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Abstract: Gestational diabetes mellitus (GDM) is a common pregnancy-related condition afflicting
5–36% of pregnancies. It is associated with many morbid maternal and fetal outcomes.
Mood dysregulations (MDs, e.g., depression, distress, and anxiety) are common among women with
GDM, and they exacerbate its prognosis and hinder its treatment. Hence, in addition to early detection
and proper management of GDM, treating the associated MDs is crucial. Maternal hyperglycemia and
MDs result from a complex network of genetic, behavioral, and environmental factors. This review
briefly explores mechanisms that underlie GDM and prenatal MDs. It also describes the effect of
exercise, dietary modification, and intermittent fasting (IF) on metabolic and affective dysfunctions
exemplified by a case report. In this patient, interventions such as IF considerably reduced maternal
body weight, plasma glucose, and psychological distress without any adverse effects. Thus, IF is one
measure that can control GDM and maternal MDs; however, more investigations are warranted.

Keywords: gestational diabetes mellitus; Egypt; depression; distress; anxiety; exercise;
caloric restriction; intermittent fasting; dietary restriction; low glycemic index diet; gut microbiome;
insulin resistance; placental hormones; insulin estrogenization; high protein diet; poverty; obesity;
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1. Introduction

Gestational diabetes mellitus (GDM) is an abnormal metabolic condition characterized by
hyperglycemia during pregnancy [1,2]. GDM impacts around 5% of pregnant women in the
United States [3], and reports from other countries indicate that it may affect more than 36% of
pregnant women [4,5]. The prevalence of GDM is associated with increased obesity and type 2 diabetes
mellitus (T2DM) resulting from an unhealthy diet and sedentary lifestyle [6,7]. It is also associated
with poverty and pre-pregnancy obesity [8,9], sleep apnea, poor sleep quality, and short sleep [8].
These factors may increase the odds of developing GDM [9].

In Egypt, in addition to poverty, obesity and malnutrition are highly prevalent, particularly
in the young [10]. Obesity among Egyptian females strongly correlates with prevalence of GDM,
greater expression of diabetes-related autoantibodies, and subsequent development of T2DM after
childbirth [11,12]. Other risk factors for GDM in Egypt include maternal age over 35 years, high blood
pressure and pre-eclampsia, family history of diabetes, urban living, lower levels of education,

Int. J. Environ. Res. Public Health 2020, 17, 9379; doi:10.3390/ijerph17249379 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-6448-8282
https://orcid.org/0000-0002-7209-3790
http://dx.doi.org/10.3390/ijerph17249379
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/24/9379?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 9379 2 of 23

and prior history of GDM, abortion, induced labor, and macrosomia (large for gestational age) [13–15].
Unfortunately, reports on the prevalence of GDM in Egypt (6–8.9%) originate from a few small-scale
studies [13–15]. Nevertheless, this prevalence is considerably lower than the overall stated prevalence
of GDM in Africa (13.6%) [16], and it is less likely to reflect the actual magnitude of GDM in Egypt
given that the studies may not be representative of the population—the sample sizes were relatively
small (130–700 participants), and estimation of a sample size was not performed in any of these studies.
Furthermore, the subjects included were from small cities or rural areas. In these regions, women do
not usually have proper access to healthcare services (e.g., due to lack of transportation and lower
levels of education): urban residency and lower levels of education affect the prevalence of GDM
in Egypt [13–15].

GDM causes numerous short- and long-term complications, both in the mother and in her
offspring [17]. It predisposes the pregnant women to hypertension and preeclampsia [18]. Obesity,
often present in GDM, also increases the need for insulin therapy during pregnancy and increases
women’s vulnerability to T2DM after childbirth [5,19]. The need for insulin increases with a greater
metabolic dysfunction—GDM patients receiving insulin have a higher fasting glucose on the oral
glucose tolerance test (OGTT) than patients on diet therapy alone [19]. Maternal insulin resistance and
increased body mass index (BMI) during pregnancy are associated with changes in placental levels of
multiple major metabolites such as lipids, carbohydrates, acylcarnitines, branched-chain amino acids,
folate, and choline which correlate, in part, to fetal size [20,21]. GDM, along with its related obesity,
contributes to placental DNA methylation, which can negatively affect the developing fetus [1,2,20].
GDM increases the rates of miscarriage, dystocia, cesarean section, neonatal death, premature
birth, congenital anomalies, macrosomia, respiratory distress, neonatal jaundice, hypoglycemia,
hypocalcemia, and polycythemia [18,22,23]. GDM-related fetal hyperglycemia and hyperinsulinemia
are associated with aberrant DNA methylation at the insulin-like growth factor (IGF) 2 and neighboring
H19DMRs, which increase the risk of developing childhood obesity, neoplasms, and diabetes, in addition
to metabolic and cardiovascular diseases during adulthood in children of GDM mothers [1,5,23,24].
More GDM complications occur in women with high pre-pregnancy BMI, currently overweight/obese,
and over the age of 35 years [19,22]. Moreover, ethnicity plays a role in metabolic activity [8,9,19];
Asian GDM women need insulin despite their lower pre-pregnancy BMI compared with Caucasian
GDM women [19].

Pre-menstrual syndrome [25], prenatal stress [26], post-partum depression [27], and late-life
depression/anxiety in menopausal women [28] are examples of mood dysregulations (MDs) that affect
women during different stages of life [25]. Studies evaluating MDs during pregnancy report that
the prevalence of maternal depression and anxiety is up to 27% and 24%, respectively [29,30] with a
high overlap between symptoms of depression, anxiety, and stress [31]. Although mood disorders
occur in 7.4% of women during the first trimester, the prevalence dramatically rises as the pregnancy
progresses; they reach their highest rates during one year after delivery [32]. Curiously, symptoms of
anxiety and depression that develop during pregnancy compared with a pre-pregnancy diagnosis
increase the likelihood of not initiating breastfeeding, early termination of breastfeeding, and increased
formula usage [33,34]. In addition, prenatal depression correlates with poor maternofetal attachment
and a higher postpartum parenting stress [33]. Prenatal and postnatal maternal MDs and perception
of stress are associated with prematurity, birth weight abnormalities, stunted growth, cognitive and
neurodevelopmental deficits, infants’ temperament, anxiety, and depression, and delay in fine motor
and language development [26,27]. Pharmacological treatment of mood disorders during pregnancy
mostly comprises selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake
inhibitors (SNRIs) [32]. However, most psychotropic drugs cross the placental barrier to affect the
serotonergic and catechol-aminergic systems in the brain of the growing fetus resulting in long-term
neurodevelopmental impairments [32,35]. Longitudinal data show that SNRIs increase the rate of
pregnancy hypertension, higher birth weight, and lower Apgar scores in antenatally exposed newborns
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regardless of the dose or drug class [33]. In addition, sudden cessation of these drugs can result in
acute physical and emotional adverse effects [32].

