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Global projections of future urban land expansion
under shared socioeconomic pathways
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Weilin Liao1, Yue’an Qiu 1,6, Qianlian Wu1,7 & Kangning Huang 8

Despite its small land coverage, urban land and its expansion have exhibited profound

impacts on global environments. Here, we present the scenario projections of global urban

land expansion under the framework of the shared socioeconomic pathways (SSPs). Our

projections feature a fine spatial resolution of 1 km to preserve spatial details. The projections

reveal that although global urban land continues to expand rapidly before the 2040s, China

and many other Asian countries are expected to encounter substantial pressure from urban

population decline after the 2050s. Approximately 50–63% of the newly expanded urban

land is expected to occur on current croplands. Global crop production will decline by

approximately 1–4%, corresponding to the annual food needs for a certain crop of 122–1389

million people. These findings stress the importance of governing urban land development as

a key measure to mitigate its negative impacts on food production.
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Urban land covers only a small proportion of the global
terrestrial surface but is home to more than half of the
world’s population1. Urban land is expanding even faster

than urban population2, exerting a profound impact on biodi-
versity conservation and the water, carbon, aerosol and nitrogen
cycles in the climate system at the local and global scales3–5.
Urban areas contribute to 70% of global anthropogenic green-
house gas emissions6. Urban expansion has resulted in more than
80% of natural habitat loss in local areas7. Therefore, a proper
understanding of how future urban land change will affect other
land covers is important to alleviate the social and environmental
problems that challenge the sustainable developments of human
societies. Here, we present spatially explicit projections of
global urban land expansion from 2015 to 2100 and discuss
its impacts. The open-access dataset of these projections is
available via https://doi.pangaea.de/10.1594/PANGAEA.905890
OR http://www.geosimulation.cn/GlobalSSPsUrbanProduct.html.

Projections of urban land patterns require established scenarios
that represent possible future socio-economic and environmental
conditions. For instance, a 2030 global urban land map has been
developed based on global population and economy predictions
made by the United Nations8. The universal climate scenarios
developed by the Intergovernmental Panel on Climate Change
(IPCC) have also been used to simulate future changes in global
and regional land covers, including an urban land category9–11.
However, some models only provide a single scenario based on
the historical trajectory in the simulation of future global urban
growth12. The simulation based on a single scenario could
hinder the applications in climate and environmental change
studies. In our study, we carry out scenario simulations based on
the shared socioeconomic pathways (SSPs), mainly because SSPs
provide a more comprehensive framework by considering the
potential pathways and uncertainties of future socio-economic
factors. The SSPs describe how global society, demographics and
economics will change in the coming century concerning policy
assumptions and the socio-economic narrative (e.g., energy
demand and supply, and technological change)13,14. The SSPs
allow us to conduct unified and comparable multi-scenario
urban simulations13,15,16.

The SSP framework has five scenarios. SSP1 is a sustainable
pathway that is people oriented17 and uses green roads. SSP2 is a
middle pathway between SSP1 and SSP318. SSP3 is a regional
rivalry pathway contrary to global cooperation19. SSP4 is a divi-
ded pathway in which inequality and stratification are increasing
both across and within countries20. SSP5 is a fossil-fuelled
development pathway in which the global economy grows
rapidly, but people face severe mitigation challenges21.

The SSP framework is a critical component in the ongoing
IPCC assessment of global climate change16,22. Although some
recent studies have predicted urban land distribution under
SSPs at regional scales23, relevant results at a global scale are
still scarce. Popp et al.24 estimated the amount of urban land
area under the SSP narratives across different regions, but the
study lacked spatial details. Other global spatial projections
typically have coarse spatial resolutions between 5 arc minutes
and 0.5°25,26. In the latest CMIP6 (Coupled Model Inter-
comparison Project Phase 6) Land Use Harmonization dataset
(LUH2), urban land is represented fractionally, with a resolu-
tion of only 0.25°27.

The lack of sufficient spatial details in the existing SSP scenario
projections may create uncertainties in environmental impact
assessments28. A recent study has warned that the common land
cover product could produce major distortions in land cover
patterns at a 10-km resolution9. Our projections have a fine
spatial resolution of 1 km, which preserves spatial details and can
avoid the distortions in global urban land patterns. To the best of

our knowledge, our results are the world’s first 1-km resolution
maps of future global urban land under the SSP framework.

