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Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a 
gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. 
The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections 
increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convinc-
ing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging 
or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive 
inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infec-
tions and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived 
suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and 
chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence 
that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppres-
sive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation 
of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic 
inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
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Introduction

The aging process is associated with a remodeling of the 
immune system in humans and different animal species 
[1, 2]. The senescence of both immune and non-immune 
cells evokes a low-grade pro-inflammatory state, called the 
senescence-associated secretory phenotype (SASP) [3]. 
There is substantial evidence that the age-related remod-
eling of the immune system induces many clinical changes, 
e.g., the risk for cancers and chronic infections increases, 
whereas the efficiency of vaccination and immunotherapy 
decreases with aging (Fig. 1). Moreover, it is known that 
chronic inflammatory states promote the aging process (see 
below). The resolution phases of inflammatory insults are 

associated with counteracting immunosuppressive responses 
which are intended to protect tissues from excessive inflam-
matory injuries although immunosuppression also promotes 
the senescence of immune and non-immune cells [4, 5]. 
Consequently, this provokes many age-related clinical altera-
tions described below. There is convincing evidence that 
the activation of immunosuppressive network, e.g., myeloid-
derived suppressor cells (MDSC), regulatory T cells (Treg), 
and type M2 macrophages, has a crucial role in tumorigen-
esis, chronic infections, and the inefficiencies of vaccination 
and immunotherapy (see below). It seems that the activation 
of immunosuppressive network promotes the age-related 
immunosenescence which enhances the age-related clinical 
immune changes. Here, it will be examined the role of the 
age-related remodeling of the immune system in the genera-
tion of clinically observed immune alterations with aging. 
Original and review articles were searched from major data-
bases including PubMed, Scopus, and Google Scholar.
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Clinical interactions between aging 
and chronic inflammatory conditions

Aging is a major risk factor for chronic inflammatory 
diseases

There is extensive evidence that aging is a major risk factor 
for a wide variety of chronic diseases, especially for chronic 
inflammatory diseases. Given that the aging process is asso-
ciated with a low-grade inflammatory state [1, 2], it is not 
surprising that chronic inflammation is involved in many dis-
eases across the lifespan [6]. For instance, chronic inflamma-
tion prevails in cardiovascular diseases [7], chronic kidney 
diseases [8], and neurodegenerative diseases [9]. Moreover, 
chronic inflammation has a crucial role in the pathogenesis 
of many cancers [10], the incidence of which significantly 
increases with aging [11]. Commonly, multimorbidity and 
frailty exist in the elderly and mortality increases exponen-
tially in aged-related diseases [12, 13]. Several studies have 
revealed that inflammatory markers predict frailty status and 
mortality in older people [14, 15].

Centenarians are living examples of a successful aging 
process and thus these people have been studied in attempts 
to understand the mechanisms underpinning healthspan reg-
ulation. A survey of several community-based prospective 
studies indicated that the inflammation score significantly 
predicted the all-cause mortality, capability, and cognition 
in individuals of extreme old age [16]. Interestingly, the 
inflammation index of centenarians’ offspring was lower 

than that of their age-matched controls. Rubino et al. [17] 
demonstrated in their study on the offspring of Sicilian cen-
tenarians that these individuals were more resistant to the 
aging-induced immune changes than their counterparts. For 
instance, the serum level of Tregs and γδ T cells as well 
as that of senescent T cells were significantly lower in the 
offspring of centenarians as compared to those values of 
their non-centenarian counterparts. There are other studies 
indicating that the offspring of centenarian people have a 
lower prevalence of several age-related diseases [18]. These 
results imply that epigenetic factors regulate the healthspan 
of centenarians and their offspring. The epigenetic clock 
based on DNA methylation has been used to evaluate the 
biological aging process [19]. Horwath et al. [20] reported 
that the DNA methylation level of peripheral blood mono-
nuclear cells (PBMC) from Italian semi-supercentenarians 
and their offspring revealed a decreased epigenetic age 
compared to the age-matched controls. Currently, the epi-
genetic regulation of the healthspan and lifespan needs to be 
clarified. Interestingly, Jylhävä et al. [21] demonstrated that 
the mortality-associated methylation sites mapped to genes 
functionally clustering around the nuclear factor κB (NF-κB) 
complexes in nonagenarians. NF-κB transcription factor is a 
major driver of inflammatory responses. There is abundant 
evidence that NF-κB signaling seems to be the molecular cul-
prit of inflammaging process controlling both healthspan and 
lifespan [22]. It seems that the age-related inflammatory state 
predisposes an organism to chronic inflammatory diseases 
which are also driven by the activation of NF-κB signaling.

Fig. 1  Inflammaging and chronic inflammatory conditions remodel 
the immune system by inducing a counteracting immunosuppression 
which promotes immunosenescence. The immunosuppressive net-
work involves MDSCs, Tregs, Bregs, DCregs, NKregs, NKT II cells, 
and type M2 macrophages. Subsequently, immunosuppression and an 
inefficient immune system disturb the efficacy of immune responses 
which increase the risk for cancers and chronic infections as well as 

decreasing the efficiency of vaccination and immunotherapy. Con-
versely, the increased immunosuppression associated with aging 
enhances transplantation tolerance. Abbreviation: Breg, regulatory B 
cell; DCreg, regulatory dendritic cell; MDSC, myeloid-derived sup-
pressor cell; NKreg, regulatory natural killer cell; NKT II, type II 
natural killer T cell; Treg, regulatory T cell

