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Abstract

 

Despite a growing interest in CD4

 

� 

 

CD25

 

� 

 

regulatory T cells (T

 

reg

 

) that play a major role in
self-tolerance and immunoregulation, fundamental parameters of the biology and homeostasis
of these cells are poorly known. Here, we show that this population is composed of two T

 

reg

 

subsets that have distinct phenotypes and homeostasis in normal unmanipulated mice. In the
steady state, some T

 

reg 

 

remain quiescent and have a long lifespan, in the order of months,
whereas the other T

 

reg 

 

are dividing extensively and express multiple activation markers. After
adoptive transfer, tissue-specific T

 

reg 

 

rapidly divide and expand preferentially in lymph nodes
draining their target self-antigens. These results reveal the existence of a cycling T

 

reg 

 

subset
composed of autoreactive T

 

reg 

 

that are continuously activated by tissue self-antigens.
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Introduction

 

CD4

 

� 

 

CD25

 

� 

 

regulatory T cells (T

 

reg

 

) play a major role
in the maintenance of self-tolerance and the control of
autoimmune diseases (1, 2). They are also involved in the
regulation of T cell homeostasis (3, 4) and in the modula-
tion of immune responses to alloantigens, cancer cells, and
pathogens (5–10). These findings have opened new prospects
in immunotherapeutic interventions for several diseases.
For instance, we and others have shown that transfer of T

 

reg

 

could be used to control autoimmune diabetes (11, 12),
solid allograft rejection (13–15), or graft versus host disease
(7, 9, 16) in mice. In addition, T

 

reg

 

-specific depletion at the
time of tumor inoculation dramatically increased immune
rejection of some tumors (10). These recent data indicate
that the T

 

reg 

 

represent a master player in the immune system,
and that their manipulation could be used in new therapeu-
tics. It is therefore essential to gain more basic information
on the biology of these cells.

The thymic origin of T

 

reg 

 

has been established in mice
from several observations. Thymectomy of day-3 neonates
induced long-term depletion of T

 

reg 

 

and a severe autoimmune

syndrome (17). The thymus contains cells with similar pheno-
type and suppressor function as the T

 

reg 

 

described in the
spleen and LN (18). Finally, early thymocyte precursors
have the potential to differentiate in mature T

 

reg 

 

after adoptive
transfer (18). Importantly, thymic selection of T

 

reg 

 

precursors
appears to favor the emergence of a repertoire of highly
autoreactive T

 

reg

 

. Indeed, T

 

reg 

 

specific to self-Ag presented
by the thymic epithelium are positively selected in the thy-
mus and then colonize secondary lymphoid organs (19–22).

In the periphery, for a given age and genetic back-
ground, T

 

reg 

 

represent a stable proportion of the CD4

 

� 

 

T
cells in the steady state, suggesting that the homeostasis of
T

 

reg 

 

is tightly regulated. In young adult mice not prone to

 

autoimmune diseases, T

 

reg 

 

constitute 

 

�

 

10% of CD4

 

� 

 

T cells.
This proportion seems be reduced in genetically autoimmune-
prone individuals (11, 12). There is also some preliminary
evidence in humans that type 1 diabetic patients may have
decreased blood T

 

reg 

 

cell numbers (23). Mice of the scurvy
mutant strain, which have a deficit of T

 

reg

 

, develop a severe
autoimmune syndrome (24, 25). Thus, a decreased proportion
of these cells could lead to an augmentation of the risk to
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reg

 

develop autoimmune diseases. On the opposite, an increased
proportion of T

 

reg 

 

may alter antitumor and antiinfectious im-
munity. Thus, homeostasis of T

 

reg 

 

is likely an important pro-
cess in the proper functioning of the immune system.

Several molecules are involved in regulation of the ho-
meostasis of T

 

reg

 

. IL-2 plays a critical role because IL-2 KO
and IL-2R

 

� 

 

KO mice have a profound deficit of T

 

reg 

 

(26,
27). This cytokine might be involved in both their thymic
production and their peripheral survival (3, 27, 28). B7/
CD28 and CD40/CD40L costimulatory pathways are also
involved in the regulation of homeostasis of T

 

reg

 

. Indeed,
B7-1 B7-2 double KO mice, CD28 KO mice, and CD40
KO mice all present a severe quantitative deficit of T

 

reg 

 

(11,
29). Disruption of the B7/CD28 pathway in nonobese dia-
betic mice was associated with an exacerbation of autoim-
mune diabetes due to the defect of T

 

reg 

 

(11).
Despite the emerging importance of T

 

reg 

 

in the immune
system, fundamental parameters of the biology and homeo-
stasis of these cells, such as their lifespan, turnover, and recir-
culation properties remain poorly known. In this work, we
addressed these points using a model of adoptive transfer of
highly purified Thy-1 congenic T

 

reg 

 

into unmanipulated
normal hosts. Because donor cells represented 

 

�

 

3% of the
endogenous T

 

reg 

 

population, their homeostasis should not be
modified. Thus, studying the intrinsic behavior of donor
cells provided data on the homeostasis of T

 

reg 

 

in the steady
state. We showed that T

 

reg 

 

retain a stable expression of CD25
in vivo and that a T

 

reg 

 

subset is composed of quiescent cells
with long lifespan, whereas cells of the other T

 

reg 

 

fraction
have a rapid turnover and express multiple activation mark-
ers. This latter subset appears to be composed of autoreactive
T

 

reg 

 

that are continuously activated by tissue self-antigens.

