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mRNA modifications: Dynamic regulators of gene expression?
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ABSTRACT
The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms.
Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential
regulators of gene expression. N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (C) and
N1-methyladenosine (m1A) have been found within open reading frames of mRNAs. The presence of these
mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its
translation and even degradation. However, many aspects concerning the biological functions of mRNA
modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct
interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became
evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type,
position or sequence context. The incorporation of a single modification could either prematurely
terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These
results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate
gene expression.
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RNAs involved in the regulation of gene expression

Regulation of gene expression is a complex multistep process.
The synthesis of a functional protein is subject to several layers
of regulation, starting from the synthesis of various transcrip-
tion factors up to the correct assembly of the nascent protein
by chaperones. The most direct mechanism of regulating pro-
tein synthesis is the modulation of the amounts of messenger
RNAs (mRNAs) within a cell. However, a direct correlation
between the amounts of an mRNA and its corresponding pro-
tein is not always observed.1,2 Hence, protein synthesis is the
target of various highly sophisticated regulatory mechanisms,
of which more and more have been identified in the last
decade.3-9

Generally, protein synthesis can be divided into 4 stages: ini-
tiation, elongation, termination, and ribosome recycling. Tradi-
tionally, the initiation step is viewed as one key feature of
regulation and numerous factors and mechanisms have been
described that lead either to a global or an mRNA-specific initi-
ation control.3,4,10 Not only altering amounts and activities of
initiation factors, but also the presence of regulatory sequences
or structural motifs in the 50 or 30 untranslated regions (UTRs)
of mRNAs, are now well-understood factors for regulating ini-
tiation of protein synthesis.3,4,11,12

Equally important for regulation of translation are RNA
binding proteins (RBPs) and non-coding RNAs (ncRNAs). As
soon as ncRNAs, such as miRNAs and siRNAs, had been iden-
tified, it became evident that these small ncRNA species are
directly involved in modulating gene expression.13,14 Although
siRNA and miRNA differ in their origin and function, both

guide the RNA Induced Silencing Complex (RISC) to their tar-
get mRNAs and thus induce cleavage or degradation of
mRNAs, respectively. Thereby, miRNAs were reported to mod-
ulate translation initiation as well as elongation, thus rendering
small ncRNAs as versatile molecules for modulating gene
expression.15

Whereas RBPs and ncRNAs bind to mRNAs, a recently dis-
covered class of regulatory RNAs directly binds to the ribo-
some, thereby affecting protein synthesis. These ribosomal
associated ncRNAs (rancRNAs) interfere with protein synthesis
in a stress-dependent manner.16-18 Thereby, RNA fragments
derived from mRNAs or transfer RNAs (tRNAs) have been
identified to bind to the ribosome and globally inhibit transla-
tion. For example, 50-tRNA fragments, identified in Haloferax
volcanii, downregulate protein synthesis globally by binding to
the small ribosomal subunit, thereby competing with binding
of mRNAs. Subsequently, additional tRNA fragments have
been identified to interfere with translation,19-21 but their bio-
logical roles and mechanisms of action are still not completely
understood.22

Since also full-length tRNAs interact with the ribosome and
thus play a central role in translation, it seems inevitable that
they would be also involved in modulating translation.
Thereby, it is has been reported that the abundance, the avail-
ability of tRNAs and the codon usage within mRNAs strongly
influences the speed and efficiency of translation (23,24 and
reviewed in25,26). Recently, tRNA modifications were also
revealed to be linked to translation efficiency and decoding
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fidelity.26-28 In addition, modifications of tRNAs have been
found to be involved in fine tuning of stress-related genes by
driving codon biased translation.7,29

In addition, mRNAs are not just mere templates for transla-
tion, but harbor essential regulatory elements. As mentioned
above, specific regions within UTRs of mRNAs might be
involved in regulation of translation.3,4,11,12 These regulatory
elements, such as structural RNA motifs or binding sites for
proteins or for regulatory RNAs, are found primarily in 50 and
30 UTRs of mRNAs. However, also ORFs are able to influence
the efficiency and speed of translation.30-32 Thereby, specific
codons and sequence elements cause ribosomal stalling and
consequently the folding and activity of the produced proteins
might be affected.24,33-36 Codon-optimized sequences might
result in higher product yields, but also lead to lower enzyme
activities.34

Recently, a mechanism in regulating ribosomal translation
has been identified: thereby, modifications of RNA nucleotides
within coding sequences of mRNAs were reported to directly
interfere with elongation and decoding of the ribosomal trans-
lation machinery.37-39 Herein, we summarize current findings
of co- and post-transcriptional mRNA modifications affecting
translation and anticipate what lessons these modifications
might teach us (i.e. what biological roles they might exert in dif-
ferent organisms).