Both GDM and mood disorders can be either initiated or mitigated by food consumption [36–39];
a hypercaloric diet is reported to alter the endocrine system, promote adiposity, and create an
inflammatory milieu that promotes insulin resistance and alters the structure of the brain [36,40].
Experimentally, a hypercaloric diet reduces hippocampal brain-derived neurotrophic factor
(BDNF) resulting in the development of depression–anxiety like behaviors in young rats [36].
Frequent consumption of certain food groups, e.g., meat/processed meats, protein of animal sources,
and potatoes increased the risk of GDM in women [41]. Similarly, excessive intake of ultra-processed
food is associated with increased odds of depression in young adults [42]. On the contrary, moderate to
strong pre-pregnancy adherence to a Mediterranean diet, diets that control hypertension, and the
Alternate Healthy Eating Index diet reduces the risk of developing GDM by up to 38% [41,43].
In addition, adherence to a Mediterranean diet also reduces depression and mitigates depressive
symptoms [44]. Therefore, the literature emphasizes the pivotal role of dietary interventions in GDM
and mood disorders [43,44].

Physical activity affects both metabolism and mood [41,45]. Exercise operates through different
mechanisms that involve modulation of: (1) gut microbiome alterations and gut dysbiosis [46,47],
(2) key signaling involved in vital cellular processes (e.g., autophagy, metabolism, etc.), and (3) signal
transduction that counteracts the toxic effects of free radicals and inflammatory mediators [48,49].
Cumulative evidence shows that the odds of GDM decrease by 46%, 30%, and 21% in response to
pre-pregnancy exercise >90 min/week, any pre-pregnancy exercise, and early pregnancy exercise,
respectively [41]. Sedentary behaviors such as watching television or using computers/internet for a
long time increase depression [50]. In parallel, regular exercise lowers the odds of depression, anxiety,
and aggression [47,48]. Thus, physical activity represents a key modality for metabolic regulation,
especially during pregnancy [38]. Not surprisingly, trivial levels of exercise exert a protective effect
against prenatal depression [45].

The co-occurrence of GDM and MDs contributes to the complications alluded to earlier in mothers
and their offspring. This review elaborates on the role of diet in causing and improving GDM and
MDs. It will also shed light on the benefits of modifying diet, exercise, and intermittent fasting (IF) in a
patient suffering GDM associated with MDs.

2. Pathophysiology of GDM

Pregnancy is a period of hormonal stress, during which metabolic changes occur to fulfill maternal
and fetal needs for nutrients [21,51]. Glucose is the predominant energy source for fetal growth [6].
In normal pregnancy, the utilization of maternal glucose decreases due to a progressive decline in insulin
sensitivity (by up to 60% compared with pre-pregnancy levels) lasting until the second trimester [7].
The aim of maternal insulin resistance is to limit maternal use of glucose to ensure its adequate supply
to the growing fetus [6]. In this respect, placental lactogen (PL), which acts locally to promote placental
growth and function, modulates maternal IGF to ensure adequate fetal nutritional supply [51].

Experimental evidence shows that under normal physiological conditions, PL maintains maternal
metabolic homeostasis by promoting the proliferation of pancreatic β-cells [52]. PL also inhibits the
production of proapoptotic molecules in the endoplasmic reticulum (ER) stress pathway that are
evoked by chronic ER stress resulting in increased human β-cell survival and decreased incidence of
diabetes in rodents [53]. However, alterations in PL develop in obesity where vital metabolic molecules
become dysregulated, such as adiponectin, an adipose tissue-derived adipokine that contributes
to insulin sensitivity and regulates glucose metabolism [54]. Because of hypoadiponectinemia,
which is often associated with chronic low-grade inflammation [54,55], PL fails to promote β-cell
proliferation [52]. Instead, it exerts a lipolytic activity—increasing circulating fatty acids—resulting
in a maternal metabolism shift toward lipids rather than glucose as a source of energy [7]. There is
evidence that pregnancy is characterized by mild long-term inflammation with an increase in the
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neutrophil-to-lymphocyte ratio. Increased maternal age and high pre-pregnancy BMI are associated
with exacerbation of inflammation and secondary tissue damage [56]. Pancreatic β-cell exposure to
proinflammatory cytokines is associated with ER stress and cellular damage/death [7,53]. GDM develops
when pancreatic β-cell insulin secretion is not sufficient to counteract insulin resistance [7,51].

Gut microbiome imbalance has been recently well-acknowledged as a key contributor to serious
disorders including diabetes mellitus and obesity [48,55,57], cancer, and a trail of neurodegenerative
diseases such as major depression [39,46,58], Alzheimer disease [54], and Parkinson disease [59].
Many factors interfere with the structure of the gut microbiome either by limiting the diversity of
intestinal microflora or by promoting the propagation of endotoxic bacterial species. Such factors
include unhealthy diet, especially low-fiber/high-fat and high-carbohydrate diets, in addition to physical
inactivity and hormonal changes [21,28,60,61]. Microbes detrimental to health act by: (1) replacing
health-promoting bacteria e.g., Lactobacillus; (2) degrading important nutrients such as amino acids;
and (3) producing toxic metabolites that access the systemic circulation to affect the functioning of
multiple organs [46,61,62]. Research shows that the maternal gut microbiome has a tendency for a
shift to colonization patterns of obesity in normal pregnancy resulting in a heightened inflammatory
condition, which is associated with increased insulin resistance [21]. Compared with normoglycemic
controls, the gut microbiome of GDM patients exhibits reductions in Methanobrevibacter smithii,
Alistipes species, Bifidobacterium species, Eubacterium species Akkermansia, Bacteroides, Parabacteroides,
Roseburia, and Dialister, in addition to increased abundance of Parabacteroides distasonis, Klebsiella variicola,
Ruminococcus, Eubacterium, Prevotella, Collinsella, Rothia, Desulfovibrio, Actinobacteria, and Firmicutes.
Changes involving some of these microbes are evident in T2DM patients [63].

Numerous environmental factors interfere with the gut microbiome and maternal metabolome
causing pregnancy-related metabolism to shift toward developing insulin resistance and glucose
dysregulation [2,21]. For example, consumption of unhealthy food and physical inactivity are
lifestyle factors that can alter metabolic homeostasis to a great extent [17,55]. In this regard,
excessive carbohydrate intake and exposure to insulin (such as in insulin resistance) trigger acute
epigenetic changes in tissues involved in glucose uptake (e.g., skeletal muscle). Such alterations involve
decreased DNA methylation in the Ca2+ pump ATP2A3 gene and accelerated DNA methylation in
the gene body of death-associated protein kinase 3 (DAPK3) gene, which regulates cell proliferation,
apoptosis, and autophagy [40,47]. Studies associate GDM with maternal exposure to endocrine
disruptors, environmental chemicals that alter the endocrine system and interfere with hormonal action
at different stages resulting in adverse effects [23]. The obesogenic phthalates (diesters of phthalic acid)
and bisphenol A (a compound that results from condensation of phenol and acetone) are widely used
in the environment and industry. For example, they are included in insecticides and food packaging
plastic. These compounds accidently enter the food chain and alter human health. Research links
maternal exposure to these compounds to the development of GDM [23].

