD45+ circulating leukocyte populations within DD events following all exposures,

compared to NL-Sham controls (Figures 1F and 1G). Collectively, these results indicate that 24 h following

combined exposures, there are immune system decrements, in both primary (thymus; SPE irradiation) and

secondary (spleen; GCR and gamma irradiation) immune organs, which may be associated with reduced

circulating leukocytes.

Innate Immune Profiles Revealed Distinct Populations following Simulated Deep Space

Exposures

Subgroups of leukocytes were analyzed to determine the profile of innate immune cells following 24 h of

acute, simulated GCR, SPE, or gamma irradiation exposures, singly or in combination with HU (14 days).

Gating schemes within CD45+ events displayed neutrophils (Ly6ghighCD11b+), eosinophils

(Ly6glowCD11b+), monocytes (Ly6g�CD11b+), B cells (CD20+NK1.1-/CD45+) (Figures 2A, 3A, and S1A–

S1C), and NK/NKT cells (CD20�NK1.1+/CD45+) (Figures 3A, 3C and S1D). The results revealed elevated

neutrophil populations in HU-Sham, - SPE, and gamma irradiation in combination with HU groups,

compared with NL-Sham controls (Figure 2C). No significant differences were seen between monocytes

(Figure 2B) or neutrophils (Figure 2C) with GCR or SPE irradiation alone compared with NL-Sham controls.

There were no differences noted across all innate immune groups following GCR irradiation, singly or in

combination with HU (Figures 2B–2D and 3C). Interestingly, a significant elevation in eosinophils (Figure 2D)

and NK/NKT (Figure 3C) cells was observed in single SPE and gamma irradiation, that was suppressed in

combination with HU, which indicates SPE and gamma irradiation selectively targets these cell types

compared to NL-Sham controls. Moreover, these results also indicate suppressed inflammation in

response to combination SPE and gamma irradiation with HU. Interestingly, gamma irradiation alone

induced all innate immune profiles, compared with NL-Sham controls, which was reduced in combination

with HU (Figures 2B–2D and 3C), indicating suppressed inflammation in gamma irradiation in combination

with HU. Collectively, these trends suggest that higher doses of ionizing irradiation may be more toxic,

causing heightened immunogenicity.

Adaptive Immune Profiles Revealed Select B, T Helper, and T Cytotoxic Lymphocytes Are

Negatively Impacted by Simulated Deep Space Exposures

Lymphocytes are sensitive to ionizing irradiation exposures, whereby irradiation initiates DNA damage

triggering apoptosis (Schaue and McBride, 2012). To assess the effects of deep space-relevant exposures

on lymphocyte profiles we first assessed B cell populations. The gating scheme for B cells is displayed in

Figure 3A. Although no difference was revealed for GCR irradiation alone, compared with NL-Sham con-

trols, all other irradiation groups, singly or in combination with HU resulted in significant reduction of B

cells, compared to NL-Sham controls (Figures 3B and S1E). These results suggest possible impairments

in antibody-producing, plasma cell differentiation. To confirm impaired B cell differentiation median fluo-

rescent intensity (MFI) of cell surface CD20 was assessed, as CD20 expression levels are reduced during B

cell maturation into plasma cells (Robillard et al., 2014; Styles et al., 2017). There was no reduction in B cell

surface expression of CD20 (Figure 3C), suggesting B cell differentiation processes are impaired with GCR

and SPE irradiation, singly or in combination with HU, compared with NL-Sham controls. T cell lineages

were also characterized by flow cytometry in blood following space-relevant conditions, including T helper

(Th, CD8
�CD4+/CD3+) and T cytotoxic (Tc, CD8+CD4-/CD3+) lymphocytes (Figure 4A). The results revealed

GCR irradiation singly and in combination with HU significantly reduced circulating Th and Tc lymphocytes,

compared to NL-Sham controls, whereas no significant effects in T cell populations were observed with

gamma irradiation (Figures 4B–4E). In addition, SPE irradiation exposures (single and combination groups)
4 iScience 23, 101747, December 18, 2020



Figure 2. Innate Immune Profiles Reveal Elevated Populations in SPE and Gamma Irradiation that Are Selectively Suppressed in Combination with

HU, No Difference in Population with GCR Irradiation G HU

(A–D) (A) Representative flow plots are displayed for percentage CD45+CD11b� cells (bottom left box), monocytes (bottom right box), neutrophils (top right

box), and eosinophils (between right boxes). Percentage (%) of monocytes (Ly6g�CD11b+/CD45+) (B), neutrophils (Ly6ghighCD11b+/CD45+) (C), and

eosinophils (Ly6glowCD11b+/CD45+) (D), are displayed within each exposure group. Bar graph data represent means G SEM (p < 0.05, n = 8–10 per group).

Statistical tests and labels are the same as Figure 1.
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also reduced Tc lymphocyte numbers (Figures 3C and 3E). Collectively, these results indicate impairment in

B cell and effector/central memory T cell adaptive immune responses following deep space-relevant expo-

sures, which can pose a major health risk limitation on future human exploration missions.
Lymphocyte Surface Expression of IL-7R Is Impacted by Simulated Deep Space Exposures,

with Elevated Neutrophil to Lymphocyte Ratio (NLR)

To assess themechanisms involved in reduced T cell percentage, we characterized the cell surface expression of

IL-7R on circulating lymphocytes (Figures 5A and 5B). IL-7R expression varies throughout T cell development,

whereby it is expressed on single-positive naive T cells, but not activated T cells, and then is re-expressed on

memory T cells (Mazzucchelli and Durum, 2007). Furthermore, elevated IL-7R has been linked tomultiple inflam-

matory diseases (Anderson et al., 2011; Belarif et al., 2018; Willis et al., 2012). The results revealed cell surface IL-

7R median fluorescence intensity (MFI) was elevated in HU-Sham, compared to NL-Sham controls, which sug-

gests enhanced inflammation following HU for 14 days (Figure 5C). GCR and SPE irradiation, singly and in
iScience 23, 101747, December 18, 2020 5



Figure 3. B and NK/NKT Cells Reveal Differential Population Percentages following Deep Space Exposures

(A) Representative flow gating for B and NK/NKT cells percentages.

(B) Percentage (%) B cells (CD20+NK1.1-/CD45+) are displayed within total leukocyte populations.

(C) Median fluorescence intensity (MFI) of cell surface expression of CD20 on all CD45+ cells.

(D) Percent (%) of NK/NKT cells (NK1.1+CD20-/CD45+). Bar graph data represent meansG SEM (p < 0.05, n = 7–10 per group). Statistical tests and labels are

the same as Figure 1.
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combination with HU, resulted in no significant differences in IL-7R expression, compared to NL-Sham alone,

other than GCR irradiation with HU, suggesting GCR irradiation in combination with HU may have induced

T cell activation (Figure 5C). Percentage (%) lymphocytes (SSC-A versus CD45+, plot example in Figure 1G)

further supports the damaging effects of GCR and SPE irradiation on these population types (Figure 5D).

Elevated neutrophil to lymphocyte ratio (NLR), a clinical biomarker for Paul et al., 2020 inflammation (Isaac

et al., 2016), was elevated in HU-Sham controls, and in all irradiation-only groups, compared to NL-Sham con-

trols, with partial reduction in combination with HU (Figure 5E). Collectively, these results suggest select T cell

activation and inflammation following deep space simulation.
Simulated Deep Space Exposures Induced Unique Cytokine Profiles

Select cytokine biomarkers consisting of pro- and anti-inflammatory markers were assessed in whole blood

by qPCR. The cytokine panel included Ifn-g, Il-4, Il-1b, Tnf-ɑ, iNOS, Il-6, and Il-10, and showed that unique
6 iScience 23, 101747, December 18, 2020



Figure 4. Lymphocyte Immune Profiles Indicate T Cytotoxic and T Helper Effector Cells Are Reduced following

GCR and SPE Irradiation

(A–E) (A) Representative flow gating for T cytotoxic (Tc) and T helper (Th) cells within CD3+ doublet discriminated events.