Old RNA modifications - new perspectives

Modifications within the ORFs of mRNAs have already been
described in the 1970s, demonstrating the occurrence of
N6-methyladenosine (m6A)40-44 and 5-methylcytosine (m5C).45

Due to technical limitations, however, the identification of dis-
tinct nucleotide modifications was not possible. Thus, neither
the detailed localization of modifications within transcripts,
nor their biological role has been elucidated. Hence, these early
studies were sometimes controversially interpreted in respect
to a potential function of mRNA modifications, mainly due to
their presumably low abundance and their identification in dis-
tinct cell types only.40,44 But subsequent to uncovering specific
enzymes, capable of converting adenosines (A) to inosines (I)
within dsRNA (ADARs),46-51 the field of mRNA modifications
re-gained attention. This A-to-I editing process has been
unveiled as the most prevalent form of mRNA editing, leading
to a new and prospering research field.

The interest in mRNA nucleotide modifications once again
increased through the invention of RNA mass spectrometry
and next generation sequencing (NGS) techniques, which
equipped researchers with powerful tools to identify and map
modifications within transcripts. Several groups have contrib-
uted to our current understanding of when, where, and most
importantly how mRNA modifications regulate gene expres-
sion. To date, the repertoire of naturally occurring eukaryal
mRNA modifications (besides the 5�cap and inosine) is com-
prised of m6A, pseudoruridine (C), m5C and N1-methyladeno-
sine (m1A).52-59 Thereby, m6A is not only the most abundant,
but also the best-characterized internal mRNA modification so
far. The dynamic nature of the presence of m6A within mRNAs
and its involvement in various biological functions is remark-
able, ranging from splicing, regulation of translation to mRNA

decay.60-63 Also C is dynamically deposited in mRNA tran-
scripts, but its function within mRNAs is still elusive.53-55

Even less is known about the possible role of m5C
within mRNAs. m5C was reported to be present in
human56 as well as in archaeal59 mRNAs. Due to its
reported enrichment within the UTRs of human mRNAs
and its location in the vicinity of Argonaute binding sites,
m5C was suggested to be involved in translation regula-
tion.56 The most recent modification, which has joined the
mRNA repertoire, is m1A.57,58 Thereby, m1A is predomi-
nantly found in structured regions of the 50 UTR of
mRNAs and in the vicinity of canonical and alternative
translation initiation sites. Most interestingly, the presence
of m1A in mRNAs is connected to elevated translation
rates.57 Modifications of the ribose, such as 20-O-methyla-
tions, have not yet been unambiguously identified within
coding sequences of mRNAs. 20-O-methylations are com-
monly found in ribosomal RNAs (rRNAs), small nuclear
RNAs (snRNAs, reviewed in64) or tRNAs (reviewed in65)
and are also speculated to be introduced into ORFs by
small nucleolar RNA-guided complexes.66,67

Translational regulation mediated by mRNA
modifications

Until recently, mRNA modifications have only been indirectly
linked to ribosomal translation.61,62,68-71 An emerging body of
evidence implies that the effect of modifications is not only
dependent on its type but also on the translation system.
Thereby, mRNAs harboring Cs within coding sequences
increased the protein yield in rabbit reticulocyte extracts but
not in wheat germ extracts.70 However, in bacterial translation
systems mRNAs with randomly incorporated Cs strongly
inhibited protein synthesis.70 Similar observations have been
made with other mRNA modifications as well.68,70 These find-
ings were supported by cell culture-based approaches revealing
a significant cell type dependency.57,70,71

Additionally, the sequence context affects the impact of mRNA
modifications. Thereby, protein expression strongly depends on
the corresponding mRNA sequence, thus making it even more
complicated to univocally draw conclusions about the impact of
specificmodifications on the translationmachinery.70,71

The majority of these studies employed randomly modified
mRNAs.68-70 Alternatively, mRNAs with a complete substitu-
tion of the unmodified nucleotide by a modified version were
applied.71 Thus, in order to obtain a more detailed picture of
the direct effect of single mRNA modifications on protein syn-
thesis, a refined systematic approach was applied. Employing a
splinted ligation protocol, RNA modifications were site-specifi-
cally incorporated into reporter mRNAs.37 Thereby, the nucle-
otide derivatives were positioned at the 1st, 2nd or 3rd position
of the codon, respectively, and subsequently peptide products
of the corresponding mRNA construct were analyzed.

Strikingly, the resulting effects on translation were not only
strongly dependent on the type but also on the position of the
modifications. Thereby, 20-O-methylated nucleosides at the 1st

codon position only marginally affected translation, however,
when placed at the 2nd position they caused an almost complete
termination of protein synthesis at the modified nucleotide.37
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On the contrary, m6A revealed the strongest inhibition at the
1st and C at the 3rd codon position.37,38 In addition, also the
sequence context seemed to exert a significant influence on
translation. Whereas the 20-O-methyl group at the second
codon position was independent of the codon and the sequence
context,37 m6A exhibited a strong sequence dependence.38

In these studies, not only the efficiency of translation was
investigated but also a long-standing question concerning the
ability of mRNA modifications to rewire the genetic code was
addressed. Thereby, the best-known example of recoding the
genetic information at the RNA level is A-to-I editing.72,73

Within coding sequences I is read as a G by the translation
machinery and therefore can lead to an amino acid change,
dependent on its position within a codon.