Pre-pregnancy obesity and excess gestational weight gain increase the risk of GDM [2,21].
Obesity promotes metabolic dysfunction by altering the gut microbiome structure. Meanwhile,
dietary lipids interact with molecules involved in the regulation of the immune response resulting in
systemic inflammation and secondary insensitivity to insulin [47,49]. Molecules secreted by the adipose
tissue and extracellular vesicles, such as adipokines and adipocytokines, interfere with placental
nutrient transport [18]. Dysfunctional adipokine profiles associated with excessive accumulation of
subcutaneous and visceral adipose tissues are evident in pregnant women with GDM independent
of BMI. Adiponectin deficiency promotes insulin resistance, maternofetal hyperglycemia, and DNA
methylation [64]. High fat mass is associated with chronic inflammation and persistent production of
pro-inflammatory cytokines out of constant activation of macrophages and related toll-like receptor
4 (TLR4) [48,55,61,65]. Constantly elevated levels of cytokines induce various cellular alterations
through the modulation of protein properties and functions. These process subsequently are associated
with modulation of signal transduction conducive to oxidative damage, increased stress of the
ER, and stimulation of mitochondria-related cell death signaling cascades [47,66]. In this respect,
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cumulative evidence shows that an inflammatory milieu during pregnancy endangers pancreatic islets
through the promotion of mutations in pancreatic β-cell factors, paired domain homeobox (Pax) family
of transcription factors (PAX4 and PAX8), and the chromatin remodeler factor high mobility group
protein 20A (HMG20A) [1]. Indeed, experimental evidence confirms the contribution of obesity to
autophagic failure and heightened apoptosis in pancreatic islets [67].

In addition to the inflammatory effects of maternal obesity, fetal membranes represent an internal
maternal environmental factor, which may contribute to GDM and complicate pregnancy through
the release of various molecules at different stages of gestation. Although fetal membranes (FMs) of
normal glucose tolerance women release detectable levels of high mobility group box 1 (HMGB1),
FMs of GDM women produce high level of HMGB1 as depicted by Western blot analysis [5]. HMGB1 is
a proinflammatory molecule that increases in T2DM [68] and in GDM during the third trimester [5].
HMGB1 activates signaling involved in inflammation and oxidative stress by binding the receptor
of advanced glycation end products (RAGE), and TLR2 and TLR4, which indirectly activate C-X-C
chemokine receptor type 4 (CXCR4) [68–70]. HMGB1 is a key factor in complications that develop in
T2DM such as neuroinflammation and neuropathy [70]. Compared with premature infants with low
cord blood HMGB1, neuroinflammation and brain injury is significantly elevated among premature
infants with cord blood high in HMGB1 and low in soluble RAGE (sRAGE). sRAGE is a truncated form
of the receptor that comprises the extracellular domain of RAGE, and can block RAGE-activation [69].

Women are more genetically prone to metabolic dysfunction than men, and such vulnerability
increases during pregnancy [71]. In vitro investigations of epigenetic profiles of human tissues involved
in glucose metabolism show higher DNA methylation in genes that regulate energy metabolism,
inflammation, and oxidative phosphorylation in women compared with age and gender cross-matched
men. These differences were spotted on autosomal chromosomes and the X-chromosome, despite the
absence of sex hormones and other factors that differ between sexes [47,71–73]. Research has uncovered
a genetic overlap of maternal insulin resistance with T2DM involving loci associated with β-cell
function [1]. Placental-related activity in GDM is associated with dysregulated expression of micro,
long, and circular non-coding RNAs (ncRNAs). Dysfunctional ncRNAs alter cellular metabolic
processes as they interfere with β-cell function and body response to insulin. ncRNAs dysregulation
is evident in GDM, and it alters the intrauterine environment [17,74]. For instance, long ncRNA
MALAT1 is activated in GDM, resulting in upregulation of the tumor growth factor β (TGF-β)/nuclear
factor-kappa B (NF-κB) signaling pathway to subsequently increase the release of inflammatory
cytokines [74]. As a result, altered ncRNAs trigger short- and long-term complications in GDM, such as
macrosomia, trophoblast dysfunction, and metabolic and cardiovascular diseases. The latter result
from the interference of ncRNAs with the expression of target genes in the offspring [17].

3. Mood Dysregulations in GDM

Research shows that shifts in feminine hormones increase liability to MDs [28,35].
Evidence signifies that women with GDM are at high risk for developing depression during pregnancy
(adjusted odds ratio (AOR) = 2.46, 95% CI: 1.01 to 6.03) [3], and around one-third of women with
GDM develop post-partum depression [35,38]. The relationship between mood disorders and GDM is
reciprocal [3,35,38]. A prospective Chinese study followed 1426 single-child healthy pregnant women
from 8 to 14 weeks of gestation for the development of GDM. Women with high anxiety scores were
more likely to develop GDM in analysis adjusted for age, pre-pregnancy BMI, family history of diabetes,
gravidity, parity, energy intake, conception, education, occupation, smoking, and alcohol consumption.
This relationship was evident in nulliparous women and women under the age of 30 [75]. In fact,
observational and genetic investigations show that depression increases susceptibility for obesity and
metabolic disorders by promoting mutations in fat mass and obesity associated (FTO) and melanocortin
4 receptor (MC4R) genes, resulting in alterations in appetite and the hypothalamic-pituitary adrenal
axis [76]. Of interest, depressed pregnant women who carry to term give birth to large-size babies
compared with undepressed pregnant women [29]. This common feature of GDM and prenatal
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depression signify a role of maternal metabolism dysregulation in both conditions, which is likely to
interfere with the intrauterine environment to affect fetal growth.

The co-occurrence of depression and diabetes is high, and such co-morbidity is closely linked to
poor glycemic control, poor self-care ability, functional disability, low quality of life, and premature
death. Treatment of depression in diabetics is challenging given the complex nature of diabetes,
especially when it occurs during pregnancy [77]. Moreover, reports from observational studies
show that GDM women who receive social support and demonstrate self-efficacy are more likely
to adopt a healthy lifestyle (e.g., diet and physical activity) following GDM diagnosis. However,
integrative knowledge shows that psychological interventions are not integrated in the management of
GDM [38]. Conversely, the development of mood disorders during pregnancy may result in a range of
adverse effects for mothers such as social maladjustment, marital dissatisfaction, and suicidality [31,35].
In addition, the occurrence of depression in women with GDM is a top predictor of fetal and neonatal
adverse effects such as neonatal respiratory distress at delivery (AOR = 3.87, 95% CI 1.32 to 11.35) [78].

Hyperglycemic milieu furthers inflammation and oxidative stress by accelerating non-enzymatic
binding of sugars to cellular proteins and lipids, resulting in increased production of highly toxic
substances known as advanced glycation end products (AGEs) [46,47,49,55,79]. AGEs activate TLR4
in macrophages and upregulate major signaling pathways involved in inflammatory and oxidative
stress by binding their main receptor, RAGE, in addition to numerous other receptors on the cell
surface [46,47,66]. Both depression and diabetes are inflammatory disorders. Research confirms that
intense activation of nod-like receptor family pyrin domain containing 3 (NLRP3) and its upstream
P2X7 receptors is associated with excessive release of inflammatory mediators (e.g., interleukin (IL)-1β
and IL-6) [54,77]. The brain is one of the body organs that are affected by inflammatory reactions that
follow feminine hormonal changes and hyperglycemia that occur during pregnancy. Such high release
of cytokines may damage both neuronal and non-neuronal cells of the brain, which may promote the
development of MDs and cognitive changes [28,54,77].

4. Dietary Interventions for Gestational Diabetes

Lifestyle interventions of diet therapy and physical exercise, or a combination of both, are the
first-line treatment options for GDM [4,51]. These interventions represent a cost-effective way to
achieve glycemic control while avoiding insulin therapy [4]. Key benefits of these interventions include
decreasing BMI, improving metabolism, reducing the risk of preterm deliveries and low birth weight,
and lowering the chance for developing postpartum diabetes [38,80].

