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Computational models offer a unique setting to test strategies to mitigate the
spread of infectious diseases, providing useful insights to applied public
health. To be actionable, models need to be informed by data, which can be
available at different levels of detail. While high-resolution data describing
contacts between individuals are increasingly available, data gathering
remains challenging, especially during a health emergency. Many models
thus use synthetic data or coarse information to evaluate intervention proto-
cols. Here, we evaluate how the representation of contact datamight affect the
impact of various strategies inmodels, in the realm of COVID-19 transmission
in educational and work contexts. Starting from high-resolution contact data,
we use detailed to coarse data representations to inform a model of SARS-
CoV-2 transmission and simulate different mitigation strategies. We find
that coarse data representations estimate a lower risk of superspreading
events. However, the rankings of protocols according to their efficiency or
cost remain coherent across representations, ensuring the consistency of
model findings to inform public health advice. Caution should be taken,
however, on the quantitative estimations of those benefits and costs triggering
the adoption of protocols, as these may depend on data representation.

1. Introduction
Computational models and numerical simulations are essential tools for the
understanding of epidemic spread [1,2], at scales ranging from global to local
[3–6]. They have been used in the past to examine pandemic scenarios, and
more extensively during the current COVID-19 pandemic, to evaluate the
potential impact of non-pharmaceutical interventions (NPIs) ranging from
international travel restrictions [4,5,7–9] to lockdowns or curfews aiming at
reducing global mobility and interactions [10–13], to more targeted measures
such as isolation of positive cases, contact tracing, telework, partial closures
of schools or surveillance by regular testing [14–22].

Epidemic models of infectious diseases rely both on the disease progression
within hosts and on the description of how the disease can propagate from host
to host, i.e. of the interactions between hosts. These interactions can be described
at various levels of detail: at the coarsest level, homogeneous mixing [1] assumes
that individuals potentially interact with others in a uniform way; contact
matrices divide individuals into classes, and give the average duration of con-
tacts between individuals of given classes [23]; contact networks describe
specifically which pairs of hosts are in contact [24–26]. Regardless of the
level of description chosen, a model needs to be informed by data in order to
be actionable, i.e. to provide scenarios that can inform public health decisions.
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These data are typically collected by surveys or diaries
[23,27–29] or, more recently, using wearable sensors able to
detect close-range proximity between individuals with high
spatial and temporal resolution [30–34].

Gathering data is, however, expensive, time-consuming
and implies logistical challenges, which become particularly
prohibitive for large-scale populations or multiple coupled
settings, especially for high-resolution data [25,35]. The ques-
tion of how much detail should be included in computational
models arises, therefore, naturally [6,28,36]. For instance, the
estimation of superspreading events needs to be informed by
the heterogeneity of contact patterns [37]. Coarse represen-
tations can also yield higher estimates of epidemic risk and
attack rates of specific groups than more detailed represen-
tations [6,38,39], even if a rescaling of parameters can
enhance the accuracy of models based on a homogeneous
mixing hypothesis [40]. To overcome the limitations of
coarse representations, intermediate data representations
informed by statistical heterogeneities of contact numbers
and durations, and yielding a good estimation of the
epidemic risk, have been put forward [38,39].

Although data with a limited resolution were shown to be
insufficient to inform interventions at individual scale [41],
they are still useful to inform strategies at intermediate scales
[14,15,42–44]. In practice, however, a general issue faced by
models concerns the comparison of strategies or control
measures, in terms of both costs and benefits. In the case of
COVID-19 for instance, the computational models mentioned
above have considered a wide variety of measures (contact tra-
cing, regular testing, telework, class or school closures), with
each study using specific empirical or synthetic data and a
specific representation of contacts [17,19–22,44–49]. However,
just as the data representation can affect the identification
of risk groups [38], it might also impact the assessment of
different strategies. Here we tackle this issue by leveraging
high-resolution data describing contacts between individuals
in several settings (offices, schools, hospital). We consider
several representations of the data, from fine-detailed to
coarse-grained ones [38], and use them to inform an agent-
based model of SARS-CoV-2 transmission in these settings.
We simulate several strategies (reactive and regular testing,
telework, reactive class closures) and evaluate their cost and
benefit for each representation, highlighting differences and
similarities in the outcomes.
2. Methods
We consider a model for SARS-CoV-2 spread in different set-
tings, namely two schools, an office setting and a hospital
ward. In this section, we first present the compartmental model
used and the pharmaceutical (vaccination) and NPI considered.
We then describe the high-resolution data on interactions
between individuals that we use, as well as the hierarchy of
coarse-grained representations of the contact patterns that pre-
serve the temporal and structural information of the data at
different levels of detail.