698 Journal of Molecular Medicine (2022) 100:697–712



1 3

Chronic inflammatory disorders promote premature 
aging in humans

There is convincing evidence that chronic inflammatory 
insults experienced during childhood or adulthood can 
enhance the premature aging process in humans. There are 
examples of both local and systemic inflammatory states 
which can promote the aging process. For instance, the UV-
radiation (UVR)-induced photoaging of the skin is a well-
known example of an accelerated aging process driven by 
repeated inflammatory insults [23, 24]. Recent studies have 
revealed that UVR and environmental pollution trigger dam-
ages in the skin, e.g., oxidative stress and DNA-damage, 
which evoke a cellular senescent state in skin fibroblasts and 
keratinocytes [25, 26]. Senescent cells, which possess an 
SASP phenotype, are secretory cells releasing many inflam-
matory factors, e.g., cytokines, chemokines, and metallopro-
teinases. A senescent state is common in aging tissues pro-
moting the aging process and also age-related diseases [27]. 
Tumorigenesis is another example of an increased chronic 
inflammatory state which can promote both local and sys-
temic premature aging processes in cancer survivors [28, 
29]. The cellular senescence and inflammation occurring in 
tumor sites enhance the tumorigenesis process. Several epi-
demiological studies have revealed that either cancer itself or 
cancer therapies accelerate the biological aging process, e.g., 
osteoporosis, muscle atrophy, pulmonary fibrosis, cardiotox-
icity, and characteristics of frailty [28, 30]. Moreover, can-
cer survivors suffer from impaired wound healing, increased 
infections, decreased cognitive status, chronic fatigue, and 
increased morbidity. These properties indicate that cancers 
promote premature aging in cancer-survivors.

It is known that chronic infections enhance immu-
nosenescence and are able to promote the aging process 
in humans (Fig. 1). Cytomegalovirus (CMV) infections 
increase with aging and in fact, most elderly people are 
CMV-seropositive. However, CMVs are normally living 
in a dormant state in the host cells but their reactivation 
triggers a chronic low-grade inflammation. Several investi-
gators have revealed that CMV infection is able to enhance 
immunosenescence [31, 32] although this topic is still a 
matter of some debate. Recently, Hassouneh et al. [33] 
demonstrated that there are clear differences in the immu-
nosenescent states induced by the aging process or CMV 
infection, e.g., in alterations of the T cell subsets. Genetic 
studies have revealed that CMV infection accelerated the 
epigenetic aging profile of human PBMC cells [34, 35]. 
Given that CMV infection affects the properties of immune 
cells and impairs immune responses, it is not surprising 
that it increases the risk for age-related diseases [31, 36]. 
The immunosenescence induced by CMV and the ageing 
process seem to induce a more severe COVID-19 disease 
in elderly people [37]. There are studies indicating that 

patients suffering from human immunodeficiency virus 
(HIV) infection display a premature onset of age-related 
morbidities, e.g., cardiovascular diseases, osteoporosis, 
cognitive impairments, and frailty [38, 39]. Gianesin et al. 
[40] demonstrated that a significant premature aging and 
immunosenescent phenotype were evident in HIV-infected 
children. The telomeres of PBMCs were considerably 
shorter in the HIV-infected than uninfected children. There 
appeared significant changes in T cell population, e.g., 
lower thymic output and reduced maturation level of T 
cell receptors (TCR). It is noteworthy that these alterations 
were not attributed to antiretroviral therapy, instead these 
changes indicated the presence of a premature immunose-
nescent state in the HIV-infected children [40].

There are several other chronic inflammatory states 
which enhance immunosenescence and promote a prema-
ture aging process, e.g., chronic kidney disease (CKD) [8, 
41], chronic obstructive pulmonary disease (COPD) [42], 
and rheumatoid arthritis [43] (Fig. 1). It is known that CKD 
triggers a persistent uremic inflammation which promotes 
the appearance of the immunosenescent phenotype involv-
ing the loss of thymic function, a decrease in the numbers 
of naïve B and T cells, the expansion of memory T cell 
population, and a skewed TCR repertoire [44]. CKD also 
exposes the individual to the co-morbidity of many age-
related diseases. The pathogenesis of CKD involves a typi-
cal array of inflammatory changes, such as oxidative stress, 
mitochondrial dysfunction, and cellular senescence [8]. One 
specific indicator of CDK is a major decline in the produc-
tion of α-klotho protein, a well-known anti-aging protein 
[45]. The reduced secretion of klotho protein from kid-
ney disturbs cellular calcium/phosphate metabolism, thus 
enhancing co-morbidities, such as atherosclerosis, osteo-
porosis, and skin atrophy. Klotho protein has many anti-
inflammatory properties which confer protection against 
the immune senescence of human monocytic leukemia cell 
line-1 (THP-1) [46]. Klotho-deficient mice display many 
pathological properties which are similar to those appearing 
during the aging process [47]. Given that the expression of 
klotho decreases with aging, it seems that the decline in the 
expression of klotho protein in CKD promotes premature 
aging processes in the whole body. COPD is also associated 
with an increase in the hallmarks of aging, e.g., epigenetic 
changes, telomere shortening, cellular senescence, immu-
nosenescence, and low-grade inflammation [42]. COPD is 
also accompanied by several co-morbidities. In conclusion, 
it seems that the persistent inflammatory state, either in the 
aging process itself or in inflammatory diseases, enhances 
an accelerated aging process with the appearance of more 
and more co-morbidities with aging. The mechanisms 
underlying the inflammation-driven aging process need 
to be clarified. It is known that chronic inflammation trig-
gers a counteracting activation of the immunosuppressive 
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network which not only induces immunosenescence but also 
increases cellular senescence in inflamed tissues and in the 
whole body (see below).