The technical implementation of our projections is based on
the Future Land-Use Simulation (FLUS) model29. This model
utilises a machine learning approach to capture the complex
relationships between urban land expansion and its driving fac-
tors. This model also adopts the mechanisms of cellular automata
(CA)29–31, which are capable of reflecting the complexities of
path-dependence and positive feedback in the actual processes of
urban land expansion32.

In this paper, we project the future urban land expansions at 1-
km resolution under SSPs by the FLUS model, and explore the
potential impacts of the expansions in three aspects: first, the
pressure of urban population decline; second, encroachment on
cropland and natural habitats; third, the risk of producing major
food crops.

Results
Future urban land demand. We found substantial differences in
the projected paths of future urban development across the five
scenarios (Fig. 1a). Scenario SSP5 yields a monotonously
increasing trend and the greatest urban land areas. Scenarios
SSP2 and SSP3 yield the trends similar to that in SSP5, albeit with
much smaller estimated urban land areas. For scenarios SSP1 and
SSP4, a turning point is consistently observed in the 2080s and
2070s, respectively, after which urban land demand is expected to
decline due to the assumed slowdown in socio-economic growth.

We also identify large disparities in the urban land demand
projections among different macro regions. We select three
representative macro regions, namely, China, the USA and LAM-
L (i.e., low-income countries of Latin America), to demonstrate
their distinctive development paths in the future (Fig. 1b–d,
respectively). For China, which is currently the world’s most
populous country, its urban land demand is expected to increase
rapidly before the 2040s or 2050s and decrease sharply thereafter
in all scenarios. For the USA, divergent paths in future urban
development are observed across all scenarios, in which SSP1,
SSP2 and SSP5 consistently yield upward trends in urban land
demand, while SSP3 and SSP4 predict downward trends after the
2050s and 2080s, respectively. The trajectories of future urban
development in LAM-L, however, are in striking contrast
compared to those observed in China and the USA. For LAM-
L, scenarios SSP3 and SSP4 yield the largest urban land demand
with linearly increasing trends, while scenarios SSP1 and SSP5
predict the smallest urban land demand. For all three regions, the
uncertainty in the estimated urban land demand are the largest in
scenario SSP5. Additionally, for LAM-L, the uncertainty is also
large in SSP4 (Fig. 1d). Compared to the other two regions, the
USA has the least uncertainty because it achieves a better fit in the
panel data regression.

Spatial distribution of future urban land expansion. We
simulate future urban land expansion at a spatial resolution of 1
km from 2020 to 2100 at 10-year intervals, with the year 2015 as
the starting point. Details of model performance are shown in the
supplementary information file (Supplementary Tables 1 and 2).
Figure 2 shows the simulated urban areas in 2100 in scenarios
SSP3 and SSP5 for the selected representative regions of China,
the USA and LAM-L (the final global products for each SSP
scenario are shown in Supplementary Figs. 1–5). As the coverage
of urban areas is substantially smaller compared to those of other
land covers, to improve the presentation in this paper, we
implement a focal summation analysis, with a radius of 15 grids,
on the results of the simulated urban land maps (Fig. 2). China
and the USA, as two representative countries for middle-income
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and high-income levels, respectively, tend to have more urban
land expansion in scenario SSP5 than in SSP3. However, the
LAM-L region, which mainly consists of low-income countries,
experiences more urban land expansion in scenario SSP3 than in
SSP5. Most of the newly expanded urban land in all of these
countries is expected to take place at the edges of the existing
highly urbanised areas.

To evaluate the spatial uncertainty in the simulation results, we
performed 100 simulations for each scenario during the future
scenario simulation. Then, overlay analyses of the simulation
results were conducted to determine the probability of a city
appearing at each location in space. Figure 3 shows the spatial
probability distribution of urban growth in the SSPs in three
major metropolitan areas by 2100, i.e., the spatial uncertainty in
the simulation results. Compared with the 2000–2030 global
urban simulation at a 5-km resolution by Seto et al.8, our results
show a similar urban spatial pattern, such as in the North China
Plain and the Yangtze River Delta region, which are regions with
rapid urban land growth.