2.1. Compartmental model
We use an agent-based model in which the progression of the
disease within each host follows discrete states, as sketched in
figure 1a [20]. Infectious individuals can transmit the disease to
susceptible (healthy) individuals (S), who first enter the exposed
(non-infectious) state (E) and then a pre-symptomatic infectious
state (Ip) after a time τE. The pre-symptomatic phase lasts τp,
after which individuals either evolve into a sub-clinical infection
(Isc) or manifest a clinical infection Ic, with respective probabil-
ities 1− pc and pc. The infectious state leads finally to the
recovered state R after a time τI. The disease state durations τE,
τp and τI are distributed according to Gamma distributions,
with average values and standard deviations given in table 1
(see also electronic supplementary material, S1.2.4). We explore
in electronic supplementary material, S2.5.1, a wide range of
values of the infectious period τp + τI as sensitivity analysis.

Transmission of the disease can occur upon contact between a
susceptible and an infectious (Ip, Isc or Ic). The probability of trans-
mission per unit of time depends on the product of the
transmission rate β, the relative infectiousness rb of the infectious
individual and the susceptibility σ of the agent. The parameter β is
tuned to obtain a desired specific value for the basic reproductive
number R0, as detailed in electronic supplementary material, S1.3.
The relative infectiousness rb depends on the compartment of the
infectious individual, with a larger rcb value for infectious individ-
uals in the clinical state Ic, and lower values r pb and rscb for Ip and Isc
(table 1). It also depends on the age class of the infectious, with
adults and adolescents more infectious than children (table 2).
The susceptibility σ also depends on the age of the susceptible
individual, with adults more susceptible than other groups
(adolescents and children have a susceptibility reduced by,
respectively, 25% and 50% with respect to adults; see table 2).
Finally, the probability of developing a clinical infection is also
reduced by 60% for both adolescents and children.

We can further enrich the compartmental model of figure 1a
by considering that individuals can be vaccinated. Here, we do
not consider a dynamic vaccination rollout, and assume that vac-
cination coverage is fixed throughout the simulation. We also
assume full vaccination of individuals. We assume vaccination
to reduce rb by 50%, σ by 85% and pc by 93% We consider (in
electronic supplementary material, S2.4) levels of vaccination
coverage of 25%, 50% and 75%. As sensitivity analysis, we also
consider a less effective vaccine (see electronic supplementary
material, S2.5.4).
2.2. Non-pharmaceutical interventions
We consider several interventions based on testing and isolation
of cases, as well as the closure of classes in school settings, and
telework in offices.

We use as baseline the protocol of symptomatic testing and case
isolation: clinical cases have a probability pD = 0.5 (pD = 0.3 for
children) to take a test and then isolate for ΔQ = 7 days after
receiving the result of the test. Tests are performed outside
work/school hours. Symptomatic individuals remain isolated
while they wait for their test results. This protocol is used as a
reference protocol against which all other protocols are
compared.

With symptomatic testing and case isolation always
implemented, we consider the following additional NPIs:

— Regular testing: Non-vaccinated individuals are periodically
tested. We explore weekly, semiweekly (twice per week) or
biweekly (once every two weeks) testing with an adherence
α (fraction of the population accepting to get tested). Positive
cases remain in isolation for ΔQ = 7 d. Tests are performed
during work/school hours.

— Telework: Telework is implemented only in the office setting.
We explore weekly, semiweekly (twice per week) or biweekly
(once every two weeks) telework. For each individual, we fix
at random the days of the week in which they work remotely
and have no contact with the other office workers.

— Class quarantine: This protocol is implemented only in the
school settings. When an individual is tested positive upon
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Figure 1. Model and datasets. (a) Schematic illustration of the epidemic model. After contact with an infectious individual, a susceptible individual can become
exposed, then transition to a pre-symptomatic state. The individual can then develop either a clinical or a sub-clinical infection before recovering. (b–e) Weighted
networks of contacts for the office, hospital, primary school and high school, respectively. For each setting, interactions are aggregated over the first data collection
day. The width of an edge is proportional to its weight, i.e. the total contact time between the individuals connected. For each setting, the individuals belonging to
the same category are represented in a circle; the categories correspond to: departments in the office, roles in the hospital (doctors, nurses, administrative staff and
patients), classes in the school settings. ( f –i) Contact matrices showing the average daily density of links between categories, respectively in the office, hospital,
primary school and high school.

Table 1. Parameters of the compartmental model, taken from [20].

SEIR parameter value

mean (s.d.) (days)

τE 4 (2.3)

τp 1.8 (1.8)

τI 5 (2.0)

R0 1.5, 3.0

pc 0.5

σ 1.0

r pb, r
sc
b 0.55

rcb 1.0

Table 2. Reduction in susceptibility σ, probability of clinical infection pc
and relative infectiousness rb for children and adolescents, with respect to
their values for adults. Taken from [20].

parameter
reduction for
children (%)

reduction for
adolescents (%)

σ 50 25

pc 60 60

rb 27 0
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symptomatic testing, the whole class goes into isolation for
ΔQ = 7 d.

— Reactive testing: This protocol is implemented in the school
settings and in the office setting. When an individual tests
positive upon symptomatic testing, the non-vaccinated stu-
dents of the same class (for schools) or the members of the
same department (for offices) are tested after a time Δr1 =
1 d, with an adherence α. A second test is performed after
Δr2 = 4 d. Positive cases are quarantined during ΔQ = 7 d.
In the office setting, we additionally consider a protocol in
which regular testing is combined with telework. Further details
of the implementation can be found in electronic supplementary
material, S1.2.