Inflammation stimulates immunosuppression

Acute inflammatory states stimulate compensatory anti-
inflammatory responses which counteract excessive inflam-
matory reactions, promote resolution processes, and thus 
prevent unneeded damages to the host tissues [48, 49]. In 
chronic inflammation, immunosuppressive activity has a cru-
cial role in the stabilisation of inflamed microenvironment. 
Inflammatory mediators, such as colony-stimulating factors 
(CSF), chemokines (e.g., CCL2), and interferons, stimu-
late the expansion of the myelopoietic lineage and augment 
the generation of myeloid cells in the bone marrow (BM). 
Increased myelopoiesis stimulates the generation of immature 
myeloid-derived suppressor cells (MDSC), both monocytic 
M-MDSCs and polymorphonuclear PMN-MDSCs, which 
are released from the BM and are subsequently recruited 
into extramedullary immune sites, e.g., spleen and lymph 
nodes, or directly into inflamed tissues [50, 51]. In the target 
sites, MDSCs proliferate and enhance their immunosuppres-
sive potentials to suppress pro-inflammatory responses. The 
immune cells are exceedingly plastid and the phenotype of 
immune cells can be modulated from a pro-inflammatory to 
an immunosuppressive state, a process also called polariza-
tion [52]. For instance, monocytes and granulocytes can be 
converted into immunosuppressive M-MDSCs and PMN-
MDSCs in an environment where there is persistent inflam-
mation. Moreover, MDSCs can promote the differentiation 
of resting T cells to immunosuppressive Tregs [53, 54]. 
Tregs are a heterogeneous group of immunosuppressive T 
cells, e.g., the thymic Tregs (tTreg) maintain self-tolerance, 
whereas inducible Tregs (iTreg) prevent excessive inflamma-
tion. There are also tissue-resident, specific Treg populations, 
e.g., in the skin [55] and the adipose tissue [56]. The Fork-
head box P3 (FoxP3) protein is the epigenetically-regulated 
master protein of the Tregs. Tregs are crucial immunosup-
pressive cells since they suppress the functions of effector T 
and B cells, inhibit the activity of natural killer (NK) cells, 
and promote the formation of other immunosuppressive cells, 
e.g., tolerogenic dendritic cells (DC) and anti-inflammatory 
M2 macrophages [57–59].

The host cells in the inflammatory microenvironment 
are able to educate immune cells, e.g., to switch pro-
inflammatory cells to immunosuppressive phenotypes 
[60]. For instance, pro-inflammatory macrophages, called 
M1 macrophages, can be polarized to immunosuppressive 
M2 phenotypes in chronic inflammation [52]. The tumor 
microenvironment with persistent inflammation contains 
immunosuppressive tumor-associated macrophages (TAM) 
which suppress the antitumor activity of effector immune 

cells [61]. The immunosuppressive network also includes 
regulatory subsets of B cells (Breg) [62], DC cells (DCreg) 
[63], NK cells (NKreg) [64], and type II NKT cells [65] 
(Fig. 1). These immunosuppressive subsets of each immune 
cell type are heterogenous with respect to their phenotypes 
and functions and in addition, there exists a clear tissue-
specificity in their properties. These regulatory cells have 
not been as extensively studied as MDSCs, Tregs, and M2 
subsets of macrophages. Recently, I have reviewed the com-
mon properties of each member of immunosuppressive net-
work and discussed how their changes are associated with 
the aging process [59]. Immunosuppressive cells possess a 
diverse armament of tools with which they not only regulate 
the immunosuppressive potency of the network but also sup-
press the functions of effector immune cells, e.g., the proper-
ties of T, B, DC, and NK cells. Common immunosuppres-
sive mechanisms include (i) secretion of anti-inflammatory 
cytokines, such as TGF-β, IL-4, IL-10, IL-1 receptor antago-
nist (IL-1ra), (ii) release of reactive oxygen and nitrogen 
species (ROS/RNS), (iii) secretion of immunosuppressive 
compounds like adenosine and prostaglandin E2 (PGE2), 
(iv) expression of inhibitory immune checkpoint receptors, 
e.g., programmed cell death protein-1 (PD-1)/PD-L1 and 
cytotoxic T-lymphocyte associated protein 4 (CTLA4), 
and (v) expression of enzymes catabolising amino acids, 
such as indoleamine 2,3-dioxygenase 1 (IDO1) and argin-
ase 1 (ARG1) [4, 66–68]. The remodelling of immune cells 
toward either an immunosuppressive or an immunosenescent 
state is underpinned by epigenetic regulation [69, 70].

Immunosuppressive activity induces senescence 
state in immune and non‑immune cells

The purpose of immunosuppression is to prevent exces-
sive inflammatory responses although recent observations 
have indicated that the immunosuppressive period can be 
extended to the post-resolution phase since immunosup-
pressive cells can support the repair processes of host tis-
sues [71, 72]. Indeed, the suppressive armament exploited 
by immunosuppressive cells (see above) contains many 
tools, e.g., secretion of IL-10, TGF-β, PGE2, and ROS/
RNS as well as the depletion of distinct amino acids, 
which are not only drivers of immunosenescence but they 
can also enhance the senescence of non-immune cells [4, 
5]. Senescent immune cells display a reduced ability to 
function as active effector cells which is attributed to the 
remodeling process in the immune system, especially in 
persistent inflammatory states [5, 73–76] (Fig. 1). Inter-
estingly, immunosuppressive cells can induce changes in 
the phenotypes of immune cells which are very similar 
to those of immunosenescent cells. For instance, Tregs 
can induce the senescent phenotype of T cells [76]. 
Moreover, M-MDSCs and Tregs reduce the efficacy of 
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immunosurveillance and the cytotoxic activities of NK 
and CD8 T cells [77–79]. For instance, an exposure to 
TGF-β suppressed the cytotoxic activity of human NK 
and CD8 T cells by inhibiting the expression of natural 
killer group 2D (NKG2D) receptor [80]. Nagaraj et al. 
[81] demonstrated that MDSCs were able to nitrate the 
TCR complex and thus inhibiting the antigen recognition 
of mouse tolerant CD8 T cells. Furthermore, MDSCs can 
impair the properties of DCs and B cells [74, 82]. In fact, 
immunosenescent cells display many of the characteristics 
encountered in the senescence of non-immune cells, e.g., 
telomere shortening, DNA damages, augmented expres-
sion of SA-β-Gal and cell cycle inhibitors (p16INK4a, 
p21WAF1, p53) as well as increased oxidative and endo-
plasmic reticulum stresses [5, 76, 83, 84]. Immunosenes-
cence is not only associated with the aging process but it 
commonly occurs in chronic inflammatory states, espe-
cially those associated with the aging process [85, 86]. 
The accumulation of immunosenescent cells also occurs 
in chronic infections and autoimmune diseases, such as 
rheumatoid arthritis. [87, 88].