The implementation of a patch-based simulation strategy has
successfully revealed the changes in urban systems in terms of the
rank-size distributions of urban land patches (i.e., ln(rankpatch)=

λ ln(sizepatch)) (Fig. 4). For China, despite the increased total
urban land areas, the λ values change slightly from −1.24 in 1992
to −1.22 in 2015. Similarly, for the USA, the λ values are −0.99
and −0.96 in 1992 and 2015, respectively. In future scenarios, the
λ values for China and the USA continue to increase, while the λ
values for the LAM-L region are expected to increase from −0.91
in 2015 to −0.83 (SSP3) and −0.89 (SSP5) in 2100, suggesting a
relatively rapid increase in small urban land patches in LAM-L.

Our projections are comparable to existing global urban land
projections, except that our results have a much higher spatial
resolution. We choose three representative products for the
comparison. The first one is the 2030 global urban expansion
product based on a single UN scenario at a 5-km resolution,
which is created by Seto et al.8. The second one is the 2050 global
urban growth projection based on a historical trajectory with a
1-km resolution, which is created by Zhou et al.12. The third one
is the 0.25-degree (~27-km on the equator) LUH2 dataset that
follows the assumptions of SSPs27. As there is no historical
trajectory in the SSPs, we select the results of the middle pathway
(SSP2) to compare with the single scenario projections mentioned
above. The comparison is implemented in different regions, as
shown in Fig. 5. The distribution of urban land areas is similar

2000

Global

USA LAM-L

×103 km2

×103 km2

1800

1600

1400

1200

U
rb

an
 a

re
a

1000

800

600

400

450

400

350

300

250

200

150

100

2010 2020 2030 2040 2050 2060
Year

2070 2080 2090 2100

200
China

×103 km2

×103 km2

180

160

140

120

U
rb

an
 a

re
a

U
rb

an
 a

re
a

U
rb

an
 a

re
a

100

80

60
2010 2020 2030 2040 2050 2060

Year
2070 2080 2090 2100

2010 2020 2030 2040

SSP1 SSP2 SSP3 SSP4 SSP5

2050 2060
Year

2070 2080 2090 2100 2010
0

2

4

6

8

10

12

14

dc

a b

2020 2030 2040 2050 2060
Year

2070 2080 2090 2100

Fig. 1 Projections of urban land demand globally and in the representative macro regions for 2010–2100 under the SSP scenarios. a Global, b China,
c USA, d the region LAM-L consists of the low-income countries of Latin America, including Belize, Guatemala, Haiti, Honduras and Nicaragua. The shaded
areas represent the 95% confidence intervals of the projected urban land demand.
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Fig. 2 The simulated urban land maps in 2100 for representative regions in scenarios SSP3 and SSP5. a China, b the USA and c LAM-L. Focal statistics
have been applied to the simulated maps for better visualisation. The results show that China and the USA experience more urban land expansion in
scenario SSP5 than in SSP3. In contrast, the LAM-L region experiences greater urban land expansion in scenario SSP3 than in SSP5.
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assumed more likely to become urbanised.
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among the selected projections. Our results are most consistent
with the urban land areas in LUH2, as indicated by a significant
Pearson correlation coefficient of 0.93. The consistency is also
high between our projections and Seto's results (Pearson
correlation coefficient= 0.82). Our results show partial agree-
ments with Zhou’s results, as indicated by a relatively lower but
significant Pearson correlation coefficient of 0.56. The spatial
agreements between our projections and the three selected
products are shown in Supplementary Fig. 6. Some evident
spatial differences between our results and Seto's/Zhou's results
can be found in regions such as the North China Plain. It is
mainly because their projections do not consider the population
decline trend in these regions, which can cause urban land growth
to become stagnant33.

Pressure of future urban population decline. Noticeable
declines in urban land demand are observed in our scenario
projections, mainly owing to the decrease in population. A typical
example is China (Fig. 1b), in which urban land demand sharply
decreases in all scenarios after the 2040s/2050s due to the
declining population (Fig. 6). Urban population decline does not
necessarily lead to a massive land conversion from urban to non-
urban areas, although some individual cases of green recovery
from urban land can be found in contemporary Germany at the
block scale34. Rather, one possible consequence of urban popu-
lation decline is the abandonments of the already built-up areas.

This has been occurring in some countries around world35,36,
even in the rapid urbanising country of China37.