Dietary supplements such as polyunsaturated fatty acids (PUFA) [81] and vitamin D [51] have
been used to control GDM. A meta-analysis reports that PUFA facilitate glycemic control in pregnant
women with GDM [81]. However, PUFA have no effect on macrosomia, neonatal hyperbilirubinemia,
preterm delivery, and preeclampsia [81]. Vitamin D is reported to decrease maternal BMI, but its effect on
glucose metabolism is trivial [51]. Many reviews report positive effects of specific dietary modifications
that target GDM [37,38,80]. In 18 randomized control trials (RCTs) involving 1151 GDM women,
modified dietary interventions significantly reduced fasting and postprandial glucose (−4.07 mg/dL,
95% CI −7.58 to −0.57, p = 0.02 and −7.78 mg/dL, 95% CI −12.27 to −3.29, p = 0.0007, respectively) and
reduced the need for insulin therapy (RR = 0.65, 95% CI 0.47 to 0.88, p = 0.006). In 16 of these studies,
dietary modifications decreased heavy baby birth weight (−170.62 g, 95% CI −333.64 to −7.60, p = 0.04)
and macrosomia (RR = 0.49, 95% CI 0.27 to 0.88, p = 0.02) [80].

Certain dietary patterns are adopted for controlling hyperglycemia of GDM. In low-carbohydrate
diets, less than 35–45% of total daily energy intake comes from carbohydrates [82]. Low glycemic index
(GI) diet involves the intake of food elements that slowly release glucose; thus, they do not increase
blood glucose level. Examples of low GI food include fiber-rich foods and complex unrefined types
of carbohydrates (e.g., whole grains and grain bran) [37,63]. Ketogenic diets involve low intake of
carbohydrates (<20–50 g or <10% calories from carbohydrates per day) while using fat and protein to
complete the needed dietary requirements [82]. Ketogenic diets are used to evoke the production of
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ketones, acetoacetate, and β-hydroxybutyrate as major alternative energy substrates to glucose [54].
Although the safety of ketogenic diets during pregnancy is not established [82], experimental evidence
shows that gestational exposure to ketogenic diets reduces depression and anxiety, and increases
sociability in mice offspring [83]. A low GI diet is considered to be safe and the most effective
for glycemic control [7,37,63]. In nine RCTs comprising 884 GDM women (mean age = 31.5 years,
age range = 28.7–33.2 years, weeks of gestation range = 24.1–30.3), only a low GI diet reduced insulin use
(RR = 0.767, 95% CI 0.597 to 0.986, p = 0.039) and the newborn birth weight (weight mean differences
−161.9 g, 95% CI −246.4 to −77.4, p = 0.000) compared with control diets [37]. Furthermore, total energy
restriction and low carbohydrate diets had no effect on maternal or newborn outcomes [37,84].

Intermittent fasting (IF) is a religious or cultural practice popular throughout the world.
Research has recently proven several health benefits of fasting, and its use as a therapeutic modality [85].
IF in humans is a type of dietary restriction—a term that describes voluntary reduction of nutritional
intake except for fluids and basic nutrients [86]. Research shows that dietary restriction is a therapeutic
measure that can correct multiple pathologies, promote wellness, and extend lifespan [86,87]. One of
the major signaling pathways involved in dietary restriction is IGF-1, which primarily regulates glucose
metabolism [88]. Fasting mimetics, such as rapamycin and metformin, are used to influence signaling
involved in dietary restriction without actual calorie restriction [87]. Metformin is reported to mitigate
symptoms of depression and treat common endocrine disorders among women of childbearing age
(e.g., polycystic ovary syndrome) [89].

Caloric restriction, the most common form of dietary restriction, involves reducing the daily
intake of calories by 20–30% with an ad libitum intake of water [87]. The difference between fasting
and caloric restriction is that fasting entails completely refraining from food for extended periods
(up to 18 h per day), and may take place over the course of several days or weeks [67,90]. There is
less emphasis on the caloric content of food ingested during non-fasting hours [67]. Acute fasting
accelerates the level of acyl-ghrelin, known as the orexigenic gastrointestinal hormone, which functions
as a ligand for the growth hormone secretagogue receptor in the brain. This effect contributes to some
of the neuroprotective activities of fasting, particularly increasing the level of neurogenic transcription
factor Egr-1 in the dentate gyrus resulting in hippocampal neurogenesis [85].

Findings on caloric restriction during pregnancy are mixed. Although reduction of carbohydrate
intake may induce ketonemia, a recent RCT shows that a slight reduction in maternal carbohydrate
intake (135 g/d) does not result in detectable differences in blood ketones compared with usual
carbohydrate intake [84]. A low carbohydrate diet had no effect on maternal and fetal GDM-related
adverse effects. Moreover, nonadherence to this diet was reported in 65% of the participants [84].
Experimental evidence shows that 20% caloric restriction in pregnant rats in addition to micronutrient
supplementation (for the control of malnutrition) does not decrease litter size and birth weight or delay
development. Offspring of caloric restricted rats exhibited earlier sucking reflex, earlier response to
the negative geotaxis, and better locomotor activity. In adulthood, these offspring were leaner and
had less preference for palatable food, indicating less obesity tendency. No alterations in memory
were depicted [91]. In another animal experiment, 50% prenatal caloric restriction reduced maternal
plasma choline, betaine, and S-adenosylmethionine (SAM) by 40%, 45%, and 20% compared with the
control diet. These compounds originate from one-carbon metabolism, which occurs in the liver [20].
Folate and choline are key nutrients that regulate fetal cell division and fetal development. SAM is
used by various methyltransferases as a methyl donor to generate S-adenosylhomocysteine (SAH),
which converts into homocysteine, which is involved in methylation reactions [20]. However, SAH and
homocysteine were not affected by caloric restriction. These findings show that in the absence of
micronutrient supplementation, exaggerated gestational caloric restriction limits fetal nutrient supply
with possible implications for reducing birth weight and increasing the risk of cognitive dysfunction
and spina bifida. Interestingly, all of these changes were not detected latterly in first generation pups
during pregnancy, indicating that minor epigenetic changes induced by caloric restriction do not
trigger persistent metabolic changes in the progeny [20]. It is noteworthy that a reduction of total
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caloric intake (799 kcal/day) by Tanzanian Maasai women during the third trimester is associated with
the occurrence of low birth weight (<2500 g) in one third of the neonates [92]. Therefore, methods that
involve regulation of food intake while maintaining adequate caloric intake would be safer than
excessive caloric restriction. However, rigorous evidence is required to confirm the effectiveness of
such methods.