The efficacy of a protocol is quantified in terms of relative
reduction of cases with respect to the symptomatic testing proto-
col at the end of 60 simulation days. The cost is measured as the
average number of days spent in quarantine per individual after
60 d. In addition, we measure the number of tests performed
after 60 d. Costs and benefits are also evaluated at additional
points in time (after 30, 90 or 120 d); see electronic supplemen-
tary material, S2.5.5.

In all scenarios, we consider self-administered antigenic tests
with turnaround time Δw = 15 min [20]. We assume the tests to
have a 100% specificity, and a sensitivity θ which depends on
the infectious compartment, with θp = 0.5, θc = 0.8 and θsc = 0.7
for the pre-symptomatic, clinical and sub-clinical compartments,
respectively. As sensitivity analysis, we consider in the electronic
supplementary material the case of PCR tests with higher sensi-
tivity and longer turnaround time (see electronic supplementary
material, S2.5.2).

2.3. Empirical contact data
We use high-resolution face-to-face empirical contacts data col-
lected using wearable sensors in four different settings, two
workplaces and two educational contexts: an office building, a
hospital, a primary school and a high school. The datasets are
publicly available at http://www.sociopatterns.org/datasets.

— The office dataset gathers the contacts among 214 individ-
uals, measured in an office building in France during
two weeks in 2015 [41]. Individuals are divided in
12 departments with different sizes.

— The hospital dataset describes the interaction among 42
healthcare workers (HCWs) and 29 patients in a hospital
ward in Lyon, France, gathered during 3 days in 2010 [32].
HCWs are divided in three roles: nurses, doctors and
administrative staff.

— The primary school dataset describes the contacts among 232
children and 10 teachers in a primary school in Lyon, France,
during 2 days of school activity in 2009 [42]. The school is

http://www.sociopatterns.org/datasets
http://www.sociopatterns.org/datasets
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composed of 5 grades, each of them comprising 2 classes, for
a total of 10 classes; there is a teacher for each class.

— The high school dataset describes the contacts among 324
students of ‘classes préparatoires’ in Marseille, France,
during one week in 2013 [50]. These classes are located in
high schools and are specific to the French schooling
system: they gather students for 2-year studies at the end
of the standard curriculum to prepare for entry exams at
specific universities. Students are grouped in nine different
classes, and classes are divided in three groups, each focus-
ing on a specialization (mathematics and physics; physics,
chemistry, engineering studies; biology).

Datasets are available as lists of contacts over time between
anonymized individuals, with a classification by department
(for the office setting), role (for the hospital) or class (for the
school settings), and in terms of students/teachers (for the pri-
mary school). From the raw data, we built the corresponding
temporal contact networks, composed of nodes representing
individuals and links representing empirically measured proxi-
mity contacts occurring at a given time (see electronic
supplementary material, S1.1.1).

Figure 1b–e displays for each setting a graph of the links
aggregated over 1 day for each dataset (where the weight of a
link between two individuals is given by the total contact time
between them). The corresponding contact matrices representing
the daily average density of interactions are shown in figure 1f–i.
In school settings and in offices, contacts occur preferentially
within groups [41,42,50].

2.4. Data representations
The empirical data describe contacts at high resolution, giving
temporally resolved information on who has been in contact
with whom. These data can be aggregated into representations
at different levels of detail, i.e. retaining only selected features
of the empirical temporal contact network while aggregating
over the others.

The first type of representations, which we denote by individ-
ual-based representations, preserve the empirical structure of the
contact network (who has met whom).

— Dynamical network: Contacts are aggregated into a different
weighted graph for each successive time window of 15min
(the weight of a link between two nodes is given by the
time in contact of the two corresponding individuals
during this time window). This representation is the closest
to the raw empirical data (that has a temporal resolution of
20 s), and will be considered as the reference against which
the other representations will be compared.

— Heterogeneous network: Contacts measured during the whole
data collection are aggregated into a single weighted net-
work. The weight of a link (i, j ) is given by the average
daily contact time between i and j.

— In addition, we consider in electronic supplementary
material, S2, the daily heterogeneous network representation:
contacts are aggregated into a different weighted graph for
each of the ddata days of data collection. The weight wij,d

of a link (i, j ) on day d is given by the total contact time
registered between i and j during the corresponding day.

In a second type of representations, the category-based
representations, we aggregate individuals into categories, corre-
sponding to departments for the office data, to roles for the
hospital data, and to classes in the school settings (and a
category for teachers in the primary school data). Individuals
belonging to a given category are considered as a priori equival-
ent. For each pair of categories X and Y, we summarize the
interactions between individuals of these categories by the list
of daily contact weights DXY = {wij,d|i ∈X, j∈Y, d∈ [1, ddata]}.
The average daily number of links between individuals of
categories X and Y is EXY = |DXY|/ddata, and the quantity
WXY ¼ P

i[X,j[Y,d wij,d=ddata gives the average daily total time in
contact between individuals of categories X and Y. We define
the three following data representations based on the concept
of contact matrix [38]:

— Contact matrix: Each individual from category X is connected
with all individuals of category Y with a weight equal to
wXY =WXY/(NX NY) (NX is the number of individuals in cat-
egory X; for X = Y we set wXX =WXX/(NX (NX− 1)/2)). This
representation only retains the average time spent in contact
between members of given categories. For instance in the
hospital data,WNUR,ADM gives the total contact time between
nurses and members of the administrative staff.