 

Materials and Methods

 

Animals.

 

6–8-wk-old female BALB/c mice were obtained
from Charles River Laboratories. The ins-hemagglutinin (HA)
transgenic mice expressing HA of influenza virus in islet 

 

� 

 

cells
(30) were backcrossed 

 

�

 

10 generations onto BALB/c genetic
background and then intercrossed to generate mice homozygous
for the ins-HA transgene. The TCR-HA transgenic mice (31) that
express a TCR recognizing I-E

 

d

 

-restricted HA epitope 110–120
(SFERFEIFPKE) were backcrossed 

 

�

 

10 generations onto BALB/c
genetic background and then bred with congenic Thy-1.1 BALB/c
mice to generate [TCR-HA 

 

� 

 

Thy-1.1] F1 mice. Congenic
Thy-1.1 BALB/c mice, ins-HA mice, and TCR-HA 

 

� 

 

Thy-1.1
mice were bred in our animal facility. Mice were housed in filter-
topped cages under specific pathogen-free conditions. They were
manipulated according to European Union guidelines.

 

Cell Preparation and Adoptive Transfer.

 

T

 

reg 

 

were purified as
previously described (7). After a mechanical dissociation, spleen
and peripheral LN (inguinal, brachial, axillary, and cervical) cells
from Thy-1.1 BALB/c mice were first incubated in PBS 3% fetal
calf serum with saturating amounts of biotin-labeled anti-CD25
mAb (7D4; BD Biosciences) and then with anti-biotin–coated
microbeads (Miltenyi Biotec), and purified using magnetic cell
separation LS columns (Miltenyi Biotec). The CD25-depleted
cells (referred to as CD25

 

� 

 

cells in the text), harvested from the
flow through, were depleted of erythrocytes by ammonium chlo-
ride lysis. They contained 

 

�

 

0.3% CD4

 

� 

 

CD25

 

� 

 

T cells. The posi-

 

tively selected cells (80% CD25

 

�

 

) were stained with FITC-
labeled anti-CD4 (GK1.5 or RM4-5; BD Biosciences), PE-labeled
anti-CD62L (MEL-14; BD Biosciences), and CyChrome-strepta-
vidin (BD Biosciences) that bound to free biotin-labeled CD25
molecules, uncoupled to beads. The CD4

 

� 

 

CD25

 

� 

 

CD62L

 

high

 

and CD4

 

� 

 

CD25

 

� 

 

CD62L

 

low 

 

cells were sorted on a FACStar™
(Becton Dickinson), giving a purity of 98–99.5%. Then, purified
cells were labeled with 5,6-carboxy-fluorescein succinimidyl ester
(CFSE; Sigma-Aldrich) by incubation with 2.5 

 

�

 

M CFSE in pro-
tein-free PBS for 10 min at room temperature and 1 min with 1
vol serum. Cells were then washed twice in PBS and 0.55–0.7 

 

�

 

10

 

6 

 

purified T

 

reg 

 

or 10

 

7 

 

CD25

 

� 

 

cells were intravenously trans-
ferred to congenic Thy-1.2 BALB/c mice. For the transfer ex-
periments into ins-HA transgenic mice, we injected 0.65–1.25 

 

�

 

10

 

6 

 

purified T

 

reg 

 

or 2–3 

 

� 

 

10

 

6 

 

CD25

 

� 

 

cells from TCR-HA trans-
genic mice.

 

Antibodies and Flow Cytometric Analysis.

 

After a mechanical
dissociation, cells from spleen or peripheral LNs were preincu-
bated with 2.4G2 mAb (BD Biosciences) to block nonspecific
binding to Fc receptors and then stained in PBS 3% fetal calf se-
rum with saturating amounts of combinations of the following
mAbs: FITC-conjugated anti-CD4 (clone GK1.5); CyChrome-
and allophycocyanin-labeled anti-CD4 (RM4-5); allophy-
cocyanin-labeled anti-CD25 (PC61); PE-labeled CD45RB
(C363.16A); PE- and allophycocyanin-labeled anti-CD62L
(MEL-14); and PE-labeled anti–Thy-1.1/CD90.1 (OX-7; all
from BD Biosciences). We also used the following biotinylated
antibodies: anti-CD5 (53-7.3; eBioscience); anti-CD25 (7D4;
BD Biosciences); anti-CD38 (90; eBioscience); anti-CD44 (IM7;
Caltag Laboratories); anti-CD54 (KAT-1; Caltag Laboratories);
anti-CD69 (H1.2F3; BD Biosciences); anti-CD71 (R17 217.1.4;
Caltag Laboratories); anti–Thy-1.1/CD90.1 (OX-7; BD Bio-
sciences); anti-CD103 (M290; BD Biosciences); anti-CD122
(TM-b1; BD Biosciences); anti–OX-40/CD134 (OX-86; BD
Biosciences); and anti–glucocorticoid-induced TNF receptor
(GITR; goat polyclonal Ab; R&D Systems). The biotinylated
mAbs were detected by CyChrome- or allophycocyanin-strepta-
vidin (BD Biosciences). Labeling with the anti-clonotypic mAb
(clone 6.5) specific to TCR-HA was revealed by a biotin anti–rat
IgG2b Ab (BD Biosciences) and streptavidin-CyChrome (BD
Biosciences). Isotype-irrelevant mAbs (BD Biosciences) were
used as controls. Lymphocytes were gated according to their for-
ward and side scatter characteristics and four-color FACSCali-
bur™ analyses were performed either with CELLQuest™ (Bec-
ton Dickinson) or FlowJo