However, to address the decline in urban land demand in the
spatial simulations, we assume that the land conversion of non-
urban land to urban land is irreversible and that the massive
conversion of urban land to non-urban land is not allowed. For a
certain region, if its estimated urban land demand is smaller than
its total area of the already built-up, then no changes are
simulated for this region, and the spatial extent of existing urban
land also remains unchanged. Subsequently, for regions experi-
encing a decline in urban land demand, we assess their pressure
on urban population decline, which is defined as the percentage
of the area of urban land surplus (unnecessary urban land
compared to urban population) over the area of existing urban
land, ranging from 0 to 100%. The results (Fig. 7) suggest that
China will no doubt face the most severe pressure of urban
population decline compared to other countries around the
world. South America and almost all Asian areas will encounter
substantial pressure of urban population decline in the SSP1 and
SSP4 scenarios, while European countries and North America will
face increased pressure of urban population decline in the
SSP3 scenario.

Structures of land from future urban developments. We iden-
tify the land structures taken by future urban developments based
on the Climate Change Initiative-Land Cover (CCI-LC) product
for the 2015 baseline year. The results (Table 1) reveal that by
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2100, 51–63% of the newly expanded urban land will be con-
verted from cropland. Urban encroachments on cropland will
mainly occur in China, India, sub-Saharan Africa and western
Europe (Supplementary Fig. 7). Forest and grassland collectively
contribute to 30–44% of the newly expanded global urban land.
Losses in forests due to urban land are expected to occur mainly
in North America, South America, western Europe, sub-Saharan
Africa and Australia (Supplementary Fig. 8). Major grassland
declines due to urban land expansion will occur in the USA and
western Europe (Supplementary Fig. 9). Global wetlands, which
are one of the most biologically diverse ecosystems, will be con-
sumed by 2–4% of the newly developed global urban land. Most
wetland losses will take place in the USA and sub-Saharan Africa
(Supplementary Fig. 10). Major bare land declines due to urban
land expansion will occur in the Middle East (Supplementary
Fig. 11).

Impacts of urban expansion on food production. Given that
future urban expansion occurs mostly over croplands, we further

assess the impacts of urban expansion on food production. We
estimate the production losses caused by urban expansion for
rice, wheat, maize, potato and vegetables using the crop maps
developed by You et al.38. The results (Fig. 8) indicate that the
scenarios SSP3 and SSP4 yield the smallest amount of estimated
crop production losses, mainly because of the decrease in socio-
economic developments and urban expansion processes. In
contrast, scenario SSP5 reports the greatest amount of crop
production losses due to the assumed rapid urban expansion.
Overall, by 2100, global urban land expansion will cause declines
of 2–3% in rice production, 1–3% in wheat production, 1–4% in
maize production, 1–3% in potato production and 2–4% in
vegetable production (see Supplementary Figs. 12–16 for more
spatial details). The estimated number of people affected by the
losses of crop production vary widely from 122 million to 1389
million, depending on which food consumption statistics are used
(Table 2). Note that these results are not the numbers of people
suffering from starving, but the maximum numbers of people
affected by the production losses of a single food crop type, if
these losses cannot be compensated with productions of other
food crops. In addition, we did not consider yield changes due to
changes in agricultural management practices which might
compensate the projected losses.

While urban areas are located predominantly on productive
land, urban developments often prevail in direct competition with
crop production39. Global urban expansion can, therefore, exert
important impacts on crop production that are beyond the losses
of existing croplands. Our projections (Fig. 8) demonstrate that
future urban land expansion will cause up to 1% of loss in the
global cropland area. However, the direct losses of global crop
production are likely to exceed 1% and can even reach as high as
4%, depending on the specific crop types. These results suggest
the importance of conserving high-quality croplands to reduce
the impacts of urban expansion on food production capacity.

SSP1 SSP2

SSP3 SSP4

SSP5

The degree of pressure on urban 
shrinkage by 2100

50454035302520151050 (%)

Fig. 7 The pressure of urban population decline by 2100. This figure shows the pressure of urban population decline by 2100 under five SSP scenarios.
This pressure is calculated as the percentage of the difference between the existing urban land area and the estimated urban land demand to the existing
urban land area.

Table 1 Contributions of various land covers to newly
developed global urban land by 2100 under the SSPs
scenarios.