— Contact matrix of distributions: This representation preserves
the information about the density of links between categories
and the statistical heterogeneity of the daily contact durations
between pairs of individuals. First, we create for each day a
random graph assigning EXY random links connecting indi-
viduals of categories X and Y. The weight of each link
between individuals of categories X and Y is then drawn
from a negative binomial distribution, obtained by fitting
the empirical distribution DXY through a maximum-likeli-
hood procedure. In the hospital data for instance, for the
contacts between nurses and administrative staff members,
this representation retains the actual average daily number
ENUR,ADM of links between these categories, and it also
uses the fitted distribution of all observed daily contact
times between nurses and staff members.

— In addition, we consider in electronic supplementary
material, S2, the contact matrix of bimodal distributions:
similarly to the contact matrix of distributions, this repre-
sentation retains the information about the density of links
between categories, but it disregards the heterogeneity of
link weights. We thus create for each day a graph with EXY

random links connecting individuals of categories X and Y.
However, only the average of each distribution DXY is
retained: each link is assigned a weight ~wXY ¼ WXY=EXY. In
the hospital data for instance, ~wNUR,ADM gives the average
contact time on a link between a nurse and a member of
the staff.

We also consider for reference a very coarse representation
informed only by the total daily contact time:

— Fully connected: Individuals are all connected with each
other. The weight of each link is equal to the daily contact
time averaged over the whole dataset w ¼ P

XY WXY=

ðNðN � 1Þ=2Þ, where N ¼ P
X NX is the total number of

individuals.

Only the dynamical network representation retains infor-
mation on the temporal evolution of contact activity during
each day. However, we inform all other representations by the
office or school hours and by the alternation of weekdays and
weekends, as reported in table 3: no contacts occur outside of
these hours. In particular, no contacts occur during the weekends
in the office and school settings. During the nights, weekends
(and on Wednesdays for the primary school), nodes are thus iso-
lated in the simulations.
2.5. Simulation setup
Simulations are initialized at a random time with one exposed
individual chosen at random. Simulations then unfold sto-
chastically (see electronic supplementary material, S1.2), with
transmission events occurring, for each representation, along the



Table 3. Number of days ddata of the dataset, number of individuals N, initial hour (ti) and final hour (tf ) of each day, and days of activity in each week
(indicated with an X) for each setting.

setting ddata N ti tf M T W T F S S

office 10 214 8.00 20.00 X X X X X

hospital 3 71 5.00 00.00 X X X X X X X

primary school 2 242 8.30 17.15 X X X X

high school 4 324 9.00 18.00 X X X X X
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contacts available in that representation of the data. To simulate the
disease spreading on longer time scales than the available data
(table 3), copies of the initial data are repeated over time.
Periodic introductions are considered to model infections from
the community. At regular intervals a susceptible individual
in the considered setting is chosen at random and switched to
the exposed compartment (see electronic supplementary material,
S1.2.5). To simulate a limited adherence to testing, the individuals
accepting to perform tests are randomly chosen at the beginning of
each simulation. Finally, we also explore in electronic supplemen-
tary material, S2.2, the effect of initial immunity, simulated by
the fact that a fraction of the population, randomly chosen at the
start of each simulation, cannot be contaminated.

As discussed in [38,39], simulations using a given rate of
transmission β performed on different data representations
yield different outcomes: less detailed representations tend to
yield a higher epidemic final size compared to the dynamical
network representation [38], as they make more transmission
paths available. Therefore, we fix a target basic reproductive
number R0 in the absence of any control measures and starting
with one random seed in an otherwise susceptible population,
and calibrate for each representation the rate of transmission β
needed to obtain the target R0 (see electronic supplementary
material, S1.3).

We consider two types of simulations. On the one hand, we
study the dynamics of the spreading process in the absence of
interventions, starting from one random seed and with no intro-
ductions, and running simulations until no infectious individual
is present in the population (§3.1). Results are averaged over
2000 simulations, except the distributions of the number of sec-
ondary infections for which we use 6000 simulations. On the
other hand, to evaluate NPIs, we consider in §3.2 simulations
of a spread starting from one initial seed, with in addition
biweekly introductions of exposed individuals. We simulate the
spread for 60 d and compute the final epidemic size as well as
the number of days that individuals spent in quarantine and
the number of tests performed. Each result corresponds to a
median over 2000 simulations, with bootstrapped confidence
intervals (see electronic supplementary material, S1.4).
3. Results
3.1. Unmitigated spread on different data

representations
We present here the results concerning the unmitigated
spread with R0 = 3 in the office dataset, and we show in elec-
tronic supplementary material, S2.2, the results for the other
datasets and both R0 = 1.5 and R0 = 3.