 

® 

 

(Tree Star) software.
After adoptive transfer in wild-type hosts, donor T

 

reg 

 

repre-
sented 

 

�

 

0.1% of splenocytes or LN cells. Therefore, we acquired
1–2 

 

� 

 

10

 

6 

 

events on a flow cytometer to detect significant num-
bers of donor cells. As controls, untransferred mice were system-
atically analyzed in the same time to evaluate the level of back-
ground. Within the CD4

 

� 

 

Thy-1.1

 

� 

 

gate, the number of events
were typically of 500 for mice injected with T

 

reg 

 

versus 

 

�

 

10 for
untransferred mice.

 

Bromodeoxyuridine (BrdU) Labeling and Cell Cycling Analysis.

 

Mini osmotic pumps (ALZET2001; Durect Corporation), deliv-
ering 1.2 mg per day of BrdU (Sigma-Aldrich) for 7 d, were trans-
planted subcutaneously under ketamine/xylazine anesthesia to
7–8-wk-old mice (Charles River Laboratories). Then, LN cells
and splenocytes were stained with anti-CD4 CyChrome (GK1.5;
BD Biosciences), anti–CD25-PE (PC61; BD Biosciences), anti–
CD44-biotin (IM7.8.1; Caltag), and streptavidin-allophycocyanin
(BD Biosciences). For BrdU detection, triple-stained cells were
fixed in 1% paraformaldehyde (Sigma-Aldrich) for 12 h in the
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dark, permeabilized first in absolute ethanol for 4 min on ice,
washed in PBS, incubated for 30 min at room temperature fol-
lowed by 30 min on ice in PBS containing 1% paraformaldehyde
and 0.01% Tween-20 (Sigma-Aldrich). After washing in PBS,
cells were incubated for 30 min at room temperature with 1 mg/
ml DNase I (Sigma-Aldrich) in a buffer containing 0.15 M NaCl,
4.2 mM MgCl

 

2

 

, and 10 mM HCl, pH 5. After being washed in
PBS, cells were incubated for 45 min at 4

 

	

 

C in PBS containing 5%
fetal calf serum, 0.5% Tween-20, and FITC-labeled anti-BrdU
mAb (B44; Becton Dickinson). Then, cells were washed twice in
PBS and analyzed using a FACSCalibur™ flow cytometer and
CELLQuest™ software (both from Becton Dickinson).

 

Results

 

Long-Term Survival and Stable CD25 Expression of T

 

reg 

 

In
Vivo.

 

To evaluate the recirculation properties, lifespan,
turnover rate, and CD25 marker expression stability of the

natural suppressor T

 

reg

 

, we transferred T

 

reg 

 

purified from
normal mice, having a diversified T cell repertoire, into
unmanipulated nonlymphopenic normal Thy-1 congenic
mice. We focused this study on the transfer of the
CD62L

 

high 

 

T

 

reg 

 

subset because we and others have previ-
ously demonstrated the high suppressive activity of this
population in vivo (7, 32) and also because the CD4

 

�

 

CD25

 

� 

 

CD62L

 

high 

 

cell population should contain low, if
any, contamination with activated conventional CD4

 

� 

 

T
lymphocytes, which display a CD4

 

� 

 

CD25

 

� CD62Llow

phenotype (33). Experiments described below and shown
in Figs. 1, 2, and 3 were all performed in the BALB/c ge-
netic background. For all of these experiments, similar
findings were observed in the C57BL/6 genetic back-
ground (unpublished data).