As discussed above, inflammatory mediators evoke a 
counteracting immunosuppression which impairs the func-
tion of NK and CD8 T cells. Consequently, the surveil-
lance of senescent cells is inhibited because NK cells and 
CD8 T cells are the major surveying cells safeguarding 
tissue homeostasis. This impaired immune surveillance 
leads to an accumulation of senescent cells in both the 
immune system and peripheral tissues [89]. It is known 
that NK cells can recognize senescent fibroblasts and 
eliminate them through perforin-mediated cytolysis [90]. 
Ovadya et al. [89] demonstrated that the ablation of the 
Perforin 1 (Prf1) gene in mice increased the accumula-
tion of senescent cells within tissues, triggered chronic 
inflammatory state, and finally reduced the survival of the 
animals. The NKG2D receptors of NK and CD8 T cells 
recognize the NKG2D ligands, especially the increased 
levels of MHC class I polypeptide-related sequence A 
(MICA) and UL16-binding protein 2 (ULBP2) proteins, 
on the surface of senescent cells and subsequently trig-
ger their clearance [91]. However, inflammaging and 
chronic inflammatory states can impair the function of 
the NKG2D/NKG2D ligand axis and thus impair the 
cytotoxicity of NK and CD8 T cells. For instance, immu-
nosuppressive cells, e.g., MDSCs, Tregs, and M2 mac-
rophages, can inhibit the expression of NKG2D in NK 
cells through membrane-bound TGF-β1 signaling or the 
IDO1-mediated kynurenine secretion [92, 93]. Recently, I 
reviewed the mechanisms which immunosuppressive cells 
exploit to inhibit the surveillance and clearance of senes-
cent cells [94]. I proposed a feed-forward model in which 
chronic low-grade inflammation induced a compensatory 

immunosuppression which subsequently enhanced the 
accumulation of pro-inflammatory senescent cells. It is 
well known that senescent cells, both immune and non-
immune cells, secrete pro-inflammatory mediators and 
thus they are able to propagate an inflammatory state both 
during aging and in chronic inflammatory states [3, 5, 95].

Immunosuppressive activity increases with aging

The aging process is associated with a remodeling of the 
immune system, both innate and adaptive immunity. It seems 
that the chronic inflammaging state triggers the remodel-
ling process stimulating a counteracting immunosuppression 
which leads to immunosenescence (Fig. 1). This pathologi-
cal highway is well known in many chronic inflammatory 
states (see below). Currently, although inflammaging and 
immunosenescence have been widely recognized as the driv-
ing forces behind the aging process, these two processes 
are not able to explain many clinical observations without 
the inclusion of an immunosuppressive component (see 
below). There is convincing evidence that inflammaging is 
associated with increased immunosuppressive activity, as 
also occurs in other chronic inflammatory conditions. For 
instance, inflammaging enhanced myelopoiesis in the bone 
marrow [96], a process which was associated with an age-
related increase in the level of immunosuppressive MDSCs 
in the circulation of mice [97] and humans [98]. Accord-
ingly, the number of Tregs was augmented with aging in 
human blood [78, 99]. Studies on the bone marrow (BM) 
and secondary lymphoid organs have revealed that in these 
tissues the upregulation in the numbers of MDSCs and 
Tregs with aging was more robust than in the circulation. 
For instance, Flores et al. [100] demonstrated that the per-
centage of MDSCs robustly increased with aging in both 
mouse BM and spleen. There are numerous reports which 
have revealed that the presence of MDSCs significantly 
increased with aging in mouse spleen and lymph nodes [97, 
101]. Correspondingly, the level of Tregs was also aug-
mented with aging in the spleen and lymph nodes [99, 102]. 
However, there exist different subsets of Tregs, e.g., thymic 
(tTreg), peripheral (pTreg), and inducible (iTreg), which 
have some similar and some distinctive properties [103]. 
It is known that the levels of natural  FoxP3+ Tregs (nTreg), 
originated either from CD4 T or CD8 T cells, increase with 
aging, whereas those of iTreg and tTreg decline during the 
aging process [104, 105]. The decrease in the numbers of 
tTreg cells was most probably associated with an age-related 
involution of the thymus. However, Szurek et al. [106] dem-
onstrated that the markers of tTreg and iTreg, i.e., helios 
and neuropilin-1 (Nrp-1), did not distinguish tTreg cells 
from iTregs in mice. Interestingly, van der Geest et al. [107] 
revealed that the proportion of the naïve Tregs declined 
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with aging in human blood, whereas that of the memory 
Tregs (memTreg) clearly increased. Moreover, the level of 
memTregs inversely correlated to the human vaccination 
efficiency [107]. In conclusion, it seems that the remodeling 
of the immune system involves a significant increase in the 
accumulation of immunosuppressive MDSCs and Tregs.