Figure 2 highlights differences and similarities between
the processes taking place on different representations of
the same dataset. Figure 2a shows the distributions of the
number of secondary cases resulting from one random
seed, R0,i (the basic reproductive number R0, which takes
by construction the same value in all cases, being the average
of this distribution), obtained on the various data represen-
tations. All distributions span a rather wide range of
values, with events reaching almost four times the average.
However, the curves exhibit distinct shapes depending on
the type of representation. In the category-based represen-
tations, both small and large values of R0,i have a lower
probability than for individual-based representations, i.e.
both the probability that the spread never starts and the
probability that superspreading events occur are lower.
Fitting the distributions with negative binomials yields
indeed values of the over-dispersion parameter k larger for
the individual-based representations (≈0.5 for R0 = 3 in the
office dataset; see electronic supplementary material, S2.2)
than for the category-based ones (≈0.25 for the contact
matrix representations and ≈0.22 for the fully connected rep-
resentation, for R0 = 3 in the office dataset; see electronic
supplementary material, table S4).

Another interesting difference between the two types of
representations arises from the investigation of how the
spread evolves within the population. Figure 2b shows the
temporal behaviour of the fraction of infected individuals for
the various representations. The growth is slightly faster at
short times for individual-based representations with respect
to category-based ones, saturating at earlier times and smaller
final epidemic sizes. These differences in dynamics can be
understood by examining which nodes are infected at early
and late stages of the spread. Indeed, a spreading process on
a network tends first to reach the most connected nodes,
with a following cascade towards the less connected nodes,
so that the average number of neighbours of newly infected
nodes decreases with time [51]. Here, as heterogeneities con-
cern contact times rather than numbers of neighbours [35],
we show in figure 2c the average daily strength <snew> (w) of
individuals who are infected and become exposed during
week w (the strength s of an individual is the average daily
time in contact with other individuals). The cascading process
from individuals with large s towards individuals with lower s
is seen as a decreasing trend of <snew> (w) for the individual-
based representations. For the category-based representations,
the cascade still exists, but the effect is weaker: all individuals
within a category are equivalent, but some categories are more
connected than others, so that some heterogeneity remains
in the population. Overall, at early times the newly infected
individuals are more connected in the individual-based rep-
resentations than in category-based ones, leading to a faster
spread. At later times, the tendency is inverted, with a
slower spread on individual-based representations; moreover,
as the remaining susceptible individuals tend to be less well
connected, and as fewer paths are available to reach them,
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obtained as a bootstrapped CI (see electronic supplementary material, S1.4).
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the final epidemic size is also smaller. On the other hand,
simulations using the fully connected representation cannot
show any such effect as all individuals are equivalent. An
additional difference is observed between the heterogeneous
network and the dynamical network representations: more
causal propagation paths are present in the heterogeneous net-
work case (where the same network of contacts is present
every day) so that more nodes with smaller strength can be
reached by the cascade and a larger epidemic size is obtained
(as seen in figure 2b).

Similar results across representations are obtained consider-
ing a partially immune population (electronic supplementary
material, S2.2).

3.2. Robustness of the evaluation of non-
pharmaceutical interventions

We show here the results of simulations implementing NPIs
for R0 = 1.5, and present additional results and sensitivity
analysis in electronic supplementary material, S2.3–S2.5. We
illustrate the numerical simulations in electronic supplemen-
tary material, videos SV1 and SV2: each video shows a single
run in the office dataset, with the symptomatic testing proto-
col (SV1) and the regular testing protocol (SV2, with weekly
testing and 75% adherence). In each video, we present side-
by-side runs on three different representations of the data:
the dynamical network, the heterogeneous network and the
contact matrix of distributions. This shows how the links of
the dynamical network change at every time step, while the
heterogeneous network links are fixed (disappearing only
during nights and weekends) and the links of the contact
matrix of distributions representation are renewed daily.

We consider testing and isolation of symptomatic individ-
uals to be the minimal strategy at play, and focus on a
comparison of all protocols with respect to this strategy
(the impact of this baseline intervention with respect to the
absence of intervention is shown in electronic supplementary
material, S2.3). We present the results for the office and pri-
mary school datasets in figure 3, and show the results for
other datasets in electronic supplementary material, S2.3, as
well as additional values of the protocols’ parameters.
Figure 3a,b shows the reduction in the median epidemic
size after 60 d for several protocols, with respect to the symp-
tomatic testing, with protocols ranked in order of increasing
reduction. Strikingly, even if the precise values of the efficacy
of each protocol depend slightly on the data representation
used in the simulations, the ranking of protocols remains
almost always the same, for both benefits (figure 3a,b) and
costs (figure 3c,d ). In particular, telework in the office is
particularly efficient, as it reduces the number of contacts
of all individuals [19], whereas reactive strategies at school
are less efficient than regular testing, because asymptomatic
transmissions mostly go undetected, as shown in [20].
These conclusions are reached for all the data representations.
Note that the robustness of the ranking with respect to the
representation is very strong but not perfect: if two protocols
yield very close average efficacy values, one can seem
slightly better than the other for one representation and
slightly worse for another. Moreover, some exceptions can
be observed, such as the case of the fully connected repre-
sentation, giving a lower efficacy of the reactive testing
protocol compared to biweekly regular testing with 25%
adherence, while the other representations yield the opposite
ranking (see electronic supplementary material, S2.3.1).
Figure 3e,f shows that the impact of a protocol on the
distributions of epidemic sizes is also similar across repre-
sentations: here, regular testing yields a strong reduction
of the probability of having a large epidemic size and a
higher peak at small sizes. We also show in electronic sup-
plementary material, S2.3, how, when two protocols have
similar efficacies, the resulting distributions of epidemic
sizes are also very similar, and that this similarity holds
across representations.