2, 9, 35, or 70 d after transfer of CD62Lhigh Treg, low but
reliable numbers of donor cells were found in both the

Figure 1. Long-term survival and stable CD25 expression of Treg after
adoptive transfer. CD62Lhigh Treg or CD25� cells purified from Thy-1.1
BALB/c mice were injected intravenously into 8–10-wk-old Thy-1.2
congenic BALB/c mice and analyzed by flow cytometry 2, 9, 35, and 70 d
after transfer. (A) Reliable identification of very low percentages of donor
CD4� Thy-1.1� cells in recipient mice is possible after acquisition of 1–2
million cells by flow cytometry. Left panels show dot plots on whole LN
cells after acquisition of 60,000 events and right panels show dot plots af-
ter acquisition of 1.5 � 106 events (only Thy1–1� cells were saved to limit
sizes of the files). Representative dot plots of mice injected with CD25�

cells or CD62Lhigh Treg, as well as a dot plot of control noninjected mice,
are shown. Noninjected mice were systemically included in these analyses
to quantify background level. Depending on the transfer experiment and
time point, the number of events in the CD4� Thy-1.1� gate was be-
tween 0 to 8 for noninjected mice versus 150 to 1,150 in mice injected
with Treg in the spleen or LN. (B) Quantification of donor CD4� Thy-1.1�

cells in the spleen (� and �) and LNs (� and �) is expressed in percent-
age (top) and total number (bottom) of CD4� Thy-1.1� cells per organ
for one representative experiment out of four independent experiments.
Each symbol represents one individual mouse. (C) The graph represents
the relative average number of indicated donor cells from four indepen-
dent experiments (total of 5–12 mice per time point). For each experi-

ment, the mean number of donor cells at different time points were divided by the mean number of donor cells at day 2, giving relative mean values. The
average of these mean values from the four experiments was represented in arbitrary units, the one at day 2 is by definition of 1. Error bars represent the
SD. The increased proportion of CD25� T cells between days 2 and 9 was not statistically significant. (D) 2, 9, 35, and 70 d after transfer of CD62Lhigh

Treg, donor cells were analyzed for expression of CD4 and CD25 in LNs. Each dot plot, gated on Thy-1.1�, is representative of five to eight mice per
time point from four independent experiments. Values indicate the mean percentage 
 SD of CD25� cells among CD4� cells.
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spleen and LN (Fig. 1, A–C), whereas in mice transferred
with the CD62Llow Treg, donor cells were detected in the
spleen but hardly in the LN (unpublished data). This result
can be explained by the known important role of the
CD62L molecule in the migration of lymphocytes from
blood into LNs (33). A moderate increase of donor cell
numbers was observed between days 2 and 35 after cell
transfer, which could be due to a recirculation from the
liver where we observed a sizeable proportion of donor
cells at an early time point (unpublished data). Remarkably,
in mice transferred with CD62Lhigh Treg, the numbers of
donor cells at an early time point (day 9) or late time points
(35 or 70 d) after transfer remained relatively stable (Fig. 1,
B and C). We analyzed in parallel the survival of a popula-
tion of conventional purified CD25� T cells, similarly in-
jected into normal unmanipulated Thy-1 congenic mice.
In contrast to the Treg, the number of transferred CD25� T
cells progressively decreased with time in the spleen and
LN. 35 and 70 d after transfer their numbers were severely
reduced (Fig. 1, B and C).

The CD25 molecule is the classical cell surface marker
used to identify the natural suppressor CD4� T cells, but
stability of its expression in the steady state has not been
addressed. Up to 70 d after transfer, when the experiment
was stopped, most of transferred cells maintained a stable
phenotype with high level expression of CD4 and CD25
(Fig. 1 D). Similar findings were observed in the spleen
(not depicted). This result shows that contrary to acti-
vated conventional T cells, which express CD25 for only
a few days, the CD25 marker has a stable expression on
Treg in vivo.

Rapid Turnover of a Treg Subset. The stable numbers of
infused Treg observed at various times after cell transfer
could be maintained by quiescent cells with long lifespan
and/or by a more dynamic process involving a balance of
divisions compensated by cell deaths. To explore their divi-
sion rates, donor CD62Lhigh Treg were labeled with CFSE
before transfer. In LNs, cells had not yet divided 2 d after
transfer. At day 9, a significant proportion of Treg had gone
through at least one division, some having already divided
extensively (more than six times). 35 and 70 d after transfer,
a majority of the remaining cells had divided, most of them
more than six times, whereas �30% of the remaining cells
had never divided. Similar findings were observed in the
spleen at days 2 and 9, whereas over time the proportion of
cells that had never undergone division dropped to only

20 and 14% at days 35 and 70, respectively (Fig. 2 A).
This result indicates that within the Treg, two subsets ex-
hibit very distinct fates. Some cells are quiescent and have
long lifespan, in the order of months. On the opposite, an-
other Treg subset appears to be constituted of cells with
rapid turnover and short lifespan.