Percentage (%) and absolute counts of T helper (Th) cells (CD4+CD8-/CD3+) (B and D, respectively) and T cytotoxic (Tc)

cells (CD4�CD8+/CD3+) (C and E, respectively) are displayed. Bar graph data represent meansG SEM (p < 0.05, n = 7–10

per group). Statistical tests and labels are the same as Figure 1.
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cytokine profiles are induced in each exposure group (Figure 6A). Il-1b, a pro-inflammatory cytokine and

marker of the inflammasome complex (Rathinam and Fitzgerald, 2016), displayed elevated expression

following SPE irradiation in the single exposure group, compared to NL-sham controls (Figure 6B). GCR

irradiation displayed significant suppression of Il-1b in combination with HU, compared to GCR irradiation

alone (Figure 6B). These results suggest combined simulated deep space exposures may have suppressed
iScience 23, 101747, December 18, 2020 7



Figure 5. Differential Expression of IL-7R Surface Expression and ElevatedNeutrophil to Lymphocyte Ratio (NLR)

in Simulated Deep Space Exposures

(A and B) Representative flow plot (NL-Sham control only) for lymphocytes within all events that have been doublet

discriminated (DD) (A) and IL-7R median fluorescent intensity (MFI) histograms (NL- and HU-Sham only) within

lymphocytes (B).

(C) MFI of IL-7R within lymphocytes is shown.

(D) Percentage (%) lymphocytes are displayed (SSC-A versus CD45+), as shown in Figure 1G.

(E) Neutrophil to lymphocyte ratio (NLR), a measurement of subclinical Paul et al., 2020 inflammation (Isaac et al., 2016), is

shown. (C–E) Bar graph data represent means G SEM (p < 0.05, n = 6–10 per group). Statistical tests and labels are the

same as Figure 1.
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inflammation. Il-6, another pro-inflammatory cytokine well known for its involvement in the acute phase

response (Tanaka et al., 2014), was induced in HU, compared with NL-Sham controls (Figure 6C), suggest-

ing exposure to simulated microgravity may induce inflammation. Interestingly, GCR irradiation in combi-

nation with HU resulted in Il-6 suppression (Figure 6C), supporting suppression of inflammation in com-

bined deep space conditions of GCR irradiation and HU. Ifn-ɣ, is a cytokine produced by Tc cells, Th1

cells, NK/NKT cells, and innate lymphoid cells-1 subtype-1 (ILC1) (Colonna, 2018). It has been associated

with NK cell activity (Lusty et al., 2017) and improved macrophage antigen presentation (Kak et al.,

2018). We found in comparison to NL-sham controls, Ifn-g was significantly upregulated in both GCR irra-

diation exposure groups, singly or combined with HU (Figure 6D). Furthermore, gamma irradiation resulted

in increased expression of Ifn-g in combination with HU, compared with gamma irradiation alone (Fig-

ure 6D). IL-4 is typically produced by Th2 and T follicular helper (Tfh) cells, and its primary role promotes

cellular survival (Keegan and Zamorano, 1998). We found significant fold elevation of Il-4 in all irradiation

groups in combination with HU, compared to NL-Sham controls (Figure 6E), suggesting this cytokine

may be critically involved in promoting cell survival in the remaining pool of cells following space-relevant

exposures. Collectively, these results suggest unique cytokine signatures are produced following different

simulated deep space exposures.
miRNA Profiling Revealed A Relationship to Immune Dysfunction in Simulated Deep Space

Exposures

miRNAs are non-coding RNA interference molecules involved in silencing post-transcriptional gene

expression (O’Brien et al., 2018). Due to their important role in gene expression regulation (O’Brien

et al., 2018), contribution to immunity (Tsitsiou and Lindsay, 2009), and importance for therapeutic pur-

poses (van Rooij and Kauppinen, 2014), we sought to assess the circulating miRNA profile expressed in

the plasma following simulated deep space exposures. We focused on miRNAs in plasma, as we have

demonstrated that the immune system dysregulation is systemic and circulating (Beheshti et al., 2017,
8 iScience 23, 101747, December 18, 2020



Figure 6. Cytokine Profiles Are Distinct following Simulated Deep Space Exposures

(A–E) (A) Heatmap-generated log fold change quantitative PCR transcript values for the cytokines Ifn-g, Il-4, Il-1b, Tnf-ɑ,

iNOS, Il-6, and Il-10. Bar charts are shown for cytokines, including Il-1b (B), Il-6 (C), Ifn-ɣ (D), and Il-4 (E) using relative fold

change (RFC) andGapdh as the normalization gene. Figures 6B–6E bar graph data represents meansG SEM (p < 0.05, n =

4–10 per group). Statistical tests and labels are the same as Figure 1.
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2018, 2019; Mehta and Baltimore, 2016; Montagner et al., 2013; Schwarzenbach and Gahan, 2019). To

determine the overall impact that miRNAs have on the immune system, we first predicted gene ontology

(GO) terms with an false discovery rate < 0.05 from processed miRNA-sequenced plasma data for all con-

ditions and filtered for specific immune GO terms (Figure 7). The GO immune terms were categorized by

utilizing the GO Mouse Genome Informatics (MGI) information for specific GO immune terms (Smith and

Eppig, 2009). An Upset plot (Figure S2) shows general up and down immune pathways in each listed con-

dition and the overlapping pathways between conditions. Overall, majority of the immune pathways are

downregulated. Pathways related to humoral immune responses were the exception and predicted to

be upregulated due to miRNAs, as miRNAs in general can elevate humoral immunity (Danger et al.,

2014; O’Connell et al., 2010). A more detailed analysis of the specific GO immune terms (Figure 7A) re-

vealed specific pathways clustering together following specific irradiation exposures. We confirmed this

pattern of immune dysregulation in deep space exposure groups in Hallmark pathways/gene sets (Liberzon

et al., 2015) regulated by miRNAs, which showed distinct patterns within each group (Figure 7B).
iScience 23, 101747, December 18, 2020 9



Figure 7. Gene Ontology (GO) Analyses of miRNA Terms Display Select Exposures Caused Differential Immunogenic Responses

GO terms with a false discovery rate <0.05 cutoff were considered significant. Specific immune-related GO terms were mapped to the GO Mouse Genome

Informatics (MGI) and were plotted with R packages. Biological and molecular immune pathways engaged following ionizing irradiation exposures, singly or

in combination with HU.

(A) Heatmap comparison of GO terms determined by expressed miRNAs.

(B) Heatmap comparison of Hallmark terms determined by expressed miRNAs.
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Collectively, these results confirmed that distinct immunogenic impairment following simulated deep

space exposures may be regulated by circulating factors, specifically miRNAs.

Elevated Inflammation in Astronauts on ISS Missions in LEO

Characterization of biomarkers of inflammation during spaceflight is critical for understanding human

adaptation to spaceflight. Although ionizing irradiation exposures in LEO are not at the same as doses

experienced in deep space, health risks associated with these doses are still considerable, and career

limiting. To characterize inflammation experienced on orbit, we re-purposed retrospective data from ISS

crewmembers participating in three experiments: Nutritional Status Assessment (2006–2012), Dietary

Intake Can Predict and Protect Against Changes in Bone Metabolism During Space Flight and Recovery

(Pro K) (2010–2015), and Biochemical Profile (2013–2018). Subsets of these data have been previously pub-

lished (Crucian et al., 2014; Smith et al., 2015).