There are some technical problems to quantify whether 
the presence of MDSCs and Tregs increases with aging 
in non-immune tissues. However, there are observations 
indicating that the level of MDSCs increased with aging in 
mouse and human skin [108]. Ruhland et al. [108] reported 
that the numbers of CD14, CD15, and CD33-positive cells 
were robustly increased in the skin of elderly people. These 
proteins are common markers of human MDSCs. They also 
demonstrated that stromal senescence enhanced the occur-
rence of both MDSCs and Tregs within mouse skin. The 
role of Tregs in the aging process is still far from clear since 
tissues contain several unique populations of tissue-resident 
Tregs which are crucially involved in the regulation of tis-
sue homeostasis [58, 109]. For instance, the Tregs found 
in mouse adipose tissue are involved in the regulation of 
energy metabolism and insulin resistance. The numbers 
of Treg cells significantly increased with aging in the vis-
ceral adipose tissue of lean mice, whereas obesity induced a 
decline in the numbers of Tregs [110, 111]. However, Bapat 
et al. [112] demonstrated that the depletion of fat-resident 
Tregs prevented the development of age-associated insulin 
resistance (IR). It is known that there exist two types of 
insulin resistance, i.e., the age-related IR and the obesity-
associated IR. Given that obesity increases inflammation, 
it seems that the obesity-associated IR was induced by the 
tissue-infiltrated Tregs.

In addition to MDSCs and Tregs, there are clear changes 
with aging in the phenotypes of other members of the immu-
nosuppressive network [59]. For instance, tissue-resident 
macrophages displayed an increased polarization toward the 
anti-inflammatory M2 phenotype not only in BM, spleen, 
and lymph nodes but also in lungs and skeletal muscles [113, 
114]. However, because macrophages are remarkably plastic 
cells, they can adapt to local disturbances in their microen-
vironment and thus express the M1 phenotype. Nonetheless, 
Duong et al. [115] demonstrated that the depletion of mac-
rophages in elderly mice augmented the antitumor activity of 
T cells and improved the responses of mice to tumor immu-
notherapy. These observations indicate that macrophages 
can augment their immunosuppressive activity during 
the aging process. There is convincing evidence that both 
MDSCs and Tregs in aged mice/humans are immunosup-
pressive, i.e., they suppress the antigen-induced proliferation 
of T cells, increase the production of IL-10, TGF-β, and 
ROS, inhibit the maturation and function of DCs, decrease 
the cytotoxic activity of NK and CD8 T cells and increase 
the susceptibility to infections and cancer formation [78, 97, 

101, 102]. It seems that the low-grade inflammation associ-
ated with aging is a driving force for immunosuppression 
and subsequent immunosenescence.

Increased immunosuppression is associated 
with chronic inflammatory states

Systemic chronic inflammation has a major role in the 
pathogenesis of many chronic diseases, e.g., cardiovascu-
lar diseases (CVD), COPD, CKD, hepatic steatosis, many 
cancers, autoimmune diseases, and neurodegenerative 
diseases [6]. There is a multitude of causes for chronic 
inflammatory conditions; many of these are still unknown 
such as that of the aging process. Nonetheless, a chronic 
inflammatory state activates immunosuppressive cells 
which impair the functional abilities of the immune sys-
tem, thus promoting immunosenescence (Fig. 1). Studies 
conducted on cardiovascular diseases, e.g., atherosclerosis, 
hypertension, acute coronary syndrome, and stroke, have 
indicated that immunosuppressive cells were involved in 
the pathology of CVD [116–119]. For instance, the occur-
rence of a stroke increased the level of Tregs which attenu-
ated inflammatory responses and enhanced the appearance 
of post-stroke regeneration [119, 120]. Accordingly, stroke 
increased the level of circulating M-MDSCs in human 
stroke patients [121]. It is known that stroke increases the 
risk for post-stroke infections, probably due to immunose-
nescence (see below). In COPD patients, the number of 
circulating MDSCs significantly increased [122], whereas 
the Th17/Treg balance was upregulated in the acute phase 
of COPD but significantly decreased when COPD moved 
to the stable phase [123]. This indicated that there existed 
an immunosuppressive state in the stable COPD. Chronic 
inflammation enhanced the progression of non-alcoholic 
fatty liver disease (NAFLD) which is a world-wide public 
health problem [124]. Zhou et al. [125] demonstrated that 
the accumulation of MDSCs into human liver during the 
progression of NAFLD positively correlated with the clini-
cal parameters of liver disease. There is clear evidence that 
the balance between Th17 and Treg cells has a significant 
role in the progression of NAFLD in both mice and humans 
[126, 127]. An increased level of pro-inflammatory Th17 
cells enhanced the progression of NAFLD, whereas Tregs 
prevented the generation of NAFLD.