Proportion of the converted area to urban land (%)

SSP1 SSP2 SSP3 SSP4 SSP5

Forest 26.98 26.36 21.42 22.89 29.29
Grassland 12.01 10.86 5.71 7.49 14.64
Wetland 2.10 2.46 2.77 3.51 2.23
Bare land 3.76 4.68 7.28 5.86 2.98
Cropland 55.14 55.63 62.82 60.25 50.84
Other 0.01 0.01 0.00 0.00 0.02
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Discussion
In this paper, we present the long-term scenario projections of
future urban land expansion with a fine spatial resolution of 1 km.
Moreover, our dataset is based on the latest SSP scenarios under
CMIP6. This can enhance the usefulness of our projections to
support the research in other related disciplines, such as ecolo-
gical protection40, water security1, urban climate41 and global
climate change4.

The uncertainty of modelling can be divided into stochastic
uncertainty, parameter uncertainty, heterogeneity and structural
uncertainty42. We quantified the parameter uncertainties in the
projections of urban land demand (Supplementary Table 3). In
order to deal with the heterogeneity, we assigned different
intercepts to different regions in the panel data regression (Sup-
plementary Table 3), implementing spatial simulations in differ-
ent regions separately. We then performed 100 spatial
simulations to understand the stochastic uncertainty of the
model. To address the structural uncertainty42, we compared our
products with three other products using different models (Fig. 5
and Supplementary Fig. 6).

In addition to the regional-scale urban expansion projections as
analysed in the previous section, we also analysed the urban
expansion trends of the three typical international metropolitan
areas under different SSPs, including New York, London and the
Yangtze River Delta (Supplementary Fig. 17). Although these three
metropolitan areas are in countries with different development
stages, their urban expansion trends are similar: by 2100, the urban

area will become the largest in SSP5, followed by SSP1, SSP2, SSP4,
and SSP3. The difference is that the urban expansion trends of New
York and London in SSP2 are closer to those in SSP1, but the trend
of the Yangtze River Delta in SSP2 is closer to that in SSP4.
Moreover, the urban expansion in these selected metropolitan areas
is evidently faster than that of their countries’ average, except those
in the developed countries in the SSP5 scenario (Supplementary
Table 4). Therefore, rapid urban expansion may further increase the
pressure on the environments and resources of these metropolitan
areas which are of dense population.

Based on the urban land projections, we have identified the
pressure caused by future urban population decline for different
regions across the world. Urban population decline occurrences
largely correspond to low birth rates and population ageing.
Typical regions that will suffer from substantial pressure from
urban population decline mainly include China and many other
Asian countries. North America, South America and western
Europe experience great pressure from urban population decline
mainly in scenarios SSP3 and SSP4. These results have important
implications for urban planning and management. In rapidly
urbanising countries, such as China, urban planning is usually
prepared with the expectation of growth, with little or no
awareness of the ongoing/upcoming challenges caused by urban
population decline37. A direct consequence of urban population
decline is the difficulty of sustaining the maintenance of infra-
structure, which was originally built to serve a larger population,
leading to declines in livelihoods and quality of life in cities.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

SSP1

SSP2

SSP3SSP4

SSP5

Proportion of loss caused by 
urban expansion by 2100 (%)

Rice production

Wheat production

Maize production

Potato production

Vegetables production

Cropland area

Fig. 8 Estimated cropland and food production losses caused by urban expansion by 2100. Comparing to the approximately 1% loss in the global
cropland area caused by future urban land expansion, the direct losses of global crop production are likely to exceed 1%, and can even reach as high as 4%,
depending on the specific crop types.

Table 2 Global food production losses caused by urban expansion by 2100.

Global food production losses caused by
urban expansion (106 ton)

Population affected by food production losses (million person)

SSP1 SSP2 SSP3 SSP4 SSP5 SSP1 SSP2 SSP3 SSP4 SSP5

Rice 15.19 15.09 16.04 14.99 17.88 281.77 279.86 297.51 278.03 331.62
Wheat 10.31 10.35 7.99 8.98 19.19 157.50 158.25 122.12 137.22 293.35
Maize 11.53 11.21 7.56 8.41 24.84 644.70 626.72 422.86 470.19 1388.70
Potatoes 5.46 5.47 4.29 4.42 10.50 159.91 160.09 125.48 129.36 307.31
Vegetables 19.99 19.84 18.17 18.06 29.67 183.55 182.18 166.79 165.79 272.44

We estimated the population affected by food production losses according to the latest annual per capita food needs derived from the Food and Agriculture Organization (FAO) of the United Nations
(http://www.fao.org/faostat/en/#data).
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Abandonments and social disorder are also potential outcomes
raised by urban population decline that threaten public health
and safety in cities43,44. Moreover, from an economic point of
view, urban population decline may cause economic recession
because of the negative impacts on employment, industrial pro-
duction and property value45–47.