Pro-inflammatory IL-1b and IL-1a and pleiotropic insulin-like growth factor (IGF)-1 and IL-1 receptor antag-

onist (RA) were analyzed. The results showed that IGF-1 was induced at in-flight day 15 and remained persis-

tent through flight and during post-flight return (Figure 8 and Table S1). Cytokines IL-1b and IL-1a were also

inconsistently elevated during flight, compared with preflight, whereas both returned to pre-flight levels

upon return to Earth, suggesting ground readaptation (Figure 8). In addition, IL-1RA was also elevated

in-flight, and returned to pre-flight baseline controls (L-45, Figure 8), indicating homeostatic inhibition of

IL-1a and/or IL-1b may also be regulated in-flight. As both pro-inflammatory IL-1a and IL-1b levels are
10 iScience 23, 101747, December 18, 2020



Figure 8. Elevated Markers of Inflammation in Astronauts on 4- to 6-Month ISS Missions

Blood samples were collected at launch minus (L-) 45 days, on Flight Day (FD)15, FD30, FD60, FD120, and FD180; post-

flight samples were collected in the first 24 h after landing and again 30 days later . Inflammatory markers were analyzed in

plasma for IGF-1, IL-1b, IL-1a, and IL-1RA. Repeated measures analysis of variance was conducted to test for differences

during and after flight compared with preflight, and comparisons among time points were made using a Bonferroni t test.

Multiple comparisons were accounted for. Data represent meansG SEM (***p < 0.001, n = 59 crewmembers; 47 males, 12

females). Subsets of these data have been previously published (Crucian et al., 2014; Smith et al., 2015).
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elevated in-flight, along with their inhibitor IL-1RA, it indicates that other factors involved in pro-inflamma-

tory cytokine expression supersede IL-1RA inhibition. These studies, and others (Buchheim et al., 2019; Gar-

rett-Bakelman et al., 2019), indicate that inflammation is induced in LEO, although mechanisms are also in

place to maintain homeostasis, which may also apply during missions beyond LEO.

Herein, the results revealed that at 14 days post-HU and 1 day post-acute irradiation exposure, total body

and immune organ (spleen and thymus) weights were reduced, which was accompanied by reduced total

leukocytes in combination exposures, compared to NL-Sham controls. Most strikingly, reduced frequency

of T effector lymphocytes (i.e., T helper, Th and T cytotoxic, Tc cells) and B lymphocytes in the presence of

combined conditions, compared to NL-Sham controls, were noted indicating the potential for impaired

adaptive immunity. Furthermore, differential cytokine profiles were also characterized, which displayed

the potential for Th2 lineages to develop, while Gene Ontology (GO) and Hallmark terms determined by

circulating miRNAs displayed similar immune deviations in mice. Similarly, astronaut data revealed inflam-

mation occurs in LEO missions, analogous to our ground-based results in mice. Collectively, these results

demonstrate that differential immune profiles are probable throughout the course of long-duration,

exploratory missions in deep space and describe circulating immune biomarkers (i.e., select cell types

and miRNAs) as potential therapeutic targets to regulate immunity.
DISCUSSION

Utilizing the recently developed simplified version of the NASA consensus formula of five different ions to

simulate GCR and SPE irradiation at NSRL, our study sought to investigate the immediate-early immune

effects following acute simulated deep space exposures of ionizing irradiation, singly or in combination

with simulatedmicrogravity in mice. We also sought to describe the contributing role of circulatingmiRNAs

on the immune profile, as miRNAs have been identified as regulators of immunity (Baker et al., 2019;

Danger et al., 2014; Mehta and Baltimore, 2016; Montagner et al., 2013; O’Brien et al., 2018; O’Connell

et al., 2010; Tsitsiou and Lindsay, 2009). Known effects of ionizing irradiation can cause immunogenic re-

sponses (Baselet et al., 2019; Li et al., 2014; Teresa Pinto et al., 2016). Indeed, high-LET irradiation causes

more damaging tracks and elevates apoptosis, compared to low-LET irradiation (Niemantsverdriet et al.,

2012). Yet, comprehensive immune studies on the effects of acute high- and low-LET irradiation are limited

(Gridley and Pecaut, 2006). Therefore, characterizing immune profiles and circulating miRNAs following

distinct ionizing irradiation types are essential for successful missions to the lunar surface and Mars.
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In our study, both GCR and SPE irradiation exposures in the presence or absence of HU in mice caused a

significant reduction in total leukocytes (Figures 1F, 1G, and S1), in particular Th and Tc cells (Figures 4B–

4E). Whole body weights were significantly reduced in GCR and SPE irradiation groups in combination with

HU (Figure 1B) along with reduced spleen weights in GCR and gamma irradiation (Figure 1C), whichmay be

due to reduced circulating leukocytes (Figures 1F and 1G and S1). Furthermore, reduced thymus weights in

HU combination groups with SPE irradiation (Figure 1D) implies reduced clonal diversity of lymphocytes

during deep space exposures, which can affect adaptive immune responses against future challenges. In

line with this, miRNA immune GO terms revealed reduced spleen and thymus development following all

irradiation groups, further supporting that deep space exposures can impair immune organ development

(Figure 7A). Thus, two possible outcomes are postulated: (1) delayed lymphocyte proliferation or (2)

elevated apoptosis of both dividing and non-dividing cells. In addition, B cell differentiation and humoral

immunity were also affected in GCR and SPE irradiation groups, compared with NL-Sham controls (Figures

3B and 3C) that may be partially dependent on cytokine signals (Figure 6) and Th cell populations (Figures

4B and 4D). Innate immune profiles were also differentially affected following distinct exposures, adding

another layer of complexity to this model. Nonetheless, these results collectively indicate unique immuno-

genic profiles following different ionizing irradiation exposures, in the presence or absence of simulated

microgravity that may be useful for future space bioscience studies to expand upon.

Along with different HU cage conditions/designs, head-down tilt angles (degrees of cephalad fluid shifting)

used to simulate microgravity may cause distinct immune results. For instance, Wei et al. reported reduced

thymic and spleen weights are due to lymphocyte apoptosis induced through elevated stress responses

and corticosterone production on day 10 of HU exposure (25�–30� head-tilt angle) (Wei et al., 2003). How-

ever, Ferreira et al. showed no difference in body or adrenal weights following 14 or 28 days (15� head-tilt
angle) of HU (Ferreira et al., 2011). Furthermore, work by Tahimic et al. revealed spleen weights were

reduced at 30 days (30� head-tilt angle) of HU, which may have partially depended on the number of circu-

lating Th cell populations (Tahimic et al., 2019). In our study, reduced thymus, but not spleen, weights were

noted in HU-Sham, compared with NL-Sham controls (30o head-tilt angle) (Figures 1C and 1D). Further-

more, there was no significant difference between Tc or Th populations following 14 days of HU, compared

with NL-Sham controls (Figures 4B–4E), but there were significant reductions in total leukocyte populations

(Figures 1F and 1G) and B cells (Figure 3B). Therefore, reduced thymus weights in HU-Sham compared to

NL-Sham controls may be due to overall reduced leukocyte populations. Inflammation following simulated

microgravity has been recorded in multiple studies (Cavey et al., 2017; Li et al., 2015; Zhang et al., 2010,

2014), with an associated mechanism of elevated neutrophil counts (Dumont et al., 2007, 2008; Frenette

et al., 2002; Tahimic et al., 2019) leading to uncontrolled musculoskeletal damage (Dumont et al., 2008;

Frenette et al., 2002). In our study, there were elevated neutrophils (Figure 2C), NLR (Figure 5E), and Il-6

(Figure 6C) after 14 days of HU, suggesting neutrophil persistence, as IL-6 protects neutrophils from

apoptosis (Asensi et al., 2004). Certainly, inflammatory neutrophil persistence can be damaging if not

adequately controlled (Mortaz et al., 2018). Therefore, these results indicate HU, dependent on cage con-

ditions/designs, may promote inflammation.