Treg with a Rapid Turnover Acquire a Phenotype of Activated
Cells. T cell activation is followed by phenotypic changes
with up-regulation of CD44, CD69, and OX40/CD134,
and down-regulation of CD62L. Therefore, we analyzed
these markers at various times after transfer of purified
CD62Lhigh Treg. Quiescent Treg predominantly kept a stable
CD62Lhigh CD44int CD134int phenotype for at least 2 mo.
In contrast, the cells that had divided extensively acquired
an activated phenotype with up-regulated expression of
CD44, CD69, and CD134, and down-regulated expression

Figure 2. Rapid turnover and ac-
quired activated phenotype of a Treg

subset. 2, 9, 35, and 70 d after
transfer of CFSE-labeled Thy-1.1
CD62Lhigh Treg into Thy-1.2 BALB/c
mice, donor cells (gated on CD4�

Thy1.1� cells) were analyzed for cell
division (A) and activation markers
(B and C). The vertical bars delimit
undivided cells from cells that had
divided one to six times and cells
that went through more than six di-
visions. (A) Each CFSE histogram is
representative of four to six mice per
time point. Values indicate the mean
percentage 
 SD of cells in the dif-
ferent quadrants. (B and C) Each dot
plot is representative of four to six
mice per time point.
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of CD62L (Fig. 2, B and C). CD62L down-regulation was
observed predominantly after six divisions, suggesting a rel-
ative stability of this marker at high level expression even
after activation, as previously described in vitro (7). Similar
findings were observed in the spleen (not depicted).

Rapid Turnover of CD44high Regulatory T Cells. To con-
firm that a fraction of Treg has a rapid turnover at the steady
state, we performed a BrdU incorporation assay. Normal
mice received continuous administration of BrdU for 7 d.
Cells that went through divisions during this period incor-
porated this nucleoside analogue in their DNA and were
quantified by flow cytometry. Because up-regulation of
CD44 was observed progressively from the first division of
Treg, whereas down-regulation of CD62L happened only
after several rounds of divisions (Fig. 2 B), we quantified
BrdU incorporation within the CD44high Treg and CD44int

Treg subsets. After 1 wk of BrdU administration, 50–60%

of CD44high Treg from peripheral LNs and spleen had in-
corporated the nucleoside analogue. This contrasts with
data obtained for the CD44int Treg population, for which
only �5% of the cells had incorporated BrdU during the
same period in these compartments (Fig. 3). Similar find-
ings were observed in short-term BrdU incorporation ex-
periments. After 24 h of BrdU treatment, BrdU� cells
were contained within the CD44high Treg and not the
CD44int Treg (not depicted). These experiments confirmed
data obtained in the adoptive transfer experiments that a
fraction of Treg population has a high turnover rate in the
steady state.

Two Treg Subsets with Different Phenotypes. Our results
indicate that Treg are constituted of two subsets with differ-
ent phenotypes and turnover properties. To further define
their phenotype, we performed flow cytometric analyses of
these subsets in unmanipulated normal mice. Using cells

Figure 3. Analysis of turnover of Treg by BrdU in-
corporation. BALB/c mice were treated with BrdU
administered continuously for 7 d using osmotic
pumps. Then, peripheral LN cells and splenocytes were
analyzed for cell surface expression of CD4, CD25, and
CD44, and BrdU incorporated into DNA of divided
cells. Levels of BrdU incorporations were quantified on
gated CD4� CD25� CD44high cells and CD4� CD25�

CD44low cells in LNs and the spleen as defined in A.
Background BrdU staining levels were obtained from
untreated mice (B). Representative results are shown
and values indicate the mean 
 SD of BrdU� cells
from data from two independent experiments (seven
mice). The percentage of CD25� CD4� T cells was not
statistically different in mice receiving osmotic pump
with BrdU, mice receiving osmotic pump with PBS,
and unmanipulated mice. In A, CD25� CD4� T cells
represented 8.2% of CD4� cells.

Figure 4. Cell surface phenotype reveals two Treg

subsets. Peripheral LN cells of BALB/c adult mice
were analyzed for cell surface expression of CD4,
CD25, CD62L, and the indicated markers. Gated on
CD4� CD25� cells, expression of the indicated markers
was plotted with CD62L expression. The arrowheads
on the left and right sides of the dot plots indicate the
mean fluorescence intensity obtained with isotypic
control mAb for the CD62Lhigh and CD62Llow Treg

populations delineated by the dashed vertical line. Each
dot plot is representative of three independent experi-
ments (six mice).
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from mice from clean animal facilities, the CD4� CD25�

CD62Llow cells are likely composed mostly of suppressor T
cells because these cells have comparable suppressive activ-
ity in vitro as the CD4� CD25� CD62Lhigh cells (34). Cells
gated on the CD4� CD25� Treg phenotype were analyzed
in LNs for CD62L expression and activation markers, such
as CD44, OX40/CD134, GITR, CD69, and IL-2R�/
CD122, all up-regulated upon activation of Treg (35 and
unpublished data). Compared with Treg expressing high
levels of CD62L, the CD4� CD25� CD62Llow cells had in-
creased expression of the activation markers CD44, OX40/
CD134, GITR, CD69, and IL-2R�/CD122 (Fig. 4 and
Table I). Importantly, these last two markers are up-regu-
lated only for a few days upon Treg activation (35 and un-
published data), suggesting that most of the CD4� CD25�

CD62Llow cells are continuously activated in the steady
state. The increased expression of the transferrin receptor
CD71 in these cells, up-regulated in dividing cells (36),
supports this hypothesis (Fig. 4 and Table I).