5. Case Report

A 36-year-old woman with a pre-pregnancy BMI of 21.7 and a family history of T2DM (father and
brother) was diagnosed with GDM. This was her third pregnancy, and she had no history of GDM
in earlier pregnancies. As her pregnancy progressed, she began to develop a substantial craving for
carbohydrate-rich foods, such as bread, pasta, and rice. Her body weight, abdominal circumference,
and height of the uterus increased steadily (Figure 1). She complained of severe back pain directly
underneath the scapula and leg cramps. The former was persistent while the latter were most disruptive
during sleep. She had difficulty in sleeping because of frequent urination and inability to return
to sleep. Her sleep quality was poor, and she complained of prolonged dreams. When she got up,
she felt exhausted and depressed. She experienced headaches in the morning that were not associated
with changes in blood pressure. Her routine urine consistently tested negative for glucose, ketone,
and albumin. Since the first week of pregnancy, the size of the fetus was slightly large for its gestational
age. The doctor suggested that such an increase was an indicator of good intrauterine growth or due
to improper calculation of the last menstrual period. During the 26th gestational week, the physician
noted that the weight, in addition to the circumferences of the head, thoracic cavity, and abdominal
cavity of the fetus, were noticeably large (Table 1 and Figure 2a), suggesting a possibility of GDM.
The patient immediately refrained from the intake of refined carbohydrates although she continued to
consume three main meals and light snacks. Although her random plasma glucose was not elevated
(88 mg/dL), her serum glucose levels were high in an OGTT: fasting, 30 min, 1 h, and 2 h glycemia
levels were 86, 210, 189, and 163 mg/dL, respectively. After consulting a GDM specialist, she was
given a glucometer for glucose self-monitoring before and 2 h after meals. Her self-management plan
was refined during the 28th gestational week to include further dietary modifications (consumption
of green salad, bee honey, jelly beans, check peas, yoghurt, vegetable soup, fish, eggs, soy, tofu,
and fermented soy) and walking for 15–20 min after each meal, in addition to refraining from refined
carbohydrates. Subsequently, her leg cramps disappeared and her 2 h post prandial glucose level
was under 120 mg/dL, which was intended as a target for glycemic control (Figure 3). However,
exercise and a low-caloric/low GI diet were not always sufficient to maintain her 2 h post prandial
glucose level under 120 mg/dL, particularly after lunch and dinner (Figure 3), and fetal growth
remained abnormal (Table 1). Failure to obtain these results heightened the patient’s tension and
distress, which were associated with greater loss of control over her blood glucose. For example,
in some instances she ate low-calorie foods, but her 2 h post-prandial glucose was above 120 mg/dL,
and after walking, her glucose level rose further. The patient worried about the fate of herself and her
pregnancy (patient’s narratives regarding her psychological experience of GDM are described in the
Supplementary Materials). Accordingly, she decided to maintain a long interval of fasting between
meals. She consulted the diabetes clinic, and the doctor confirmed that she should meet her daily
dietary requirements (2200 kcal/d) regardless of the timing (Figure 4). Accordingly, she consumed two
main meals per day, 13–15 h apart. Fasting started around 2:00–4:00 a.m. after an early breakfast. Then,
she refrained completely from eating and drinking until around 5:00 p.m.—the time of her dinner.
During the non-fasting period (5:00 p.m.–4:00 a.m.), she drank a large quantity of plain fluid and
ate light snacks. IF, in addition to exercise and caloric restriction, maintained her 2 h post prandial
glucose level around 120 mg/dL. However, the anti-hyperglycemic effects of IF, dietary modification,
and exercise remarkably diminished during the last week of pregnancy (Figure 3d,e), which was
associated with slight deviations in fetal growth parameters (Table 1).
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Figure 1. Overall changes in maternal body weight (a), abdominal circumference (b), and height of
the uterus (c) before and after dietary modifications/intermittent fasting. Dietary modifications were
implemented during the 26th week and intermittent fasting practice started at the 30th week and
continued until the end of the pregnancy.

Table 1. Changes in fetal growth parameters following dietary modification, exercise,
and intermittent fasting.

Gestational Age BPD (mm) HC (mm) AC (mm) FL (mm) EFBW (g)

26w3d 76 + 3.1
SD 97.5% – 233 + 1.6

SD 95%
52 + 2.1
SD 97%

1265 + 2.4
SD 97%

27w5d 75 + 1.6
SD 90% – 242 + 1.3

SD 90%
56 + 2.3
SD 97%

1421 + 2.0
SD 97%

30w1d 82 + 1.83
SD 90%

301
N 97%

275 + 1.9
SD 95%

60 + 1.9
SD 97%

1947 + 2.4
SD 97%

32w3d 87 + 1.8
SD 90% – 274 + 0.65

SD 50%
61 + 0.64
SD 50%

2071 + 0.84
SD 97%

34w1d 91
N 50%

339
N 97%

290 + 0.6
SD 10%

67 + 1.5
SD 90%

2480 + 1.2
SD 50%

36w3d 93 + 1.47
SD 50% – 303 + 0.4

SD 10%
65 − 0.09
SD 10%

2645 + 0.22
SD 50%

37w3d 95 + 1.5
SD 50% – 302 − 0.02

SD 10%
73 + 1.75
SD 90%

2886 + 0.44
SD 50%

BPD: bi-parietal diameter; HC: head circumference; AC: abdominal circumference; FL: femur length; EFBW:
estimated fetal birth weight; W: week; d: day; SD: standard deviation; –Values of the parameter were not recorded
in the patient’s record; NSD values were not recorded in the patient’s record. N.B. Percentiles are reported according
to Papageorghiou et al. [93].

Figure 2. Changes in fetal measures after dietary modifications and intermittent fasting. As shown in
panel (a) hyperglycemia caused all fetal parameters to be significantly greater (ranging between 28 weeks
to 30 weeks) than the real gestational age (26 weeks). Exercise and caloric restriction remarkably
ameliorated fetal weight gain resulting in an almost normal fetal weight, panel (b). Intermittent fasting
in addition to caloric restriction and physical activity resulted in a normal fetal weight, panel (c).
Most other fetal growth measures tended to be within normal range (Table 1). Pictures were edited to
remove patient’s identifying data.



Int. J. Environ. Res. Public Health 2020, 17, 9379 10 of 23

Figure 3. Maternal blood glucose level before and 2 after meals within the context of dietary
modifications, exercise (a–c), and after intermittent fasting (d,e) in late pregnancy. Dietary modifications
were implemented during the 26th week and intermittent fasting practice started at the 30th week and
continued until the end of the pregnancy. The lunch meal was dropped after the commencement of
intermittent fasting.

Figure 4. A time-sequence illustration of gestational diabetes mellitus (GDM) diagnosis, change in
fetal growth, and the use of dietary modifications/intermittent fasting interventions. During the 26th
gestational week, exaggerated fetal growth suggested GDM occurrence. The patient immediately
refrained from the intake of refined carbohydrates. An oral glucose tolerance test (OGTT) was performed
during the 27th week. The patient practiced light exercise in addition to low carbohydrate consumption.
At the end of the 28th week the patient started recording her blood glucose level on a daily basis directly
before each meal and 2 h after dining. Fluctuations in the 2 h post-prandial glucose level, in addition to
the persistence of abnormal fetal growth, forced the patient to medicate her GDM through intermittent
fasting starting from the 30th gestational week. During the fasting course, the patient retained exercise
and the previous modification in diet quality.

As shown in Table 1 and Figure 2, maternal hyperglycemia resulted in fetal measures that were 1.2
(femur length) to 3.1 (bi-parietal diameter) standard deviations above the average (panel a). However,
physical exercise, dietary modifications, and IF adopted by the patient resulted in a remarkable control
of fetal growth (Table 1, Figure 3, panel b and c). Because the patient had a history of delivery by
Cesarean surgery (C-section), this baby was also delivered by C-section under the effect of spinal
anesthesia. There was no abnormal bleeding and the patient did not receive a blood transfusion.
This pregnancy resulted in a 48 cm-long baby weighing 3150 g, with head and chest circumferences of
35.5 and 33.5 cm, respectively.
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Table 2 shows that after 7 weeks of dietary modifications (which include 3 weeks of IF),
patient’s fasting blood glucose level, liver and kidney profiles, and electrolytes were all within
normal ranges. Slight reductions in red blood cell count, hemoglobin, and hematocrit indicate the
presence of mild anemia, which commonly occurs during pregnancy. Plasma concentrations of total
proteins were slightly reduced, whereas levels of C-reactive protein and creatine kinase were extremely
high (discussed in detail below).