Innate immune populations were also evaluated. For one, SPE irradiation alone resulted in significant

elevation of eosinophils (Figure 2D) and NK/NKT cell (Figure 3D) percentages, compared to NL-Sham con-

trols. Interestingly, ionizing irradiation can cause cardiovascular complications (Puukila et al., 2017), while

elevated NK cells (Ong et al., 2017) and eosinophils (Séguéla et al., 2015) can contribute to these pathol-

ogies. Gamma irradiation alone resulted in a significant elevation in monocytes, neutrophils, eosinophils,

and NK/NKT cell percentages, compared with NL-Sham controls (Figures 2B–2D and Figure 3D), suggest-

ing distinct immune profiles are generated between different ionizing irradiation types. Indeed, gamma

irradiation had considerable effects on innate immune cell recruitment into blood circulation, compared

with GCR and SPE irradiation, indicating different mechanisms of immunogenicity following irradiation

damage, which may be a factor of the high dose of gamma irradiation. Indeed, overall cell numbers

were reduced within all radiation exposures, compared to NL-Sham controls, indicating the damaging ef-

fects of ionizing irradiation on the immune system (Figures 1F, 1G, and S1). However, for the purpose of

establishing the RBE in this study, gamma was used at a higher dose to make comparisons between

charged particles (GCR, SPE) and photons (gamma). In addition, there are qualitative differences between

the biological effects of each, such that gamma irradiation serves as a useful high-ionization control. Inter-

estingly, all four innate populations studied are inflammation-producing cells upon activation and were

suppressed when gamma irradiation was combined with HU, indicating the potential for inhibited
12 iScience 23, 101747, December 18, 2020
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inflammation. Similar impairment was observed in SPE irradiation in combination with HU groups in terms

of reduced eosinophil (Figure 2D) and NK/NKT cell percentages (Figure 3D). As such, a reduced number of

select innate immune cells 24 h following distinct irradiation treatments in combination with simulated

microgravity, may be a result of impaired innate immune cell recruitment. In addition, miRNA immune

GO term analyses indicated a general reduction in myeloid cell differentiation and FcR-mediated signaling

in all exposure groups, suggesting distinct biological pathways involved in phagocytosis (Koenderman,

2019) are suppressed during simulated deep space exposures (Figure 7A). Collectively, impairment in

both leukocyte recruitment and phagocytic function can result in inefficient innate responses against chal-

lenges, i.e., microbial or viral. In line with this, astronauts on board the ISS experience immune dysregula-

tion and heightened infections (Cervantes and Hong, 2016; Crucian et al., 2015; Mehta et al., 2017; Nash,

2000), which may be a result of poor immunogenic innate immune responses and recruitment. However,

further studies with these distinct deep space-relevant exposures, circulating miRNAs, and cell types are

required.

Aside from elevated Ifn-g in GCR irradiation exposure groups, compared to NL-Sham controls (Figure 6D),

GCR irradiation in combination with HU displayed reduced inflammation compared with GCR irradiation

alone, as measured by the pro-inflammatory cytokines, Il-1b and Il-6. These results suggest simulated

microgravity suppressed inflammation in combination with GCR irradiation (Figures 6B and 6C). Indeed,

this may partially explain reduced B cell percentage in GCR irradiation with simulated microgravity (Fig-

ure 3B), as IL-6 is a plasma cell differentiator that enhances humoral immunity (Dienz et al., 2009). Further-

more, IL-6 differentiates naive T cells into T follicular helper (Tfh) cells, which drives B cell maturation into

plasma cells (Crotty, 2014). IL-1b has also recently been characterized to play an important role in Tfh
effector cell development as well (Ritvo and Klatzmann, 2019). Therefore, reduced expression of both of

these cytokines in combined GCR irradiation with HU may be indirectly linked to reduced B cell differen-

tiation. In line with this, both GCR irradiation groups displayed a significant reduction in Th cells compared

to NL-Sham controls (Figures 4B and 4D). Although distinct effector T cell profiles, including Tfh, were not

thoroughly characterized, Tfh effector cell lineage would have been included in these overall Th cell pop-

ulations. Additionally, CD20 surfacemolecule expression on B cells is reduced during B cell maturation into

plasma cells (Robillard et al., 2014; Styles et al., 2017). However, we did not see any difference in cell surface

expression of CD20 MFI (Figure 3C), suggesting B cell differentiation into antibody-secreting plasma cells

may be impaired in GCR and SPE irradiation groups, compared to NL-Sham controls. As B cell numbers are

reduced (with no difference in CD20 surface expression) within GCR and SPE in combination with HU

groups, there is a lower pool of antibody-production vehicles essential for effective humoral immunity.

miRNA GO immune terms displayed reduced B cell differentiation and homeostasis in SPE irradiation

and gamma irradiation, compared with HU-Sham controls, but was no different with GCR irradiation

groups (Figure 7A), further suggesting distinct immune-related pathways are regulated following deep

space simulations. Of interest, robust gene expression of Il-4 (Figure 6E), which is produced by Th2 and

Tfh cells, directly promotes B cell maturation to plasma cells and ultimately the release of antibodies. There-

fore, although initial B cell populations are reduced, functional output may be compensated for via robust

expression of Il-4. LEO spaceflight missions have described minimal differences in B cell numbers and anti-

body production of IgG or IgM; however, IgA levels in flight were significantly upregulated compared with

ground controls (Spielmann et al., 2019). This effect may be explained by the general effects of circulating

miRNAs, as humoral immunity is predicted to be elevated by miRNAs (Danger et al., 2014; O’Connell et al.,

2010). In our study, general upregulation of humoral responses are shown, yet multiple miRNA GO terms

revealed that the humoral immune responses mediated by circulating Igs and B cells were suppressed with

GCR combined with HU, compared to HU-Sham controls, further supporting humoral immunity may be

dysregulated following deep space simulations (Figure 7A). Future studies addressing the level of Ig anti-

bodies, B cell/plasma cell distribution, and circulating miRNAs involved during deep space missions would

provide further insight into mechanisms involved in humoral immunity.

A principal finding in our study was reduced expression of Th and Tc cells, compared to NL-Sham controls.

As main components of the adaptive immune system, both Th and Tc cells provide the advantage of immu-

nological memory and assist with humoral immunity, which are important to prevent recurrent infections

and tumor development. This becomes particularly important during long-duration missions, where

medial intervention is limited. Indeed, infectious agents such as herpes simplex virus reactivate during

LEO spaceflight and are dependent on impaired cytotoxic T cells (Mehta et al., 2017; Nash, 2000). Further-

more, previous reports have indicated ionizing irradiation activates T cells (Schaue and McBride, 2012).
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However, the overall effect of ionizing irradiation on lymphocyte outcomes (i.e., activation or apoptosis)

depends onmultiple factors, most notably the dose and dose schedule (MacLennan and Kay, 1978; Schaue

and McBride, 2012). For instance, preconditioning mice, i.e., irradiation for graft transplantation, relies on

lethal bone marrow irradiation doses and fractionations to reduce lymphocyte counts (Bagley et al., 2002).

In our study, GCR irradiation caused extensive reduction in both Th and Tc cells, compared with SPE or

gamma irradiation (Figures 4B–4E), indicating GCR irradiation produced more damaging effects on these

cell types. Inhomogeneous dose depth between charged particles (GCR, SPE) and photon (gamma) tracks

may be involved in this effect, as gamma irradiation exposure groups did not significantly affect Th or Tc
numbers, compared with SPE and GCR irradiation groups. Thus, GCR and SPE irradiation may target

deeper immune tissues, such as lymph nodes, where the majority of T naive and circulating T effector cells

reside when not trafficking in the bloodstream (Hunter et al., 2016). The radiosensitivity of lymphocytes is

dependent on the speed of DNA repair mechanisms relative to division, as non-proliferating cells are more

radioresistant (Schaue and McBride, 2012). Radioresistance is observed in non-dividing cells as these cells

are in G0 stage, during which DNA is compact and stable, protein-protected heterochromatin (Falk et al.,

2008; Karagiannis et al., 2007). Proliferating lymphocytes, on the other hand, have exited the G0 stage and

are in the DNA synthesis phase, which makes themmore vulnerable to irradiation damage (Falk et al., 2008;

Karagiannis et al., 2007). Cellular division requires correct, undamaged DNA to be copied to their progeny,

and if repair mechanisms are not fast enough, elevated apoptosis results (Niemantsverdriet et al., 2012).