It has been speculated thatC within coding sequences might
also possess the potential to rewire the genetic code.53,74-76 This
speculation was based on observations that C, located within a
stop codon caused partial read-through of translation.75 How-
ever, in coding sequences a recoding event, induced by Cs
could not be detected.37 In contrast, m5C induced, to some
extent, an amino acid substitution.37 Thereby, m5C placed at
the 2nd position of a CCC codon, resulted in a substitution of
proline by leucine. Importantly, this partial “recoding” was also
strongly dependent on the position of the modification within
the codon and might also be influenced by the sequence con-
text, similar to m6A.38 Thus, additional experiments will be
required to identify mechanisms how m5C interferes with ribo-
somal decoding. It further needs to be demonstrated, if this
rather weak recoding effect is of biological relevance. Neverthe-
less, it is remarkable that the decoding process of the bacterial
translation machinery is affected by m5C in a codon position-
dependent manner.

Potential functions of internal mRNA modifications

Dependent on the modification and the position within a
codon, a variety of effects on protein synthesis have been
observed. Introducing a 20-O-methyl group at the 2nd codon
position prematurely terminated translation efficiently at the
site of modification. This poses the question, as to the function
of translation termination at the modification site and the asso-
ciated peptide fragments. As a very direct consequence, modifi-
cations might merely reduce the amounts of a protein
produced by the modified mRNA, thereby regulating its expres-
sion in analogy to miRNAs, for example. It is thereby interest-
ing to note that in eukarya, mRNAs containing premature stop
codons, which would result in such shortened peptides, are
immediately degraded by the nonsense mediated decay
machinery (NMD, reviewed in77).

In bacteria, mRNAs lacking a stop codon due to shortening
of the mRNA by degradation or cleavage, are subject to the
tmRNA pathway (reviewed in78). Thereby, the transfer-
messenger RNA (tmRNA), binds to the ribosomal A site, by
first structurally mimicking an alanine tRNA, and adding ala-
nine to the peptide chain.79,80 Subsequently, the tmRNA acts as
an mRNA adding a specific protein sequence, encoded within
the tmRNA, to the truncated peptide that is subsequently rec-
ognized and degraded by a protease.81 Thus, in both eukarya

and bacteria, these mechanisms prevent the generation of
shortened peptides that might be harmful to cells.

In this context, site-specific incorporation of certain modifi-
cations within mRNAs might have a function, in addition to
merely reducing protein levels: in particular, they might enable
the generation of shortened peptides with novel functions, ben-
eficial for eukarya or bacteria, respectively. Dependent on the
level of modification within an mRNA and its position, various
amounts of these peptides can be generated and peptides of
various sizes, exhibiting different functions, might be produced.
The benefit of such a mechanism is that, despite the presence of
the modification and its impact on translation, in addition the
full-length protein could still be synthesized in sufficient levels,
thereby increasing protein diversity.

In fact, there are examples which support such a model: apo-
liprotein B (apoB) is synthesized in the liver as apoB100,
whereas in the small intestine the apoB48 variant is present.82,83

Both proteins are produced by the same gene, but through
C-to-U editing in the small intestine a UAA codon is generated,
resulting in the truncated form of the protein with distinct
functions compared with full-length apoB100.84

In addition, regulatory mechanisms exist that induce these
mRNA modifications only in response to certain environmen-
tal cues. Such a dependency has been demonstrated for C, m6A
and very recently for m1A.52,53,57 These mechanisms thus might
reflect an epigenetic regulation of gene expression on the level
of RNA, where signals from the environment of a cell are trans-
ferred to RNAs. However, if mRNA modifications in fact repre-
sent such a so far unidentified mechanism to generate smaller,
but functional, peptides of various length, still the question has
to be answered, how the ribosome deals with such a premature
termination, in particular as release factors are required to free
the premature terminated peptide from the ribosome.

In summary, the site-specific incorporation of modified
RNA nucleotides into coding regions of mRNAs revealed
astonishingly versatile effects on protein synthesis depending
not only on the type of the RNA modification but also on the
codon position (Fig. 1). In addition, various organisms and cell
types potentially cope differently with the presence of modifica-
tions within mRNAs. Their biological function can range from
fine-tuning translational rates to premature termination of pro-
tein synthesis. Post-transcriptional mRNA modifications might
even possess the potential to expand the diversity of proteins
through recoding. Therefore, it is of utmost importance to elu-
cidate all mechanisms behind.

mRNA modifications not only affect translation, but can
also act as markers to provide landing platforms for pro-
teins61,62,85,86 or stimulate other regulatory processes like
mRNA degradation60 or localization.87 Their role as markers is
reminiscent of the regulation of gene expression through epige-
netic DNA and histone modifications. In line with that, not sin-
gle modifications but a combination thereof might collectively
mediate biological functions. Such modification patterns could
serve as landmarks to stimulate or trigger down-stream effects.
However, this is purely speculative and many aspects of mRNA
modifications are still far from being completely understood.
Elucidating the regulation of mRNA modifications and their
cellular functions will open up a completely new way in under-
standing gene regulation on the level of RNA.
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