Table 2. Maternal biochemical and hematological parameters during the 34th week of gestation
(3 weeks after intermittent fasting and 7 weeks after dietary modifications).

Parameter Patient’s Value Reference

Fasting blood sugar 87 mg/dL 70–110
Bilirubin 0.43 mg/dL 0.20–1.20
Aspartate aminotransferase 22 IU/L 8–38
Alanine aminotransferase 14 IU/L 4–44
Total protein 6.3 g/dL 6.7–8.3
Albumin 3.2 g/dL 3.6–5.2
Creatine 0.51 mg/dL 0.40–0.80
Sodium 135 mEq/L 137–147
Potassium 4.2 mEq/L 3.5–5.5
Chloride 106 mEq/L 97–108
White blood cells 83 × 102 40–85
Red blood cells 375 × 104 380–480
Hemoglobin 11.0 g/dL 12.0–15.0
Hematocrit 32.4% 34.0–45.0
Activated partial thromboplastin clotting time 23.4 s 25.0–40.0
C-reactive protein 0.64 mg/dL 0.00–0.30
Creatine kinase 264 IU/L 43–165
Urine ketone bodies Negative Negative

Although patient’s sleep quality did not improve after exercise/dietary interventions/IF,
the frequency of urination at night decreased, which was associated with prolonged sleep time
and less frequency of experiencing depression. The patient reported that decreasing the number of
main meals from three to two during IF was a significant relief: she felt that she was relieved from the
effort of controlling her blood glucose after the lunch meal because this meal was omitted, and her 2 h
post-prandial glucose level after dinner could be better maintained within the pre-set target (less than
120 mg/mL). The shift in fetal growth toward normal levels considerably alleviated worries about the
health of her newborn.

6. Discussion

This report shows that although urine consistently tested negative for glucose/ketone bodies,
and fasting/random blood sugar were not elevated, insulin resistance was present, which negatively
affected the intrauterine environment as portrayed by increased fetal body size. Following an exercise
and dietary regimen for sensitizing the body to insulin resulted in several positive effects. Figure 2 shows
that the 2 h post prandial blood glucose level was maintained within the reference range, with the
exception of a small number of instances. As shown in Figure 1, maternal weight increased from
64.9 to 72.1 kg between the 13th and 32nd weeks. However, IF, dietary modifications, and physical
activity resulted in considerable improvements: during the period between the 32nd and 36th weeks,
her body weight dropped from 72.1 to 68.3 kg, and the abdominal circumference decreased from 95
to 92 cm between the 32nd and 34th weeks. The decrease in the height of the fundus corresponded
to the obvious change in fetal weight. It is important to note that a decline in maternal weight and
abdominal circumference took place only after starting IF.

High intake of carbohydrates is reported to induce insulin resistance by evoking epigenetic changes
in skeletal muscle (one of the major body tissues involved in glucose uptake) involving increased DNA
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methylation in the gene body of DAPK3, which modulates processes involved in cellular functioning
and survival [40]. In this patient, increased craving for carbohydrate-rich foods was associated with
an increased body weight, abdominal waist circumference, and plasma glucose, in addition to sleep
disturbance and psychological distress. By comparison, IF, reducing the consumption of carbohydrates,
and adopting a diet rich in vegetables and proteins, were associated with remarkable reductions in
blood glucose, body weight, waist circumference, height of the fundus, and measures related to fetal
growth. The patient felt less distressed about controlling her physiological alterations.

Dietary fibers also play a role in the activation of signaling pathways involved in dietary restriction,
such as IGF-1, which plays a key role in the regulation of glucose metabolism [88]. Vegetables,
especially leafy vegetables, are rich in dietary fibers, which are known to promote the growth of healthy
bacteria in the gut [39]. In addition, the surface of fresh vegetables contains probiotic bacteria such
as lactic acid bacteria—around 35% of these bacteria can survive gastric conditions and reach the
gut to exert therapeutic effects [94]. Furthermore, research signifies the contribution of the complex
carbohydrate content of low GI food to glycemic control via a complex mechanism that involves
the regulation of gut microbiota [47,63]. Such foods provide health-promoting intestinal bacteria
with the appropriate type of dietary fibers. As a result of good microbial fermentation, the levels of
short-chain fatty acids (e.g., acetate, propionate, and butyrate) increase [63]. These compounds activate
the production of gut hormones (glucagon-like peptide 1 and peptide YY) and leptin, leading to
increased satiety and improved response to circulating insulin [47,63].

This patient increased her intake of protein, such as soy, check peas, fish, egg, and yoghurt.
The literature indicates that protein intake modulates insulin activity and glucose metabolism in
men and nonpregnant women. Although findings on the association between protein consumption
with insulin sensitivity during pregnancy are equivocal, the quality of dietary protein (e.g., of plant
origin) is associated with improved insulin sensitivity [2,46]. A high-protein diet results in increased
supply of fermented proteins by colonic microbiome leading to increased production of protein
fermentation end-products, such as polyamines [95]. Experimentally, the intake of soy and fermented
milk proteins, especially in the morning, positively alters the structure of gut microbiota and results
in increased production of health promoting nutrients (e.g., short-chain fatty acids) by bacteria of
the colon [96]. Several lines of evidence show that soy foods are low GI, and they can lower blood
glucose level in healthy adults [97,98] and in T2DM patients [99]. The anti-hyperglycemic effects of
soy appear to be gender specific. In this regard, a longitudinal Japanese study involving follow up of
13,521 participants over 10 years documents protective effects of high soy consumption against T2DM
only among women [97].

Muscular mitochondrial dysfunction may play a major role in the development of insulin
resistance [40,46,47,49,100]. However, evidence also indicates that the intake of foods rich in soluble
milk proteins increases the fractional synthesis rate of mitochondrial muscle protein regardless of the
amount of consumed protein [101]. A recent investigation revealed that adherence to the Mediterranean
diet for one year increased the abundance of specific gut bacterial species that are associated with
decreased inflammation (detected by low levels of C-reactive protein and IL-17) and frailty in European
elderly [102]. The high intake of protein-rich food expressed in the current case suggests a supporting
role of protein intake in insulin sensitivity during pregnancy. Fermented dairy products such as
yoghurt are also a rich source of lactic acid bacteria, which are commonly used as probiotics to correct
systemic inflammation through modulation of the gut microbiome structure [46,59,103]. Furthermore,
evidence shows that human consumption of yoghurt beverage fortified with lactotripeptides increases
circulating levels of W-containing peptides [103]. W is an essential amino acid known as tryptophan.
Enzymatic activities (proteolytic/peptidolytic) that affect milk proteins generate W residues either
as a free amino acid or as part of peptide sequences. W promotes protein synthesis and acts as
a precursor of major biomolecules, such as serotonin, melatonin, tryptamine, niacin, nicotinamide
adenine dinucleotide (NAD), phosphorylated NAD (NADP), quinolinic acid, and kynureric acid [103].
These molecules play key roles in the regulation of oxidative stress, inflammation, and metabolism,
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which are necessary for proper physiological functioning [47,59,87]. W-containing peptides inhibit
angiotensin converting enzyme (ACE) [103], which is involved in human acquisition of the current,
highly-infectious corona virus disease 2019 [47–49]. W-containing peptides also demonstrate strong
antioxidant, antidiabetic, neuroprotective, and satiating-related activities [103].