We illustrate these results further in figure 4, where we
investigate the question of the adherence to regular testing
needed in offices to obtain the same efficacy as telework,
for a given testing frequency (figure 4a). Although the
value of the median size reduction obtained by telework
slightly depends on the data representation (1 day per
week of telework yields a 59+ 3% and 60+ 3% reduction
for contact matrix and dynamical network representations,
respectively), we estimate that regular testing with the same
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frequency becomes as efficient as telework for adherence
values that remain similar across data representations, ran-
ging from 84% (contact matrix representation) to 81%
(dynamical network representation). Figure 4b considers
instead the comparison between the regular testing and the
class quarantine protocol: the estimation of the adherence
needed for regular testing to become more efficient than
class quarantine is also consistent across data representations.
Another interesting point concerns the effect of increasing the
number of tests, either by increasing adherence or by increas-
ing frequency, within the regular testing protocol. First, the
increase in efficacy faces diminishing returns (the efficacy
grows less fast than proportionally to the number of tests).
Second, and as already noted in [20] with simulations on
the dynamical network representation of a school dataset,
increasing adherence has a bigger impact than an increase
in frequency (at equal additional number of tests).
Figure 4c,d illustrates these points by showing the average
size reduction per test for the weekly testing protocol with
adherence 50%, and comparing it with the additional size
reduction per test obtained for twice the number of tests,
obtained either by doubling the adherence at the same fre-
quency, or by doubling the frequency at the same
adherence. We show in electronic supplementary material,
S2.3.3, that this property holds in all settings, and for all
data representations.

In electronic supplementary material, S2.3.2, we examine
the impact of the reproductive number R0. As also observed
in [20,48], the efficacy of each protocol depends in a non-
monotonic way on R0. At small R0, even the symptomatic test-
ing protocol leads to small epidemic sizes, so that additional
protocols have a limited impact. At very large R0 instead,
even the best protocols reach their limits and the spread
cannot be well mitigated. These arguments hold for any data
representation, and we indeed observe this non-monotonicity
for all data representations. However, the optimal range of R0

depends on the data representation, with a larger value of
the optimal R0 for the category-based representations. More-
over, the differences between the efficacy values of a given
protocol by using different data representations become
larger at large R0, with a larger estimated efficacy when
using category-based representations.



office

% adherence α % adherence α

60

0.05

0.04

0.03

0.02

0.01

0

0.05

0.04

0.03

0.02

0.01

0

40

20

0

0 25 50 75 100 0 25 50 75 100

60

80

40

20

0

%
 c

as
e 

re
du

ct
io

n

dy
na

m
ic

al
ne

tw
or

k
he

te
ro

ge
ne

ou
s

ne
tw

or
k

co
nt

ac
t m

at
ri

x
of

 d
is

tr
ib

ut
io

ns

co
nt

ac
t m

at
ri

x

fu
lly

 c
on

ne
ct

ed

dy
na

m
ic

al
ne

tw
or

k
he

te
ro

ge
ne

ou
s

ne
tw

or
k

co
nt

ac
t m

at
ri

x
of

 d
is

tr
ib

ut
io

ns

co
nt

ac
t m

at
ri

x

fu
lly

 c
on

ne
ct

ed

%
 c

as
e 

re
du

ct
io

n

av
er

ag
e 

%
 c

as
e

re
du

ct
io

n 
pe

r 
te

st

av
er

ag
e 

%
 c

as
e

re
du

ct
io

n 
pe

r 
te

st

weekly telework
representation
dynamical
network
heterogeneous
network
contact matrix
frequency

weekly
biweekly

weekly regular
testing 50%
(+adherence) 100%
(+freq) semiweekly

class quarantine

biweekly
 telework

primary school(a) (b)

(c) (d)