Besides its constitutive expression of CD25, natural sup-
pressor CD4� T cells have been described by various phe-
notypes such as CD5high (37), GITR� (35, 38), CD38� (39),
or CD45RBlow (40) cells. Indeed, we observed that both
subsets of Treg (CD62Lhigh and CD62Llow) expressed higher
levels of CD5, GITR, or CD38 than CD4� CD25� T cells,
and lower levels of CD45RB than CD4� CD25� T cells
(Table I). Again, CD38 and CD45RB were differentially
expressed by the CD62Lhigh Treg and CD62Llow Treg subsets.
This could be explained by the different activation status of
the two subsets because CD38 is up-regulated whereas
CD45RB is down-regulated upon T cell activation (39).

Based on data shown in Figs. 2, 3, and 4, it can be hy-
pothesized that at a given time, a fraction of the Treg popu-
lation is chronically activated. First, they up-regulate CD69
while remaining CD62Lhigh, and then, after several divi-
sions they acquire a CD69� CD62Llow phenotype. In sup-
port of this scenario, we found that after 24 h of BrdU in-
corporation, only 1% of the CD69� CD62Lhigh cells were
BrdU�, whereas 6–10% of both CD69� CD62Lhigh and
CD69� CD62Llow cells were BrdU� (not depicted). One
Treg subset, subsequently referred to as activated Treg,
would predominantly have a CD4� CD25� CD62Lhigh/low

CD44high CD69� CD122high CD134high CD71high CD54high

CD5high GITRhigh CD38high CD45RBlow phenotype. The
other subset, subsequently referred to as resting Treg, would

predominantly have a CD4� CD25� CD62Lhigh CD44int

CD69� CD122low CD134int CD71low CD54int CD5int

GITRint CD38� CD45RBint phenotype. Interestingly,
compared with the CD62Llow Treg, the CD62Lhigh Treg also
expressed higher levels of the CCR7 chemokine receptor
(32). Importantly, it has been shown that among the CD4�

CD25� Treg, CD62Lhigh and CD62Llow cells have similar
suppressive activity in vitro, as well as CD45RBlow and
CD45RBhigh cells, CD69� and CD69� cells, and CD38�

and CD38� cells (32). From this, it can concluded that the
two Treg subsets that we have defined have both potent
suppressive activity in vitro. Thus, our data offer a model to
explain the described phenotypic heterogeneity of the sup-
pressor Treg for numerous markers, such as CD62L, CD44,
CD69, CD38, or CD45RB (1, 2).

Sustained Activation of Autoreactive Treg in the Steady
State. Highly autoreactive Treg precursors are positively se-
lected in the thymus (19–21), suggesting that Treg are en-
riched in autoreactive cells in the periphery (22). Thus, we
speculated that the activated Treg subset is constituted mostly
of autoreactive cells that respond to self-antigens. To test
this hypothesis, we used ins-HA transgenic mice expressing
the model HA Ag in pancreatic islets and TCR-HA trans-
genic mice expressing a T cell receptor transgene specific to
an HA peptide. In these mice, HA-specific CD4� T cells
were identified using the anticlonotypic 6.5 mAb. Highly
purified CD62Lhigh Treg from TCR-HA transgenic mice
were labeled with CFSE and transferred intravenously into
ins-HA transgenic mice. At various times after transfer, do-
nor Treg were analyzed by flow cytometry in pancreatic LNs
and control peripheral LNs. In the pancreatic LN, the num-
bers of donor cells significantly increased, with a peak at
days 5–7 depending on the experiment. Then, their num-
bers decreased dramatically by day 11. On the contrary, do-
nor Treg did not expand in peripheral LNs and their num-
bers decreased progressively up to day 11 (Fig. 5 A). The
increased proportion of donor Treg in pancreatic LNs was
due to a significant proliferation of HA-specific 6.5� cells, a
phenomenon not observed in peripheral LNs (Fig. 5 B).
The proliferating HA-specific 6.5� Treg acquired a CD44high

CD62Lhigh/low activated phenotype (Fig. 5 C), as previously
observed for the activated Treg subset derived from non-
transgenic mice (Fig. 2 B). 11 d after transfer, we could
hardly detect any 6.5� cells that had divided in various LNs,
spleens, or pancreas (not depicted), suggesting that most of

Table I. Phenotypic Characterization of the Two Treg Subsets and CD4� CD25� Cells

Cells CD44 CD69 CD122 CD134 CD71 CD54 CD5 GITR CD103 CD38 CD45RB

CD4� CD25� CD62Lhigh 476 73 40 48 34 183 931 235 48 23 472
CD4� CD25� CD62Llow 1,248 197 72 107 79 468 1,158 408 170 116 189
CD4� CD25� 263 22 7 3 14 65 728 19 16 5 1,315

Peripheral LN cells of adult BALB/c mice were labeled with mAb specific to CD4, CD25, CD62L, and the indicated marker and analyzed by flow
cytometry. Gated on CD4� CD25� CD62Lhigh, CD4� CD25� CD62Llow, and CD4� CD25� cells, results are expressed as mean fluorescence intensity
of the indicated marker. Representative data from one out of six mice are shown.
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the HA-specific cells were deleted shortly after expansion in
pancreatic LNs. The preferential expansion of HA-specific
Treg in pancreatic LNs of ins-HA transgenic mice indicates
that activation of Treg is indeed auto-Ag driven. Thus, the
low level physiological presentation of tissue self-Ag in
draining LNs is sufficient to induce intense proliferation of
specific autoreactive Treg.