Notably, levels of C-reactive protein (a marker of inflammation) and creatine kinase (a marker of
muscle dystrophy) [46,49,54,55] were extremely high in the case-study patient (Table 2), indicating that
inflammatory reactions associated with GDM persist even when blood glucose level is controlled.
The patient’s high levels might explain the leg cramps and back pain experienced before the
commencement of diet and exercise. In fact, the level of C-reactive protein is significantly higher
in GDM women compared with their healthy counterparts, indicating that C-reactive protein may
be a marker for early diagnosis of GDM [104]. Although the patient’s diet contained sufficient
amounts of animal- and plant-derived protein, her serum total protein and albumin levels were
slightly low. Such a reduction may be justified by anabolic resistance secondary to insulin resistance,
albeit not obviously [47,55]. Alternatively, the increased creatine kinase level may have been caused
by destruction of proteins (e.g., in skeletal muscle) to increase energy supply [47,105]. Unfortunately,
C-reactive protein and creatine kinase were not estimated either before the dietary treatments or before
childbirth, which makes the effect of dietary modification and IF on GDM-related inflammatory and
catabolic processes unclear. Accordingly, assessing the effect of dietary modifications and IF on these
parameters in future studies would advance GDM-relevant knowledge.

Bee honey is a potential source of natural antioxidants, such as flavonoids, phenolic acids,
and terpenoids. It demonstrates a capability of counteracting the effects of oxidative stress
underlying the pathogenesis of various diseases, such as T2DM, neurodegenerative disorders, cancer,
and atherosclerosis [39,106,107]. Bee honey can inhibit the growth of pathogenic bacteria through
two mechanisms. It demonstrates an antiseptic activity through its relatively high internal contents
of hydrogen peroxide and phenolic acids [106]. It is also rich in some strains of lactic acid bacteria
that exhibit a strong probiotic potency, such as Lactobacillus plantarum. Tests in simulated gastric juice
signify the capacity of these bacteria to survive in conditions with highly acidic pH. Thus, they can
withstand gastric and bile secretions and remain viable until they reach the intestine. They express
strong antipathogenic properties due to their hydrophobic, auto-aggregative, and co-aggregative
abilities. They can promptly foster bacterial adhesion and colonization on the host intestinal tract due
to their efficient production of exopolysaccharide [108].

Although the composition of gut microbiota of this patient was not examined before or after the
dietary modification, fecal properties were exceptionally different before (foul-smelling and foamy in
texture) and after dieting and IF (less foul-smelling and having a soft-creamy texture). Examination of
the diet adopted in this case appears to indicate that refraining from the intake of carbohydrate- and
fat-rich food, in addition to increased consumption of vegetables and protein-rich food, can positively
affect the composition of the gut microbiome. Several lines of evidence show that correction of gut
microbiota composition corrects dysbiosis and alters inflammation by inhibiting the passage of bacterial
toxins from the gut to the main circulation [46,54]. Figure 5 provides an illustration of how food
consumed by the patient may correct GDM and associated MDs.

Although dietary modification, exercise, and IF exerted an anti-hyperglycemic effect in our patient,
this effect tended to fade with the progress of pregnancy (Figure 3d,e). The last gestational week
witnessed increases in maternal weight, waist circumference, and height of the uterus (Figure 1).
The latter was associated with fetal weight gain (Table 1). Insulin resistance in late pregnancy is
hormone-driven [51,109]. Available knowledge shows that dietary supplements (e.g., vitamin D)
and physical activity during pregnancy may impede maternal weight gain, but fail to control insulin
resistance with the progress of pregnancy due to the strong activity of placental hormones, which change
significantly in late pregnancy [51]. Alterations in placental hormones contribute to the development
of GDM and increase its severity, especially in late stages [51,109]. Several mechanisms have been
proposed. Deficiency of placental sex hormone-binding globulin (SHBG) alters insulin signaling
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by upregulating the activity of extracellular signal-regulated kinase (ERK), resulting in adverse
reactions in the placental and fetal environment, such as suppression of proliferation and increased
apoptosis [110]. Placental variant growth hormone (GH-V) promotes placental growth. Nonetheless,
its over-production modulates maternal IGF-1, resulting in peripheral insulin resistance. Alternatively,
expansion of maternal pancreatic β-cell mass is associated with insulin availability, which blocks
GH-V [51]. From another perspective, estrogen during pregnancy modulates its receptors to stimulate
insulin biosynthesis and secretion by pancreatic β-cell, and to also increase sensitivity of tissues
involved in glucose uptake to plasma insulin [109]. However, estrogen dysfunction in GDM is
associated with oxidation of estrogen by cytochrome P450 enzymes. Oxidative metabolism of estrogen
results in genotoxic metabolites such as 2-hydroxyestrogen and 4-hydroxyestrogen. These metabolites
exist in the blood, and induce DNA damage in various tissues. They also bind insulin, neuroglobin,
human serum albumin, and immunoglobulin. Their binding to insulin, a process known as insulin
estrogenization, hinders insulin affinity of binding to insulin receptors, resulting in vivid insulin
resistance [109]. Given the role of pregnancy related hormones in glucose metabolism dysfunction,
interventions that trigger insulin secretion may be promising for GDM prevention and control [51].

Figure 5. Possible mechanisms through which foods consumed by the patient can promote the gut
microbiome and decrease insulin resistance. The dietary pattern adopted in this case may operate
through various means to positively alter gut microbiome structure, inhibit intestinal wall leakage,
and prevent associated inflammatory response, which may offer protection for pancreatic islets
against inflammation.

Experimental research shows that IF alleviates hyperglycemia in obese mice that continue to
receive a high-fat diet [67]. The underlying mechanism involves restoring autophagic flux in β

islets, promoting pancreatic regeneration as indicated by increased nuclear expression of NEUROG3,
increasing β-cell survival and pancreatic islet mass, and improving glucose tolerance by boosting
glucose-stimulated insulin release [67]. Pancreatic islets and extra-islet endocrine clusters contain
multi-lineage potential progenitors. Although these cells contain insulin, they are glucose unresponsive
because of their poor expression of glucose transporter 2 (Ins+Glut2LO cells). However, metabolic stress
triggers the differentiation of Ins+Glut2LO cells into mature and functional β-cells [51]. This could
possibly be a mechanism for increasing pancreatic islet mass by IF, albeit investigations are needed to
confirm the plausibility of this scenario. In addition to the direct effects of IF on insulin production,
its effects on body composition, which entail discouraging fat deposition, indirectly alleviate metabolic
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dysfunction through correction of sensitivity to insulin [67,87]. A current meta-analytic review
shows that diurnal IF during Ramadan significantly changes body composition in a positive manner,
reducing obesity in individuals aged 16 years and above [111]. Similarly, a recent RCT prompted
post-menopausal women to fast from 8 p.m. to 12 a.m. (the next day) for 6 weeks. The findings of
this study revealed a considerable reduction in fat mass (an average of around 2 kg) with no adverse
effects on muscle mass as indicated by dual-energy X-ray absorptiometry [90]. It is documented that
obesity in old age is a key factor for insulin resistance and frailty [46,47]. Obesity in menopausal
women is associated with high distress, and mediates the effects of vasomotor symptoms—the cardinal
symptoms associated with the drop of estrogen (the main feminine hormone)—on symptoms of
depression, anxiety, and cognitive decline in these women [28].