Figure 4. Effect of increasing adherence and frequency in regular testing protocols. (a) Effect of the adherence α for a given frequency (once per week or every two
weeks) in the regular testing protocol for the office dataset and R0 = 1.5, compared with telework, for several data representations. Horizontal lines correspond to
the performance of telework at the same frequencies. (b) Effect of the adherence α for a given frequency (once per week or every two weeks) in the regular testing
protocol, compared with the class quarantine protocol, for the school dataset and R0 = 1.5. Horizontal lines correspond to the class quarantine protocol. (c,d ) Effect
of improving adherence or frequency, for R0 = 1.5 for office (c) and primary school (d ). We consider weekly regular testing and a ¼ 50%, and we measure the
average size reduction (with respect to symptomatic testing) per test (in blue), and the additional size reduction per additional test when doubling the adherence
(in orange), and when doubling the frequency (in green).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220164

8

Different protocols have different efficacies but also differ-
ent costs, which need to be taken into account in decision-
making processes. We thus compare in figure 3c,d the cost
of each protocol simulated on each data representation, com-
puted as the average number of days spent in quarantine
per node. As for the efficacy, the precise evaluation of the
cost depends on the data representation, but the ranking
of protocols according to their cost does not (this is also
true for the cost in terms of number of tests, as shown in elec-
tronic supplementary material, S2.3). In particular, regular
testing at school avoids a large fraction of the number of
days of class lost, with respect to reactive class closures. In
the office, regular testing is more costly than telework, as
the latter simply decreases the number of contacts without
quarantining individuals.

Overall, figure 3 indicates that a coherent picture of the
relative efficacy and cost of different protocols is obtained
when using different representations of the data in the
numerical simulations, even if quantitative differences in
the precise evaluation are observed. Additional results
shown in electronic supplementary material, S2.5, indicate
that these conclusions are robust with respect to changes in
disease and protocol parameters: even if the values of the effi-
cacy and costs of each strategy depend on the parameters,
and the ranking of strategies can even vary (e.g. for different
values of the infectious period), this ranking remains inde-
pendent of the data representation. We also explore in
electronic supplementary material, S2.4, the combined effect
of NPIs and vaccination. Using any data representation,
vaccination alone reduces the final epidemic size even in
the absence of NPIs or for the symptomatic testing protocol,
and decreases the costs in terms of quarantines. Considering
vaccination coupled to NPIs, results confirm the robustness
of the ranking of protocols, when evaluated in terms of
costs and benefits, highlighting the supplementary control
that these strategies may have at intermediate vaccination
coverages [20,44].
4. Discussion
We used high-resolution contact datasets to build aggregated
representations and evaluate how the loss of resolution
informing epidemic models can influence the evaluation of
prevention and control strategies. Numerical simulations of
a model for the spread of SARS-CoV-2 in educational and
professional contexts show that detailed representations are
needed to correctly account for over-dispersion of reproduc-
tion numbers and for an accurate evaluation of the efficacy
and costs of each strategy. However, coarse representations
containing only very summarized information are good
enough to rank protocols, and thus to provide insights on
better options given the context.

Models offer a unique opportunity to evaluate strategies
for prevention and control of epidemics, anticipating their
expected advantage and costs associated in order to inform
public health decisions. Depending on the context and the
question to be addressed, models need to integrate an
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accurate description of the population under study and of the
contacts along which disease transmission occurs. In recent
years, the increasing availability of datasets describing con-
tacts between individuals has made it possible to devise
models exposing the complexity of human interactions in
terms of number of contacts, repeated contacts, frequency,
duration, etc. For instance, models integrating data describ-
ing interactions with high temporal and spatial resolutions
can be used to design and study measures tailored to
specific contexts such as schools, where repetition of contacts
because of friendships and structural organization of contacts
due to classes impact the resulting epidemic dynamics
[14,20,21,47]. Complex models are, however, data hungry,
might be difficult to interpret, and are more time-consuming
in terms of development and simulations. Moreover, detailed
data are not always available, and datasets in specific settings
may provide a narrow vision of the interaction patterns
occurring in those contexts that may be difficult to generalize.
By losing some of these specificities, aggregated represen-
tations may become more generally applicable.

Our results show that some differences emerge in the dis-
ease spread simulated on different data representations, even
when calibrating the simulations to yield the same basic
reproductive numbers. In particular, category-based rep-
resentations tend to find a lower over-dispersion of the
distribution of the reproductive number, and could thus
lead to difficulties in correctly estimating the role of super-
spreading events. This is in line with recent results
highlighting the role of contact heterogeneities in super-
spreading [37]. As they ignore individual differences, these
representations cannot inform strategies targeted towards
specific individuals, they are also less able to describe the cas-
cading of a spread from individuals with a high connectivity
to less well connected ones [51], and differ in the estimation
of the final epidemic size [38].

The picture is more complex when dealing with the
evaluation of control protocols. On the one hand, the ranking
of protocols according to their efficacy or their cost does not
depend on the data representation. The picture of which pro-
tocol is most efficient in each context remains coherent. When
a protocol depends on several parameters, the information on
which parameter is the most important to act upon is also
coherent across data representations (e.g. increasing adher-
ence for regular testing protocols has a larger impact than
increasing frequency, at given number of tests). It is even
possible to use coarse data representations to quantify the
adherence needed for the regular testing to become more effi-
cient than, for example, telework or class quarantine. On the
other hand, using various data representations can lead to
quantitative differences in the precise values of benefit and
cost. This can be a limitation for coarse representations
when decisions require accuracy in the estimate of the
benefit/cost—for example, to define a minimum benefit
that would trigger the application of the measure. Such
decisions should thus take into account an inherent uncer-
tainty in the model outcomes due to the limited
information contained in the data.