Discussion
So far, CD25 has been the best cell surface marker used

to identify the natural suppressor CD4� CD25� T cells.
Recent studies showed that the in vitro suppressive activity
of a polyclonal population (41) or even clones (42) of Treg

was contained within cells expressing high but not inter-

mediate levels of CD25, emphasizing the importance of
this marker for this population. CD25 expression by Treg

likely plays a critical role because their proliferation and
survival is dependent on IL-2 (3, 26, 43, 44). However,
conflicting data have been published on the stability of this
marker on Treg. We and others have shown a stable CD25
expression on Treg in vitro that maintained a suppressive ac-
tivity, even after 4–6 wk of culture (7, 45). On the other
side, after transfer of purified Treg into lymphopenic mice,
injected cells expanded and most of them lost CD25 ex-
pression (28, 46). However, contrary to the cells that main-
tained CD25 expression, the CD25� cells had also lost their
suppressive activity, suggesting that they resulted from the
preferential expansion of contaminant cells (being either
activated CD25� conventional CD4� T cells or CD25�

cells) in the injected Treg population (28). To analyze the
stability of CD25 expression on Treg in physiological
steady-state conditions, we transferred, in nonlym-
phopenic congenic recipients, highly purified CD4� CD25�

CD62Lhigh cells (�98% pure), limiting the risk to inject
CD25� cells or activated CD25� conventional CD4� T
cells. Indeed, conventional activated CD4� T cells are
prominently in the CD62Llow population. Our data showed
a remarkable in vivo stability of CD25 expression on Treg

for at least 2 mo. These data reinforce the hypothesis that
these cells belong to a specific lineage, distinct from con-
ventional CD4� T cells or from other regulatory CD4� T
cell populations secreting IL-10 or TGF� immunosuppres-
sive cytokines, which display unstable CD25 expression
(42). In addition to the Treg-specific transcription factor
Foxp3 (47), stable CD25 expression is therefore a hallmark
of the natural suppressor Treg.

In vitro data showed that Treg do not proliferate to anti-
genic or anti-CD3 stimulation, except if IL-2, anti-CD28
antibody, or lipopolysaccharide is added to the culture (43,
44, 48). Their hyporesponsiveness has also been described
after adoptive transfer of Treg that proliferated poorly to
their cognate Ag administrated subcutaneously in complete
Freund’s adjuvant (46). Thus, Treg are usually considered
anergic cells. This property has been challenged by data
aimed at analyzing their turnover in steady-state conditions
using BrdU incorporation experiments. After 3 d of BrdU
administration, 10.5% of CD4� CD25� cells, versus only
4.5% of CD4� CD25� cells, were BrdU� (49, 50). How-
ever, without knowing the level of possible conversions
from CD4� CD25� phenotype into CD4� CD25� pheno-
type and vice versa, a definitive point could not be made.
Indeed, for example, some of the BrdU� CD4� CD25�

cells could have incorporated BrdU while they were CD4�

CD25� cells (for instance conventional activated CD4� T
cells). Because our data showed few, if any, conversion
from the CD4� CD25� phenotype into the CD4� CD25�

phenotype and vice versa in steady-state conditions, we can
now conclude from the BrdU incorporation experiments
that Treg are cycling in vivo and therefore cannot be consid-
ered as “anergic” stricto-sensu. In support of this conten-
tion, after transferring CFSE� Treg, a fraction of them rap-
idly lost CFSE staining, indicative of cell division.

Figure 5. The activated Treg population contains autoreactive cells.
CFSE-labeled CD62Lhigh Treg purified from Thy-1.1 TCR-HA transgenic
mice were intravenously injected into Thy-1.2 ins-HA transgenic mice.
(A) The proportion of CD4� Thy-1.1� donor cells was determined by
flow cytometry in pancreatic (�) and peripheral (�) LNs 3, 5, 7, and 11 d
after transfer. The graph, which represents the percentage of donor Treg

(CD4� Thy-1.1�) per organ, shows the mean of two to three mice per
time point and is representative of three independent experiments. (B and
C) Representative phenotypic analysis of the donor cells on day 7 after
transfer in the indicated LNs. Gated on CD4� Thy-1.1� cells, cells were
analyzed for CFSE staining and expression of the anti-HA–specific TCR
using the 6.5 mAb or of CD44 and CD62L. Values 
 SD indicate the
percentages of 6.5� divided cells.