Many persistent viral infections, e.g., HIV and herpes 
simplex virus (HSV), stimulate a chronic low-grade inflam-
matory state which is associated with increased immunosup-
pression and immunosenescence [128–130]. More severe, 
pathogen-induced sepsis also triggers both pro-inflammatory 
and immunosuppressive phases [131, 132]. It seems that 
MDSCs, especially M-MDSCs, have a key role in the resolu-
tion of inflammation in infectious foci induced by bacteria 
or viruses. In non-resolving infections, MDSCs stimulate 

702 Journal of Molecular Medicine (2022) 100:697–712



1 3

the immunosuppressive microenvironment which prevents 
excessive inflammation [128]. For instance, Sarkar et al. 
[129] demonstrated that in mouse ocular HSV1 infection, 
MDSCs suppressed the proliferation and cytokine produc-
tion of activated CD4 T cells, i.e., MDSCs induced the 
immunosenescence of CD4 T cells. They also reported that 
an adoptive transfer of the in vitro-generated MDSCs into 
infected mice expanded the pool of Tregs and subsequently 
reduced the severity of the HSV1-induced ocular infection. 
Currently, there are observations that COVID-19 infec-
tion induced a massive expansion of PMN-MDSCs which 
inhibited the specific T cell responses and increased the fatal 
outcome in patients infected by COVID-19 [133]. Accord-
ingly, the number of Tregs and the expression level of FoxP3 
protein were robustly accentuated in the blood of COVID-19 
patients and these changes closely correlated with the sever-
ity of the disease [134]. The robust increase in the levels of 
MDSCs and Tregs in the COVID-19 syndrome indicates 
that overwhelming inflammation activates immunosuppres-
sive cells which induce immunosenescence and an inefficient 
immune defence. It seems that the aging-induced immuno-
suppressive changes leading to immunosenescence in the 
immune system enhance the severity of the COVID-19 syn-
drome in older patients [135].

Chronic inflammation is an important player in differ-
ent phases of tumorigenesis [10]. Inflammation is able to 
predispose to the development of tumors and subsequently 
the inflammatory tumor microenvironment (TME) enhances 
the formation of local immunosuppression [82, 136]. The 
immunosuppressive state is generated by the presence of 
both invading and resident immunosuppressive cells, e.g., 
TAMs, MDSCs, Tregs, and cancer-associated fibroblasts 
(CAF) [136–138]. Immunosuppression induces an immu-
nosenescent state in TME by inhibiting the normal func-
tions of macrophages, T cells, NK cells, and dendritic cells 
[139]. This local immunosenescence allows tumor cells to 
evade immune surveillance. The inflammatory state not 
only triggers the senescence of immune cells but it also elic-
its cellular senescence in non-immune cells which secrete 
pro-inflammatory mediators (SASP state), thus aggravat-
ing the inflammatory state in TME [140]. This kind of 
immunosuppression-induced immune senescence poses a 
challenge for cancer immunotherapies. Given that chronic 
inflammation, immunosuppression, and immunosenescence 
are involved in the aging process (see above), it has been 
claimed that an increased risk for tumors with aging could 
be attributed to an inflammaging process [141].

Photoaging is another local chronic process in which 
repeated UV-induced inflammatory insults enhance immu-
nosuppression in the skin and consequently accelerate its 
aging process [142–144]. Skin exposure to UVR not only 
enhances photoaging but can also make the affected skin sus-
ceptible to carcinogenesis [145]. UVR induces both the local 

and systemic attenuation of the immune system [146, 147]. 
It has been reported that the induction of Tregs has a key role 
in the generation of UV-induced immunosuppression [148, 
149]. The presence of tissue-resident Tregs is enriched in 
normal skin involving a heterogeneous population of Treg 
cells [150]. Treg cells have important functions in the skin, 
e.g., they augment wound healing, participate in hair follicle 
regeneration, prevent autoimmunity, and maintain immune 
tolerance against skin commensal microbes. It seems that 
there are different mechanisms involved in the activation of 
Tregs by UVR. For example, Soontrapa et al. [146] demon-
strated that the UVB-induced stimulation of Tregs was medi-
ated by PGE2 via signaling through the EP4 receptors in 
mouse epidermis. Moreover, Navid et al. [151] revealed that 
UVR stimulated aryl hydrocarbon receptor (AhR) signaling 
which triggered the Treg-mediated immunosuppression in 
mouse skin. It is known that UVR promotes the catabolic 
breakdown of tryptophan to kynurenine and 6-formylindolo 
[3,2-b]-carbazole (FICZ) which are potent activators of AhR 
signaling and subsequently they stimulate FoxP3 expression 
and the activation of Tregs [152, 153]. Several studies have 
revealed that an increased expression of AhR factor in skin 
also predisposed to the development of skin cancers [154]. 
Photoaging is an interesting example of how the immuno-
suppression induced by repeated inflammatory insults not 
only accelerates the aging process but is also a risk factor 
for the development of skin cancers.

Clinical disadvantages of age‑related increase 
of immunosuppression

As stated above, the aging process increases the risk for 
cancer development and it aggravates infections and several 
inflammatory diseases. On the other hand, many cancers 
and chronic inflammatory conditions accelerate the aging 
process (see above). It seems that inflammation and the sub-
sequent immunosuppression, triggered either by the aging 
process or tumors, possess similar properties which mutu-
ally can promote each other’s pathology. The immunose-
nescence encountered in both states provides an escape of 
senescent cells and tumor cells from immune surveillance 
by NK and CD8 T cells. For instance, Ruhland et al. [108] 
demonstrated that an experimentally induced senescence 
of stromal cells in mouse skin increased inflammation and 
established an immunosuppressive microenvironment which 
promoted tumorigenesis. The SASP state of senescent cells 
increased the secretion of IL-6 which triggered the expan-
sion of MDSCs and Tregs in mouse skin. There is convinc-
ing evidence that the inflammation-induced recruitment and 
expansion of MDSCs and Tregs promote the age-related 
tumor incidence in different tissues [101, 155, 156]. It has 
been recognized that chronic inflammation and immunosup-
pression shape the chromatin landscape which might modify 
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the genetic background not only during the aging process 
but in many other diseases [157, 158]. Interestingly, many 
investigators have reported that the epigenetic aging profile 
(see above) predicts the risk of cancer, cardiovascular dis-
ease, and mortality in many diseases [159, 160]. Currently, 
the molecular significance of the aging-associated epigenetic 
drift in tumorigenesis needs to be clarified.