We found that regular testing with high enough adher-
ence is a very efficient strategy allowing to limit spread in
school contexts while minimizing the number of lost
school-days, confirming prior works [20,21,52]. In offices,
telework is also very efficient [19]. Reactive class closure or
reactive testing instead have limited efficacy. The robustness
of such results across data representations is explained by
the fact that these NPIs reduce the epidemic size through
mechanisms that do not depend on the data description.
Indeed, the efficacy of reactive measures is limited by
the infectiousness of pre-symptomatic and asymptomatic
individuals: for instance, due to the resulting silent propa-
gation, many other classes can already have been reached
by the infection when one class is closed upon the detection
of a case at school [20]. By contrast, regular testing is a proac-
tive approach that allows one to detect also pre-symptomatic
and asymptomatic cases. Telework on the other side simply
reduces the time in contact, reducing the probability of conta-
gion events whatever the data representation. Overall, our
results support the use of even coarse representations of the
interactions between individuals in settings such as schools
or workplaces when evaluating NPIs and potentially
choosing between possible protocols.

Individual data such as the ones used in this study
across different settings are rarely available. Moreover, the
existing datasets are each specific to a context and potentially
to the time of the data collection campaign. In emergency
situations or during a crisis such as the current pandemic,
gathering such data in real time encounters many challenges,
and more coarse-grained representations are generally
opted for. Indeed, summarized data are more accessible,
and can be enriched by some robust statistical features of con-
tact data, such as the heterogeneities in contact durations
[30,35,38,43]. In particular, the division of a population into
categories with, for example, different mixing patterns and/
or schedules can be performed from limited information
such as the existence of classes in a school or of departments
in offices. A population can also be separated in groups
according to an expected diversity of behaviours, as for
instance in [44] that singles out the group of ‘more social’
students in a US campus as the ones belonging to fraternities
and shows that targeted testing of this category can be an
efficient strategy.

Our work comes with several limitations. First, the data
we used describe contacts collected during only few days.
Here, we have used the simplest method of repeating the
dataset in order to simulate the contacts in the population
during an extended time, whereas contacts are not repeated
identically in the real world. However, the simulations per-
formed in [20] used different ways of artificially extending
the data duration and found no differences in the results.
The settings we have considered are also relatively small,
but represent the state of the art in terms of data describing
interactions between individuals, and have very different
structural and temporal properties because of structure and
activities performed. More work needs to be done to generate
synthetic datasets at such resolution in larger settings.
Second, we used a rather simple coupling with the commu-
nity, through regular introduction of cases, as the data we
considered do not include contacts occurring outside of the
studied context. This implies that we do not evaluate the
impact of the interventions on the community: different
approaches would be needed for this purpose [22,53],
which, however, would lose resolution within each setting.
Without going to such large-scale agent-based models, a
possible improvement would be to inform the model with
empirical data on the contacts that individuals have with
members of the community, or with one another outside of
school. Third, we have here considered one specific infectious
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disease. However, our results are robust with respect to vari-
ations in the basic reproductive number, initial immunity and
the impact of vaccination. We have also explored a wide
range of possible infectious periods, finding that it can
affect the efficacy of measures and even their ranking, but
that the ranking remains independent of data representation,
at fixed infectious period (as already noted in [6,38], the pre-
cise order of contacts could affect the results for very fast
processes whose timescales are of the same order as the tem-
poral resolution). Moreover, SARS-CoV-2 is of particular
interest both practically and theoretically, as the pre-sympto-
matic and asymptomatic transmissions make it necessary to
go beyond the usual reactive strategies and to evaluate a
range of protocols.

Our modelling approaches are agent-based, as the simu-
lations consider distinguishable agents even when the data
representations are category-based, which suggests two
lines of further research. On the one hand, it would be inter-
esting to extend our results to compartmental models.
Indeed, the epidemic curves obtained in a free-spreading
scenario by agent-based models and compartmental models
can be mapped onto one another upon appropriate recalibra-
tion of parameters [40]. However, whether this remains the
case when interventions are in place is an open question.
On the other hand, the agent-based models we considered
deal with the interactions between individuals but do not
address the issue of individual heterogeneities with respect
to the disease transmission (beyond the differences between
children, adolescents, adults), such as heterogeneous infec-
tious periods [54] or heterogeneous rates of transmission
[55], nor with respect to potential changes of behaviour
depending on the epidemic situation [56]. An interesting
extension of this work would be to consider situations
where these differences between individuals are correlated
with their contact behaviour: to take into account such corre-
lations, one would need to go beyond the category-based
representations we have considered here, allowing hetero-
geneous properties within each category, in the spirit of
degree-corrected stochastic block models [57].
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