Indeed, miRNA Hallmark terms for DNA repair are upregulated, indicating after exposure to deep space

simulations, circulatingmiRNAs are involved in DNA repair machinery, whereby DNAdamage has occurred

(Figure 7B). Although we did not measure apoptosis directly, miRNA Hallmark terms also identified select

apoptosis pathways were engaged during GCR irradiation exposures, compared to HU-Sham controls

(Figure 7B), suggesting elevated DNA damage may be beyond repair, leading to apoptosis, following

GCR irradiation conditions.

We further assessed lymphocyte surface receptor expression of IL-7R. As described above, IL-7R is ex-

pressed on naive T cells, but not activated T cells, and then is re-expressed on memory T cells (Mazzucchelli

and Durum, 2007). Indeed, IL-7R MFI was reduced in GCR irradiation combined with HU, compared to NL-

Sham controls, suggesting T cell activation (Figure 5C). In line with this, Il7R knockoutmice have significantly

reduced developmental T and B cells, and are similar phenotypically as SCID mice, which are immunocom-

promised (Peschon et al., 1994). This may somewhat explain overall reduced lymphocyte populations

following simulated spaceflight exposures, along with reduced thymic and splenic weights, as well. Interest-

ingly, miR-199a and miR-142–3p target Il7R (Luo and Fu, 2018), reducing its expression levels; however, in

our report, mechanisms of this requires further investigation. Conversely, elevated IL-7R has been linked to

multiple inflammatory diseases (Anderson et al., 2011; Belarif et al., 2018; Willis et al., 2012). For example,

blocking IL-7R inhibited JAK/STAT, ERK, and PI3K signaling of IFN-g frommemory cytotoxic T cells, limiting

chronic inflammation (Belarif et al., 2018). In line with this, miRNA Hallmark terms displayed general reduc-

tion of PI3K/AKT signaling and inflammatory response pathways across all simulated deep space expo-

sures, indicating miRNA involvement in suppression of these pathways (Figure 7B). Alternatively, HU-

Sham groups had elevated IL-7R MFI, which suggests elevated inflammation. Indeed, miRNA Hallmark

terms displayed elevated reactive oxygen species (ROS) across all exposure groups, and HU-Sham controls

displayed heightened ROS expression levels (Figure 7B). Heightened ROS can cause inflammation both in

spaceflight and on Earth (Crucian et al., 2018; Garrett-Bakelman et al., 2019; Nguyen et al., 2017), which may

be an associated mechanism involved during heightened inflammation in the HU-Sham groups. Therefore,

IL-7R, along with neutrophil counts (Figure 2C), NLR (Figure 5E), Il-6 expression (Figure 6C), and ROS Hall-

mark terms regulated by miRNAs (Figure 7B) are all elevated in HU-Sham mice, further supporting inflam-

matory outcomes following prolonged microgravity. In line with this, ISS LEO crew member data displayed

inflammation via elevated IL-1b and IL-1a compared with pre-flight controls (Figure 8, Table S1). Impor-

tantly, these molecules were induced early (day 15) during spaceflight, whereby the effects of ionizing irra-

diation exposures would have beenminimal (Figure 8, Table S1), confirming inflammation is induced in LEO

astronauts, similar to our ground HU model.

Lymphopenia, or reduced T and B cell counts, poses a problem for adequate immunological protection

against challenges (Schaue and McBride, 2012). Furthermore, lymphopenia recovery results in immune

profiling changes that may be either detrimental or helpful to the host. In this report, compared to NL-

Sham controls, robust induction of Il-4 following all ionizing irradiation groups combined with HU was

noted. IL-4 is typically associated with Th2 effector cells, which are chiefly involved in allergic inflammation,
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including asthma, chronic rhinosinusitis, atopic dermatitis, and eosinophilic gastrointestinal inflammatory

disease (Nakayama et al., 2017). Interestingly, during spaceflight astronauts experience elevated allergic-

like symptoms including rashes (Dunn et al., 2018) and hypersensitivity episodes (Voorhies et al., 2019).

Therefore, Th2 immunity may be the principal immune response generated during deep space exposures;

however, further evaluation of the type of Th cell subtypes produced in response to simulated deep space

exposures are necessary.

Deep spaceflight exposures present immunologically complicated outcomes. Synergistic inflammatory or

immunogenic responses were variable in some, but not all, measurements, and in some cases were non-

productive. Furthermore, circulating miRNAs (cell-to-cell transfer via exosomes) (Montagner et al., 2013;

Schwarzenbach and Gahan, 2019) contribute to unique immune profiles, therefore miRNAs may be impor-

tant for immune-targeted therapies. Although not studied in this report, added complexities involving

combined types of ionizing irradiation, as well as protracted versus acute irradiation exposures that would

also be experienced during deep spaceflight, are necessary to consider in future studies. Furthermore,

only a small snippet into the immune response was assessed in this study; therefore, longitudinal re-

sponses and functional consequences are also required in future studies. Nonetheless, we found distinct

immune profiles and miRNA signatures are produced by each irradiation exposure group, singly or in

combination with HU in mice. Therefore, selective countermeasures targeting distinct immune responses

in crew members may be required during long-duration exploratory missions to the lunar surface and

Mars.
Limitations of the Study

In this study, we report the immune and miRNA differentials of mice following ground-based simulations

of deep spaceflight, along with analyses of crew member inflammation in LEO. As this study utilized

ground-based simulations in mice, deep spaceflight comparisons would be required to confirm similar

profiles. Additionally, interpretation of whole-blood transcriptomics to specific cell types is limited in

this study; however, these data provide insight into the overall cytokine profile induced by each condi-

tion that is independent of cell frequency. Furthermore, the contribution of miRNAs to the generated

immune populations is described; however, an understanding into mechanism and/or functional out-

comes would fully elucidate their role to overall immunity. In addition, the time point of collections

was at an immediate response, yet the long-term response would also be of benefit, in particular, for

long-duration missions. Finally, the comparisons between the immune differentials in mice and humans

is a limitation; however, this study can give some insight into the significant immune population changes

(i.e., T cytotoxic lymphocytes) that can be studied in humans during deep spaceflight mission in the near

future.
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Supplemental Information 
 

 
Figure S1. Lymphocyte differentials reveal changes in absolute counts following deep space exposures. 
Absolute counts of neutrophils (Ly6ghighCD11b+/CD45+) (A), monocytes (Ly6glowCD11b+/CD45+) (B), 
eosinophils (Ly6g-CD11b+/CD45+) (C), NK and NKT cells (CD20-NK1.1+/CD45+) (D), B cells (CD20+NK1.1-

/CD45+) (E) and total lymphocytes (SSC-A vs. CD45+) (F) are displayed within total leukocyte populations. 
(C) Median fluorescence intensity (MFI) of cell surface expression of CD20 on all CD45+ cells. (D) Percent 
(%) of NK/NKT cells (NK1.1+CD20-/CD45+). Bar graph data represents means ±SEM (p < 0.05, n = 7-10 
per group). Statistical tests and labels are the same as Figure 1. 
 