Our patient complained of insufficient night sleep and poor sleep quality, which were associated
with headache and dysphoria in the morning. Poor sleep in reproductive-age women results from
alterations in the circadian rhythm and melatonin reduction that are associated with hormonal
fluctuations over different phases of the menstrual cycle. Poor sleep causes mood symptoms
among these women [25]. Moreover, sleep disturbances contribute to circadian dysfunction,
metabolic dysregulation, and the development of T2DM [112]. It is possible that the metabolism of
this patient was altered as a result of a sleep-disordered breathing problem, which is common in
pregnancy [113,114]. In nine studies, pregnant women with sleep-disordered breathing expressed
a three-fold increase in the occurrence of GDM after adjusting for BMI (95% CI 1.89–4.96) [113].
Obstructive sleep apnea (OSA) is a complex sleep disorder of fragmented sleep and intermittent
hypoxia that results from repetitive episodes of upper airway closures or partial collapse during
sleep [112,114]. OSA prevails in 52.4% of obese pregnant women with diet-controlled GDM at a median
gestational age of 29 weeks. OSA and sleep parameters related to oxygen desaturation significantly
correlate with higher fasting insulin resistance and higher β-cell dysfunction in GDM [114].

Evidence indicates increased nighttime awakening with the development of headaches the next
day [115]. Serotonin (5-HT) is a neurotransmitter that plays major roles in diverse human behaviors,
including circadian rhythm, mood regulation, sleep, appetite, sexual function, and pain [28,54,115].
Alterations in serotonin may be a possible cause of these complaints. Dysregulation of the subcortical
serotoninergic system, particularly in the dorsal raphe nucleus in the pons and midbrain where most
production of brain serotonin occurs, is associated with alterations in the transition from non-rapid eye
movement sleep (NREM) to REM sleep. This is because initiation of REM sleep (the micro-architecture
of sleep) requires cessation of serotonergic neuron firing, and decreased cycling within REM sleep
leads to headaches (e.g., migraine) [115].

Although the patient’s concerns about fetal abnormalities persisted, she felt some relief that fetal
growth shifted toward normal levels in a relatively short time. In addition to the psychological
effect of these events, another possible reason for reduction of her distress was the effect of
exercise and healthy foods (protein-rich food and vegetables), both on her gut microbiome and
brain [46,54,59]. Evidence denotes that certain dietary elements, such as fermented milk and bee
products, can significantly affect the brain in a positive way by downregulating signaling involved
in inflammation and oxidative stress [54,59,103]. In particular, yoghurt consumption provides the
body with tryptophan, the main precursor of serotonin [103], which is the main neurotransmitter
involved in the regulation of mood and sleep [39,107]. Moreover, this patient consumed natural honey
as a source of sugars. Bee honey shares many biological properties with other bee products, such as
royal jelly and its lipids, which can modulate the activity of estrogenic receptors in the brain [54,116].
These receptors play a major role in the regulation of insulin signaling [109], and in signal transduction
(e.g., of serotonin and acetylcholine) involved in cognitive functioning and mood regulation [28].
Moreover, cumulative knowledge indicates that bee honey increases brain levels of BDNF, resulting in
improvement of mood and alleviation of depression [107].

Additionally, emotional relief in this case may also be judged as an effect of IF. In fact,
several lines of evidence show that dietary restriction and IF exert antidepressant activities [85,87,117].
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The underlying mechanisms are complex, and involve increasing phosphorylation of cyclic adenosine
mono phosphate-response element-binding protein (CREB), thus increasing brain stress tolerance,
correcting cerebral metabolism and improving neuronal supply of ketones as alternatives to glucose,
activating neuronal autophagy, increasing the production of BDNF, increasing levels of heat-shock
protein, suppressing neuroinflammation, and correcting mitochondrial dysfunction resulting in less
generation of free radicals and less neuronal apoptosis [85,87]. Mood regulation as an effect of IF
in humans is closely associated with fasting effects on body composition, i.e., weight loss in obese
people [117]. Research emphasizes safety of fasting as a therapeutic practice [85,117]. However, to our
knowledge, this is the first study to report positive effects of IF on GDM and MDs during pregnancy,
and no adverse fetal or maternal effects occurred.

This report signifies the potential maternal and fetal benefits of dietary modifications, exercise,
and IF practice in patients with GDM. However, this study has several limitations. It is primarily based
on a single case, which is not an ideal one: GDM treatment was chosen and implemented by the patient
herself, the patient’s mood was described based on her narratives (not assessed by a specific measure),
and not all needed data are available (e.g., fetal growth measures and laboratory investigation before
and after dietary interventions). A rigorous evaluation of the effects of IF as a modality to control GDM
and associated MDs in a large cohort would be valuable.

7. Conclusions

Insulin resistance during pregnancy affects maternal body composition and psychological
well-being, in addition to fetal growth, even at slightly elevated levels of blood glucose.
Dietary measures including IF, caloric restriction, and exercise, can increase body sensitivity to
insulin, reduce body fat deposition, and correct abnormalities of fetal growth, which are associated
with hyperglycemia. Positive effects on maternal mood may be attributed to the reduction of
inflammatory markers following these interventions. Further investigations are needed to evaluate the
cost-effectiveness of IF as a treatment of GDM and mood disorders in pregnancy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/24/9379/s1,
Supplementary File S1. Patient’s narratives of GDM-related distress.
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Abbreviations

AGEs Advanced glycation end products
AOR Adjusted odds ratio
BDNF Brain-derived neurotrophic factor
BMI Body mass index
CREB Cyclic adenosine mono phosphate-response element-binding protein
C-section Cesarean surgery
CXCR4 C-X-C chemokine receptor type 4
DAPK3 Death-associated protein kinase 3
DM Diabetes mellitus
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
FMs Fetal membranes
FTO Fat mass and obesity associated gene
GDM Gestational diabetes mellitus
GH-V Placental variant growth hormone
GI Glycemic index
HMGB1 High mobility group box 1
HMG20A High mobility group protein 20A
IF Intermittent fasting
IGF Insulin-like growth factor
IL Interleukin
MC4R Melanocortin 4 receptor
MDs Mood dysregulations
ncRNAs Non-coding RNAs
NF-κB Nuclear factor-kappa B
NLRP3 Nod-like receptor family pyrin domain containing 3
OGTT Oral glucose tolerance test
OSA Obstructive sleep apnea
Pax Paired domain homeobox
PL Placental lactogen
PUFA Polyunsaturated fatty acids
RAGE Receptor of advanced glycation end products
RCT Randomized control trial
REM Rapid eye movement
SHBG Sex hormone-binding globulin
SNRIs Serotonin-norepinephrine reuptake inhibitors
sRAGE Soluble RAGE
SSRIs Serotonin reuptake inhibitors
TGF-β Tumor growth factor β
TLR4 Toll-like receptor 4
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