Aged people are not only susceptible to tumorigenesis 
but also infections induced by diverse pathogens. There is 
convincing evidence that the age-related increase in immu-
nosenescence is a major cause of an increased sensitivity 
to infections in the elderly [135, 161, 162]. An increased 
susceptibility to infections has also been observed in indi-
viduals suffering from many chronic inflammatory diseases 
and immunocompromised states. These conditions display 
an enhanced immunosenescence although there are dif-
ferences in the decline in immune defence. As discussed 
above, infections are associated with an increased activ-
ity of immunosuppressive cells which evoke immunose-
nescence of effector immune cells (Fig. 1). For instance, 
the age-related immunosenescence affects infections since 
it (i) induces defects in the functions of neutrophils, (ii) 
decreases the responses of T cells, e.g., the affinity of TCR 
for antigens and the cytotoxicity of CD8 T cells, (iii) dimin-
ishes the maturation and antigen presentation by DCs, (iv) 
disturbs the functions of B cells, (v) down-regulates the 
activating receptors of NK cells [161, 163–165]. The age-
related decline in immune host defence increases a person’s 
susceptibility to infections as well as promoting the per-
sistence of infections. Currently, it seems that cytokines 
secreted by immunosuppressive cells, e.g., IL-10 and TGF-
β, are important epigenetic regulators which suppress the 
functions of effector immune cells by modifying their chro-
matin landscape [5, 166, 167].

It is known that vaccination efficiency decreases with 
aging. This decline has been attributed to the age-related 
immune deficiency, i.e., immunosenescence [161, 164, 168]. 
Vaccination efficiency is reduced in cancers and chronic 
inflammatory states, such as obesity [169], indicating that 
immunosenescence is involved. In addition, chronic CMV 
infection reduces the responsiveness to influenza vaccination 
in aged people [170]. The decline in vaccination efficacy 
has been observed in different vaccination protocols involv-
ing influenza and cancer vaccines. There is convincing evi-
dence that the decrease in vaccination efficiency with aging 
is caused by an increased level of immunosuppressive cells, 
e.g., MDSCs and Tregs [169, 171, 172]. Corsini et al. [171] 
demonstrated that an increased IL-10 level in the elderly 
was associated with a low antibody response to influenza 
vaccination. Moreover, a decrease in the level of MDSCs 
was reported to improve the vaccination efficacy [173]. Cur-
rently, there are several strategies aiming to improve vacci-
nation efficiency in elderly people. For instance, attenuating 

immunosenescence via the inhibition of immunosuppression 
might be a successful approach.

There are many studies indicating that the efficiency 
of immunotherapeutic treatments becomes diminished in 
elderly people [174]. The senescence of the immune system 
is a major difficulty in the activating immunotherapies, e.g., 
in the treatments of cancer patients [175, 176]. Given that 
aging and cancers increase immunosuppression and subse-
quently promote immunosenescence (Fig. 1), there are dif-
ferent approaches to inhibit the functions of MDSCs and 
Tregs [177, 178]. It is known that MDSCs mount a major 
resistance to immune checkpoint inhibitor (ICI) therapies 
[179]. The clinical efficiency of ICI treatments can be 
improved by the combination therapies which involve the 
chemical inhibition of MDSC function. For instance, the 
combination of gemtuzumab ozogamicin (GO), an immu-
notoxic conjugate linking CD33 antibody with cytotoxic 
calicheamicin, has been exploited to target and eliminate 
MDSCs in human cancer patients [180]. Fultang et al. [180] 
demonstrated that in the treatment of acute myeloid leuke-
mia, the GO therapy targeted MDSCs and also improved the 
chimeric antigen receptor T cell (CAR-T) immunotherapy. 
Moreover, tumor immunosuppression can be attenuated 
and immunotherapy enhanced by using STAT3 inhibitors 
[181], all-trans retinoic acid (ATRA) [182], and many phy-
tochemicals [183]. The provision of Treg immunotherapy 
is a more difficult challenge since Tregs maintain immuno-
logical tolerance and immune homeostasis. However, there 
are some specific surface molecules on Treg cells which 
can be targeted in cancer immunotherapy [178]. Hurez et al. 
[184] demonstrated that the depletion of MDSCs improved 
antitumor immunity in aged mice, whereas a reduction in 
the numbers of Tregs increased the level of MDSCs in old 
mice. They also revealed that the exhaustion of MDSCs was 
an effective treatment in aged but not in young mice bear-
ing B16 tumors. However, combining the depletions of both 
MDSCs and Tregs improved the therapeutic efficacy in old 
B16-bearing mice [184]. These few examples clearly indi-
cate that an increased level of immunosuppressive activity 
is a real problem in exploiting immunotherapy in the elderly.