T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

744 Continuous Activation of Autoreactive Treg

Importantly, only a subset, and not the whole population
of Treg, is cycling in the steady state. When analyzed 1 mo
after transferring CFSE� Treg, about one third in the LN
and one fifth in the spleen of the remaining donor cells had
not lost CFSE staining and thus had not divided for 1 mo.
These cells were mostly CD62Lhigh, CD44int, CD69�, and
OX40int. In marked contrast, cells that had divided exten-
sively (more than six divisions after 1 mo) displayed an acti-
vated phenotype because they were mostly CD62Llow,
CD44high, CD69�, and OX40high. BrdU experiments con-
firmed the existence of two subsets of Treg, one with a rapid
turnover, characterized by its CD44high phenotype, and a
quiescent subset, characterized by its CD44int phenotype.
Phenotypic analyses on nonmanipulated mice also support
the existence of a resting Treg subpopulation and a subset
displaying a phenotype of activated cells. Indeed, these lat-
ter cells expressed higher levels of markers up-regulated
upon activation on Treg such as CD44, CD134, and GITR
(35). Importantly, they also display increased expression of
markers only transiently up-regulated upon cell activation,
such as CD69 (unpublished data) and CD122 (35), as well
as CD71, a molecule up-regulated in dividing cells (36).
Altogether, these data strongly suggest that a Treg subset is
composed of cells that are continuously activated.

By analogy with signals driving proliferation of conven-
tional T cells, the signals that drive continuous activation of
cycling Treg could be cytokine- and/or TCR-mediated.
We show here that Treg expressing a TCR specific to islet-

Ag proliferated extensively in pancreatic LNs but not in
other LNs. Thus, in addition to the fact that a fraction of
the repertoire of Treg is autoreactive (19–22), the activated
Treg subset is likely composed for a large part of autoreac-
tive Treg. After expansion of activated Treg in the steady
state, most of the cells probably die because no accumula-
tion or significant migration into nonlymphoid tissues were
observed (not depicted). Some of them recirculated prefer-
entially in the spleen (not depicted), a property explained
by their CD62Llow CCR7low phenotype.

Thus, we propose a model that summarizes some of the
features of the homeostasis of Treg in adults (Fig. 6). In per-
manence, tissue self-Ag, originated from dying cells, mole-
cule shedding, or direct capture from live cells, are pre-
sented by Ag-presenting cells in draining LNs (51, 52).
From the pool of resting Treg, the highly autoreactive cells
that encounter their cognate self-Ag rapidly expand and ac-
quire a phenotype of activated Treg, and then, most of them
die or recirculate in the spleen.

These findings may shed new light on the mode of ac-
tion of Treg and give plausible explanations on several previ-
ous findings. In vitro experiments have shown that switch-
ing on suppressor function on Treg is dependent on their
activation via TCR engagement, but once activated, they
exhibit a nonspecific bystander suppression on other T cells
(34, 44). The existence of a pool of activated Treg in lym-
phoid tissues suggests that this subset exerts a basal and per-
manent suppression on T cell activation. This would ex-
plain why depletion of endogenous Treg in the steady state
induced a rapid increased proliferation of memory CD8 T
cells (3) and a rapid increase of antitumor responses (10).
Our data also support a very dynamic process in which new
clones, originated from the pool of resting Treg, are acti-
vated when they encounter their cognate self-Ag, leading
to their expansion followed by contraction in draining LNs.
This phenomenon may have two important implications.
In LNs, the pool of activated Treg would be enriched in cells
specific to self-Ag originated from drained tissues. This
would explain why Treg from pancreatic LNs, but not the
ones from other LNs, efficiently regulated autoimmune di-
abetes (53). The second implication is related to the dyna-
mism of this process. A removal of the source of tissue-Ag
may lead to a rapid contraction of the pool of tissue-specific
Treg. Experimental findings support this hypothesis. The ca-
pacity of Treg from secondary lymphoid tissues to prevent
autoimmune thyroiditis was lost in rats whose thyroids
were ablated, while they maintained the capacity to prevent
autoimmune diabetes (54). In addition, tolerance to ovarian
Ag involved in prevention of autoimmune oophoritis was
lost as soon as 1 wk after ablation of ovaries (55). Finally,
cytotoxic treatments killing cycling cells, such as irradiation
or chemotherapy, most likely delete activated Treg. This
could explain why these treatments may paradoxically in-
crease severity of some autoimmune diseases (56).

We are grateful to Harald von Boehmer for providing the TCR-
HA transgenic mice, Abul Abbas, José Cohen, and Olivier Boyer
for critical comments on the manuscript, and Jeffrey Bluestone for

Figure 6. A model describing some of the features of the homeostasis
of Treg. In the steady state, tissue self-Ag, originated from dying cells,
molecule shedding, or direct capture from live cells, are presented by Ag-
presenting cells in draining LNs. This presentation of self-Ag induces acti-
vation of specific autoreactive cells derived from the pool of long-life
resting Treg. During rapid expansion, the cells enter the pool of activated
Treg, displaying an activated phenotype. Then, some of them die or recir-
culate in the spleen.
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