 

Figure S2. Upset plot displays general up- and down-regulated immune pathways. Gene ontology 
(GO) terms with an FDR < 0.05 cutoff were considered significant. Specific immune-related GO terms were 
mapped to the GO Mouse Genome Informatics (MGI) and were plotted with R packages. Upset plot of 
biological and molecular immune pathways engaged following high and low LET IR exposure, singly or in 
combination with HU.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Analyte/ 
Blood 

L-45 ‡ 
L-45  

(on gel) 
FD15  FD30  FD60  FD120  FD180  R+0  R+30 

IGF-1  
ng/mL 

180.3 
±44.4 

176±42 220±62 *** 
216±
52 

*** 
219 
±53 

*** 
215 
±51 

*** 
219 
±50 

*** 
202 
±60 

*** 
164 
±46 

n=40 n=39 n=40  n=32  n=40  n=33  n=37  n=40  n=40 

IL-1β  
pg/mL 

1.56±2.17 
n=40 

1.93±2.5 
n=39 

2.48 
±4.0 
n=47 

*** 
1.44 
±2.10 
n=39 

 
2.17 
±3.11 
n=47 

*** 
1.87 
±2.98 
n=39 

 
2.51 

±3.52 
n=38 

*** 
1.41 
±1.80 
n=47 

 
1.49 
±1.88 
n=46 

IL-1α 
pg/mL 

4.34 
±8.49 

6.59 
±11.23 

7.54 
±13.43 

*** 
5.44 
±10.1

2 

 7.86 
±13.87 

*** 
5.27 
±8.59 

 9.16 
±15.19 

*** 
2.75 
±4.19 

 3.91 
±6.50 

n=47 n=42 n=47  n=39  n=47  n=39  n=38  n=47  n=46 

IL-1RA 
pg/mL 

364±201 
526 
±392 

567 
±366 

*** 
483 
±327 

 596 
±433 

*** 
600 
±515 

*** 
612 

±384 
*** 

625 
±524 

*** 
484 
±553 

n=44 n=39 n=44  n=36  n=44  n=36  n=37  n=44  n=43 

Table S1. Astronaut Physiological data from blood validate inflammation during spaceflight. Data 
are mean ± SD. *** P<0.001 compared to L-45. ‡ The column labelled "L-45 (on gel)" represents data from 
the sample frozen in the tube and stored for batched analysis alongside the flight samples. In most cases, 
this came from the same draw as the L-45 collection. ‡‡ As described in methods, crewmembers on R+0 
are not necessarily fasted prior to blood collection. 
 
  



 

Transparent Methods 
 
KEY RESOURCES TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Fc Block (CD16/CD32 Monoclonal Antibody (93), 
eBioscience™) 

Thermo Fisher 
Scientific 

14-0161-86 
 

CD45 Monoclonal Antibody (30-F11), FITC, 
eBioscience™) 

Thermo Fisher 
Scientific 

11-0451-85 
 

CD11b Monoclonal Antibody (M1/70), PE-Cyanine7, 
eBioscience™ 

Thermo Fisher 
Scientific 

25-0112-82 
 

Ly-6G Monoclonal Antibody (1A8-Ly6g), PE, 
eBioscience™) 

Thermo Fisher 
Scientific 

12-9668-82 
 

NK1.1 Monoclonal Antibody (PK136), APC, 
eBioscience™ 

Thermo Fisher 
Scientific 

17-5941-82 
 

CD20 Monoclonal Antibody (AISB12), PE, 
eBioscience™ 

Thermo Fisher 
Scientific 

12-0201-82 
 

CD3e Monoclonal Antibody (145-2C11), FITC, 
eBioscience™ 

Thermo Fisher 
Scientific 

11-0031-85 
 

CD4 Monoclonal Antibody (GK1.5), PE, eBioscience™ Thermo Fisher 
Scientific 

12-0041-85 
 

CD8a Monoclonal Antibody (53-6.7), FITC, 
eBioscience™ 

Thermo Fisher 
Scientific 

11-0081-85 
 

CD127 (IL-7R)Monoclonal Antibody (A7R34), Alexa 
Fluor 488, eBioscience™ 

Thermo Fisher 
Scientific 

53-1271-82 
 

Biological Samples 

Mouse Blood  C57BL/6J Wt female n/a 

Mouse Plasma C57BL/6J Wt female n/a 

Mouse Spleen C57BL/6J Wt female n/a 

Mouse Thymus C57BL/6J Wt female n/a 

Human Blood (serum, plasma) and Urine Male and female 
astronauts 

n/a 

Chemicals, Peptides, and Recombinant Proteins 

Paraformaldehyde (16%) Fisher Scientific AA433689M 

1x Phosphate Buffered Saline (pH 7.4) Thermo Fisher 
Scientific 

10010023 
 

eBioscience™ 1x RBC Lysis Buffer 
 

Thermo Fisher 
Scientific 

00-4333-57 

UltraPure™ 0.5M EDTA, pH 8.0 
 

Thermo Fisher 
Scientific 

15575020 
 

Critical Commercial Assays 

miRNeasy Mini Kit QIAgen 217004 

iSCRIPTTM cDNA synthesis kit Bio-Rad 1708890 

iQTM SYBR® Green Supermix Bio-Rad 170-8880 

miRNeasy serum/plasma kit QIAgen 217184 

TruSeq Small RNA Sample Prep Kits Illumina RS-200-0012 

Deposited Data 

miRNA-sequence mouse plasma dataset NASA GeneLab 
(https://genelab.nasa.
gov/) 

GLDS-336, DOI: 
10.26030/qasa-rr29 

https://genelab.nasa.gov/
https://genelab.nasa.gov/


 

Experimental Models: Organisms/Strains 

C57BL/6J Wt female mice  Jackson Laboratories 000664 

Simplified 5-ion GCR Simulation Protons at 1000 MeV, 
28Si at 600 MeV/n, 4He 
at 250 MeV/n, 16O at 
350 MeV/n, 56Fe at 
600 MeV/n, and 
protons at 250 MeV 

n/a 

Simulated SPE Protons at 50MeV to 
150MeV 

n/a 

Simulated Gamma 137Cs source (5 Gy) n/a 

Oligonucleotides 

Gapdh 
FWD 5’-CAGGAGAGTGTTTCCTCGTCC-3’ 
REV 5’-TTCCCATTCTCGGCCTTGAC-3’ 

IDT NM_001289726.1 

Ifn-𝛾 

FWD 5’- AGGAACTGGCAAAAGGATGGT-3’ 
REV 5’-TCATTGAATGCTTGGCGCTG-3’ 

IDT NM_008337.4 
  

Il-4 
FWD 5’- CCATATCCACGGATGCGACA-3’ 
REV 5’- AAGCCCGAAAGAGTCTCTGC-3’ 

IDT NM_021283.2 
  
 

Il-1β  
FWD 5’- TGCCACCTTTTGACAGTGATG-3’ 
REV 5’- AAGGTCCACGGGAAAGACAC-3’ 

IDT NM_008361.4 
 

Tnf-α  
FWD 5’- CCCACGTCGTAGCAAACCA-3’ 
REV 5’- ACAAGGTACAACCCATCGGC-3’ 

IDT NM_013693.3 
 

iNos  
FWD 5’- AGGGACTGAGCTGTTAGAGACA-3’ 
REV 5’- GTCATCTTGTATTGTTGGGCTGAG-3’ 

IDT NM_010927.4 
 

Il-6 
FWD 5’- GCCTTCTTGGGACTGATGCT-3’ 
REV 5’- TGCCATTGCACAACTCTTTTC-3’ 

IDT NM_031168.2 
 

Il-10 
FWD 5’- GGTTGCCAAGCCTTATCGGA-3’ 
REV 5’- GGGGAGAAATCGATGACAGC-3’ 

IDT NM_010548.2 
 

Software and Algorithms 

FlowJo Software v10.5.3 BD https://www.flowjo.co
m/ 

Prism v8.4.2 GraphPad https://www.graphpa
d.com/scientific-
software/prism/ 

ACGT101-miR (LC Sciences) n/a n/a 

miRBase 22.0 (Kozomara et al., 
2019)  

http://www.mirbase.o
rg/ 

RNAfold software n/a http://rna.tbi.univie.a
c.at/cgi-
bin/RNAWebSuite/R
NAfold.cgi 