Increased immunosuppression with aging not only 
induces immune deficiency but it also disturbs the homeo-
stasis of the host tissues. Immunosuppressive cells possess 
a molecular armament which inhibits effector immune cells, 
e.g., anti-inflammatory cytokines, ROS/RNS, and enzymes 
catabolizing amino acids (see above). These mechanisms 
also affect the neighboring non-immune cells in host tis-
sues [4]. For instance, TGF-β signaling is able to induce 
cellular senescence and tissue fibrosis as well as evoking a 
remodelling of the extracellular matrix (ECM) [185–187]. 
An increase in the level of TGF-β signaling has been asso-
ciated with many age-related diseases, such as muscle and 
skin atrophies and cardiovascular diseases. Accordingly, 
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IL-10 signaling can inhibit autophagy [188] which is 
known to decline with aging. IL-10 and TGF-β cytokines 
can also modify the chromatin landscape via the STAT3 
and SMAD pathways and thus induce epigenetic changes in 
gene expression profiles with aging. The secretion of ROS/
RNS by immunosuppressive cells is an important mecha-
nism to inhibit the activity of effector immune cells and 
thus generate immunosenescence [189]. Many researchers 
believe that ROS and oxidative stress play a crucial role in 
tissue degeneration involved in the aging process. In addi-
tion, immunosuppressive cells robustly express ARG1 and 
IDO1 enzymes which catabolize L-arginine (L-Arg) and 
L-tryptophan (L-Trp), respectively [67]. Since there is an 
increase in the activities of ARG1 and IDO1 in inflamma-
tory conditions, this will deplete L-Arg and L-Trp amino 
acids and thus not only suppress the proliferation of immune 
cells but also inhibit the protein synthesis in neighboring 
cells, thus enhancing tissue atrophy [4]. Tissue atrophy is 
typically encountered in both the aging process and chronic 
inflammatory diseases.

Clinical benefits of the age‑related increase 
of immunosuppression

Increased immunosuppression and subsequent immunose-
nescence have not only harmful effects but there are studies 
indicating that age-related immune deficiency can confer 
some benefits, e.g., transplantation tolerance is enhanced 
with aging [190–193]. It is known that the age of donor and 
recipient patients determines the outcome of tissue trans-
plantation [194]. There is a common rule indicating that old 
persons are poor donors but good receivers. However, it is 
dependent on the tissue being transferred since for instance, 
kidney transplantation requires a younger donor than that of 
heart transfer [194]. The immune senescence of the recipient 
patient improves the acceptance of transplants of different 
organs [190, 195, 196]. The better tolerance of transplants 
in older recipients is attributed to the age-related increase 
in the immunosuppressive activity which inhibits the func-
tions of effector immune cells, such as the surveillance by 
NK and CD8 T cells (see above). There are many studies 
indicating that the transplantation tolerance is induced by 
the expansion of immunosuppressive regulatory myeloid 
cells, i.e., MDSCs, Tregs, DCregs, and M2 macrophages 
[192, 193, 197]. In proof of principle, adoptive cell therapies 
with immunosuppressive cells have significantly improved 
transplantation tolerance [198].

Immunosenescence is associated with many autoim-
mune diseases, e.g., rheumatoid arthritis and multiple scle-
rosis [87, 199]. With respect to the role of aging, there are 
significant differences between the diverse autoimmune 
diseases. However, it seems that the incidence of autoim-
mune diseases increases with aging although the severity of 

diseases can be reduced [200, 201]. On the other hand, some 
autoimmune diseases, e.g., rheumatoid arthritis, accelerate 
the aging process, similarly to the situation in many other 
chronic inflammatory diseases [43, 200]. There is substantial 
evidence that MDSCs have a crucial protective role in auto-
immune diseases [202–204]. Given that MDSCs suppress T 
cell responses and the activity of NK cells, it is not surpris-
ing that MDSCs are able to enhance immune tolerance in 
autoimmune diseases. However, there are many questions on 
their specificity in different tissues and diseases, especially 
related to the function of separate subpopulations of MDSCs 
[204]. It seems that PMN-MDSCs are more immune sup-
pressive than M-MDSCs, whereas M-MDSCs promote the 
development of Tregs and inhibit the functions of B cells, 
e.g., in autoimmune arthritis. Treg cells maintain self-tol-
erance and thus disturbances in their activity are thought 
to lead to the development of autoimmune diseases [205]. 
There are a variety of approaches, either drug-based or cell-
based therapies, targeting both MDSCs and Tregs aiming 
to enhance their immunosuppressive properties in autoim-
mune diseases [204–206]. Currently, adoptive cell therapies 
exploiting engineering technologies in the production of the 
antigen-specific Tregs and chimeric antigen receptor (CAR) 
Tregs have been developed to induce specific immune toler-
ance in autoimmune diseases [206, 207]. It does seem that 
the age-related increase in immunosuppressive activity is 
able to reduce the severity of autoimmune diseases but its 
level and specificity are insufficient to totally resolve the 
disease.

Conclusions

Chronic inflammatory states stimulate a counteracting 
immunosuppression which promotes immunosenescence in 
an attempt to protect tissues against excessive and detrimen-
tal inflammatory processes. There is convincing evidence 
that the age-related chronic low-grade inflammation also 
induces immunosuppression which consequently enhances 
the senescence of the immune system. Interestingly, there 
are observations that the aging process increases the risk for 
cancers as well as augmenting the risk for suffering chronic 
inflammatory diseases and conversely, repeated or persis-
tent inflammatory states accelerate the aging process. This 
means that inflammatory components are a major driving 
force in the aging process. On the other hand, an age-related 
increase in immunosuppressive activity and immunosenes-
cence explain many clinical consequences associated with 
aging. For instance, the incidence of cancers increases with 
aging since immunosuppression has a crucial role in tumo-
rigenesis. Moreover, elderly people are susceptible to long-
term infections, i.e., increased immunosuppression inhibits 
the function of effector immune cells and thus the resolution 
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of infections tends to be prolonged in the elderly. It is also 
known that there are declines in both vaccination efficiency 
and the efficacy of immunotherapies in aged people. The 
senescent immune system, associated with either aging, can-
cers, or chronic inflammatory diseases, is unable to respond 
effectively to vaccines and antibodies. Currently, there are 
trials in progress with many drug- or cell-based therapies 
attempting to reinforce the inefficient immune system not 
only in cancer and chronic inflammatory states but also in 
the aging process.
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