RBiomirGS v0.2.12 R package (Zhang and Storey, 
2018) 

https://github.com/jz
hangc/git_RBiomirG
S 



 

GO Mouse Genome Informatics (MGI) (Smith and Eppig, 
2009) 

http://www.informatic
s.jax.org/ 

R packages UpsetR v1.4.0 (Conway et al., 2017) https://cran.r-
project.org/web/pack
ages/UpSetR/index.
html 

pheatmap v1.0.12 Kolde Rpheatmap: 
Pretty heatmaps 
software; 2015 

https://cran.r-
project.org/web/pack
ages/pheatmap/inde
x.html 

R package v3.6.1 n/a https://www.r-
project.org/  

Other 

BD FACSMelodyTM BD Biosciences n/a 

Bioanalyzer 2100 Agilent n/a 

Illumina Hiseq 2500 LC Sciences n/a 

ABI 7500 Real-Time PCR Applied Biosystems n/a 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Ethics Statement 
All experiments were approved by Brookhaven National Laboratory’s (BNL) Institutional Animal Care and 
Use Committee (IACUC) (protocol number: 506) and all experiment were performed by trained personnel 
in AAALAC accredited animal facilities at BNL, while conforming to the U.S. National Institutes of Health 
Guide for the Care and Use of Laboratory Animals. All human astronaut data were reviewed and approved 
by the NASA Institutional Review Board and all subjects provided written informed consent. 
 
Experimental design  
15-week +/- 3-day old, C57BL/6J wildtype (Wt) female mice were purchased from Jackson Laboratories 
and housed at BNL. Upon arrival to BNL, mice were quarantined and acclimated to a standard 12:12h 
light:dark cycle, with controlled temperature/humidity for 1-week prior to cage acclimation. Food and water 
were given ad libitum, and standard bedding was changed once per week. Mice were cage acclimated 
(n=10 mice per group; 2 mice per cage to maintain social interaction) 3-days prior to HU, followed by 14-
days either normally loaded (NL) or hindlimb unloaded (HU, see details below). Irradiation was administered 
on day 13 and blood tissues were collected at 24-hours post-irradiation and post-euthanasia by CO2 
overdose, followed by cervical dislocation. Blood was collected via the abdominal aorta in EDTA-coated 
tubes (0.5 M) and plasma was separated by centrifugation at 2,000xg for 15 minutes. Plasma was collected 
and flash frozen in liquid nitrogen for -80°C storage. A 100 μl aliquot of cellular fraction was flash frozen 
and stored at -80°C for RNA analyses, while the remaining cellular fraction was lysed with 1x RBC lysis 
buffer (Thermo Fisher Scientific) followed by flow cytometric preparation and analyses, as describe below. 
Body weight tracking was performed on days -3, 0, 7 and 14. The experimental timeline is described in 
Figure 1A. 
 
Hindlimb Unloading 
Hindlimb unloading was performed using the adjusted Morey-Holton method for social housing (n=2 per 
cage) (Tahimic et al., 2019). Briefly, mice were suspended from the tail using non-invasive traction tape 
attached to an adjustable pulley mounted on the top of a standard rodent cage. The adjustable nature of 
the device allows the user to position the animal in a head-down position (approximately 30° to the horizon) 
once attached. The crossbar height, lateral crossbar position, and chain length are adjustable. The pulley 
is free to move along the crossbar that spans the length of the top of the cage enabling the mouse to 
navigate freely on one half of the cage using its forepaws and to interact with the second mouse in the 
cage, without enabling ambulation of the limbs. Individual food and water sources are provided to each 
mouse and replaced daily. Control mice were housed in identical cages with normal ambulation.  
 



 

Simulated GCR, SPE and gamma irradiation 
On day 13, mice were transported on BNL base to the NASA Space Radiation Laboratory (NSRL) facility 
by animal care staff and were transferred to individual HU boxes to enable whole body irradiation while 
maintaining hindlimb suspension. The following doses of irradiation were administered; simplified GCR sim 
(0.5 Gy), SPE (1 Gy), Gamma (5 Gy) and Sham control (0 Gy). To simulate GCR, we used the simplified 
GCR simulation of ions, energy, and doses determined by a NASA consensus formula  that consists of 5 
ions: protons at 1000 MeV, 28Si at 600 MeV/n, 4He at 250 MeV/n, 16O at 350 MeV/n, 56Fe at 600 MeV/n, 
and protons at 250 MeV. This dose of radiation is equivalent to what an astronaut is predicted to receive in 
deep space during a Mars mission, though it is modeled as a single exposure over 25 minutes instead of 
the actual chronic exposures over 1.5 years. Further, GCR sim is a mixture of high and low LET ions in a 
ratio of 15% to 85%, respectfully. To simulate SPE, we used a total dose of 1Gy protons with energy ranges 
from 50MeV to 150MeV. For all irradiations a 60x60 beam was utilized at NSRL. For radiation dose 
equivalence and biological reference, we used 5 Gy gamma irradiation with the cesium resource available 
at BNL, in the absence of HU due to resource limitations. Sham controls were treated similar to GCR/SPE 
irradiated mice, including HU cage boxes and beam line (without irradiation) for the same duration as GCR 
simualtion, i.e. 25 minutes.  
 
METHODS DETAILS 
 
Flow cytometry 
Collected blood samples were lysed with 1x RBC lysis buffer (Thermo Fisher Scientific) fixed in 4% 
paraformaldehyde for 15 minutes on ice, washed twice with 1x phosphate buffered saline (PBS, Thermo 
Fisher Scientific), and stored at 4ºC until staining. Single-cell suspensions were generated for flow 
cytometry acquisition. Debris was gated off and doublet discrimination was performed. Cells were Fc 
blocked for 20 minutes and probed with mouse reactive antibodies targeting anti-CD45, anti-CD11b, anti-
Ly6G, anti-NK1.1, anti-CD20, anti-CD3, anti-CD4, anti-CD8, and anti-IL-7R. All antibodies and Fc block 
were purchased from Thermo Fisher Scientific. Unstained and single-color compensation controls were 
used. Cells were acquired using a BD FACSMelodyTM and analyzed using FlowJoTM Software (v10.5.3). 
 
Quantitative (q)PCR  
Collected blood samples were flash frozen and total RNA isolation using miRNeasy Mini Kit (QIAgen) 
following manufactures’ recommendations. Concentration and purity were determined using a Bioanalyzer 
2100 (Agilent, CA, USA) with RIN number > 8. 1 μg of total RNA was prepared for cDNA synthesis using 
iSCRIPT cDNA synthesis kits (Bio-Rad). Quantitative PCR was performed using iQTM SYBR® Green 
Supermix (Bio-Rad) and primers (IDT) were designed using NCBI design tool. An ABI 7500 Real-Time PCR 
(Applied Biosystems) was used and threshold cycle values that were ≥ 35 cycles were excluded from the 
results. Primer sequence for the following genes are listed in the key resource table. Data was analyzed 
using the ΔΔcT method with Gapdh as the normalizer gene, and relative fold change (RFC) is displayed. 
 
miRNA isolation, sequencing, and data analyses   
Library construction and sequencing was performed from miRNAs isolated from plasma from the mouse 
experiments described above. The miRNA extraction was carried out using the QIAgen miRNeasy 
serum/plasma kit (#217184). The total RNA quality and quantity were analyzed using a Bioanalyzer 2100 
(Agilent, CA, USA) with RIN number > 7. Approximately 1 μg of total RNA was used to prepare small RNA 
library according to protocol of TruSeq Small RNA Sample Prep Kits (Illumina, San Diego, USA). Single-
end sequencing was performed using 50 bp on an Illumina Hiseq 2500 at the LC Sciences (Hangzhou, 
China) following the vendor's recommended protocol. 
 Raw reads were subjected to an in-house software program, ACGT101-miR (LC Sciences, 
Houston, Texas, USA) to remove adapter dimers, junk, low complexity, common RNA families (rRNA, 
tRNA, snRNA, snoRNA) and repeats. Subsequently, unique sequences with length in 18~26 nucleotide 
were mapped to specific species precursors in miRBase 22.0 by BLAST search to identify known miRNAs 
and novel 3p- and 5p- derived miRNAs. Length variation at both 3’ and 5’ ends and one mismatch inside 
of the sequence were allowed in the alignment. The unique sequences mapping to specific species mature 
miRNAs in hairpin arms were identified as known miRNAs. The unique sequences mapping to the other 
arm of known specific species precursor hairpin opposite to the annotated mature miRNA-containing arm 
were considered to be novel 5p- or 3p- derived miRNA candidates. The remaining sequences were mapped 



 

to other selected species precursors (with the exclusion of specific species) in miRBase 22.0 by BLAST 
search, and the mapped pre-miRNAs were further BLASTed against the specific species genomes to 
determine their genomic locations. The above two we defined as known miRNAs. The unmapped 
sequences were BLASTed against the specific genomes, and the hairpin RNA structures containing 
sequences were predicated from the flank 80 nt sequences using RNAfold software 
(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). The criteria for secondary structure 
prediction were: (1) number of nucleotides in one bulge in stem (≤12); (2) number of base pairs in the stem 
region of the predicted hairpin (≥16); (3) cutoff of free energy (kCal/mol ≤-15); (4) length of hairpin (up and 
down stems + terminal loop ≥50); (5) length of hairpin loop (≤20); (6) number of nucleotides in one bulge in 
mature region (≤8); (7) number of biased errors in one bulge in mature region (≤4); (8) number of biased 
bulges in mature region (≤2); (9) number of errors in mature region (≤7); (10) number of base pairs in the 
mature region of the predicted hairpin (≥12); and (11) percent of mature in stem (≥80). Differential 
expression of miRNAs based on normalized deep-sequencing counts was analyzed by selectively using 
Fisher exact test, Chi-squared 2X2 test, Chi-squared nXn test, Student t test, or ANOVA based on the 
experimental design. The significance threshold was set to be 0.01 and 0.05 in each test. The plasma 
miRNA-seq raw fastq files can be found on NASA’s GeneLab data repository/platform 
(https://genelab.nasa.gov/) with the following identifiers: GLDS-336, DOI: 10.26030/qasa-rr29. 
 To determine gene ontology (GO) and Hallmark pathways being regulated by the miRNAs we 
performed miRNA gene set analysis utilizing the RBiomirGS v0.2.12 R package (Zhang and Storey, 2018) 
from the processed miRNA analysis for all conditions in the plasma. From the GO terms we chose an FDR 
< 0.05 cutoff for significantly regulated GO Terms. We then determined the specific immune related GO 
terms by mapping to the GO Mouse Genome Informatics (MGI) information for specific GO immune terms 
(Smith and Eppig, 2009). We plotted the specific GO terms with R packages UpsetR v1.4.0 (Conway et al., 
2017) and pheatmap v1.0.12 (Kolde R. pheatmap: Pretty heatmaps).  
 
Human physiological inflammation data 
Data are reported from three human subject experiments conducted on the International Space Station: 
Nutritional Status Assessment (2006-2012), Dietary Intake Can Predict and Protect Against Changes in 
Bone Metabolism During Space Flight and Recovery (Pro K) (2010-2015), and Biochemical Profile (2013-
2018). All protocols were reviewed and approved by the NASA Institutional Review Board and all subjects 
provided written informed consent. While subsets of some of these data have been published in other 
papers (Crucian et al., 2018), as a whole, the data provided here have not been previously published. In 
addition, the inflammation data provided have been reanalyzed from data that were submitted with another 
paper included in this special NASA Cell issue (Malkani et al., 2020).  
 Crews from these experiments completed missions of 4-6 months in duration, and these studies 
included blood collections before, during, and after flight, with analysis of an array of inflammation 
biochemical markers. Blood samples were collected 2 or 3 times before flight: approximately Launch minus 
(L-) 45 days. In some cases, a third blood sample was collected (typically along with the L-45 collection), 
and these tubes were centrifuged and frozen for aliquoting after flight batched with the samples collected 
inflight. Blood samples were collected inflight, at approximately Flight Day (FD) 15, FD30, FD60, FD120, 
and FD180. Postflight samples were collected in the first 24-h after landing (designated return+0, R+0) and 
again 30-d later (R+30). The R+0 samples were not necessarily fasting, given the time of day and nature 
of return from flight. Of the 59 crewmembers reported: 8 returned on the Space Shuttle, with blood collection 
2-4 hours after landing; 51 landed in Kazakhstan, with 7 of them returning to Star City, Russia, with blood 
collection 8-10 hours after landing; 44 were transported directly back to the Johnson Space Center in 
Houston, with blood collection approximately 24-h after landing. Pre and postflight collections included two 
24-h urine collections, and inflight collections included one 24-h urine collection. These collection 
techniques have been previously described (Smith et al., 2012; Zwart et al., 2011). 
 We report here inflammatory markers were analyzed using standard techniques as reported 
previously (Crucian et al., 2018; Zwart et al., 2016; Zwart et al., 2013; Zwart et al., 2009). As of this writing, 
data were available for 59 crewmembers (47 males and 12 females). Age at launch was 47.0 ± 5.6 y, body 
mass at launch was 79.2 ± 11.8 kg (M: 83.3 ± 9.3; F: 63.0 ± 4.5). Body mass index was 25.5 ± 2.9 kg/m2 
(M: 26.4 ± 2.6; F: 22.3 ± 1.5). All available data are reported here, although the reported n for any given 
test or session varies for a number of reasons, including, not all experiments had all analytes included, 
mission length differences for some crewmembers, schedule or other issues occasionally precluded sample 
collection, and methods changes over time. Repeated measures analysis of variance was conducted to 

https://genelab.nasa.gov/


 

test for differences during and after flight compared to preflight, and comparisons among time points were 
made using a Bonferroni t-test. Multiple comparisons were accounted for, and only those tests with p*** < 
0.001 are reported. 
 
Quantification and Statistical Analysis  
For Figures 1-5, a Grubbs test was performed on all datasets followed by testing for normal distribution via 
a Kolmogorov-Smirnov test. If data were normally distributed, a one-way ANOVA Dunnett test was 
performed to compared NL and HU controls to all groups and a parametric unpaired t-test with Welsh’s 
correction was performed to compared between similar irradiation groups. If normality was not passed, both 
a non-parametric Kruskal-Wallis test with a Dunn’s posthoc analyses was performed to compare NL and 
HU controls to all groups and a non-parametric Mann-Whitney U-test compared between similar irradiation 
groups were performed. All data are means ±SEM (p < 0.05, n = 5-10 per group depending on associated 
figure). “*” denotes significant difference between NL-Sham and associated group, “#” denotes significant 
difference between HU-Sham associated group, and intergroup “brackets with a &” denotes significant 
difference between each group. Filled circles, boxes, and bars denotes normal loaded (NL) and non-filled 
circles, boxes, and bars denotes hindlimb unloaded (HU). 

For Figure 7, a repeated measures analysis of variance was conducted to test for differences during 
and after flight compared to preflight, and comparisons among time points were made using a Bonferroni 
t-test. Multiple comparisons were accounted for and data are means ±SEM (p*** < 0.001, n = 59 
crewmembers; 47 males, 12 females). GraphPad Prism software was used to analyze all associated figures 
(v. 8.4.2).  
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