Despite the potential decline of urban population in some
regions of the world, global urban land is expected to experience
rapid growth before the 2040s. Our projections have demon-
strated that most future urban land expansion occurs over
croplands (50–63%) and forests (30–44%), causing the losses of
food production and supply. To offset these losses, however,
reclaiming cropland remains as a most immediate way, because
land productivity may be difficult to improve substantially in the
foreseeing future. The losses in croplands and forests will also
have profound impacts on ecosystem services, such as carbon
sequestration, habitat provision and food supply to human
societies48–51.

Note that in this study we only account the direct impacts of
urban expansion on other land types. To gain a clearer under-
standing, we complement our results with those obtained from
Popp et al.24, which provide scenario projections of cropland
expansion on other land use types. Their results suggest that the
SSP3 scenario features the largest amount of cropland expansion
(~700 million ha from 2005 to 2100), while the SSP1 scenario has
the smallest increase of cropland area (~20 million ha from 2005
to 2100). For SSP2, SSP4 and SSP5, the cropland areas are
expected to increase between 250 million ha and 400 million ha
from 2005 to 2100. Our scenario projections, which mainly focus
on the direct impacts of urban expansion on cropland, reveal that
SSP5 has the largest cropland loss due to urban growth (37.6
million ha), while SSP3 has the smallest loss (22.0 million ha).
The estimated cropland losses in other SSP scenarios vary slightly
from 22.4 million ha to 24.9 million ha. Therefore, the combi-
nation of our results and Popp’s reveals the contrasting patterns
of urban land and cropland expansion. In the scenarios with more
cropland losses caused by urban expansion, there are relatively
small increases of cropland, and vice versa.

Our results show that the crop production losses induced by
urban expansion will affect the annual needs for a certain food of
~122–1389 million people. More importantly, the crop produc-
tion losses (~1–4%) are disproportional to the cropland land
losses (~1%). Previous studies have revealed that a 2-°C global
temperature increase will cause 8–14% of global maize produc-
tion losses52. In comparison, our projections suggest that urban
land expansion alone will lead to 1–3% of global maize produc-
tion loss, indicating the profound impacts of urban expansion on
global crop production. These results imply the critical impor-
tance of conserving fertile and productive cropland. Governance
and proper planning of urban land development locations and
procedures is a key measure to reduce future losses in crop
production39,53. However, the governance qualities appear to be
moderate to low due to the fragmented governance structures in
many countries that will suffer from large crop production los-
ses54. The effective protection of croplands, therefore, calls for
increasing efforts in educating policy makers and the develop-
ment of more comprehensive governance regimes55.

There are several limitations in our projections. First, we do
not address the potential errors in future urban land expansion
that are caused by the misclassifications in historical urban land
maps, which were acquired from the GHSL dataset. Second, we
hold the spatial driving factors of urban land expansion constant
in the scenario projections, which is mainly because of the diffi-
culty in the reliable prediction and uncertainty of, for example,
changes in urban infrastructure. Third, urban development

policies are usually operated at a country level, but in this study,
we provide urban land demands at a regional scale, mainly due to
the lack of country-level scenario data. We will try to solve this
limitation in our future work by complementing more data to
obtain the relevant country-level information for different sce-
narios. Forth, we do not consider the impacts of future climate
change on land-use change. This limitation can be alleviated in
our future work by applying the projections under the integrated
scenarios of RCP-SSP, which take into account the feedbacks of
global climate changes.

Methods
Study design. We use panel data regression to estimate future urban land areas
based on the factors of population, urbanisation rate (percentage of urban popu-
lation to total population) and gross domestic product (GDP). Here panel data
regression refers to a regression method that simultaneously uses cross-sectional
and longitudinal data. We follow the region definitions in the SSP database (https://
tntcat.iiasa.ac.at/SspDb), which aggregate the world’s countries into 32 macro
regions according to the conditions of geographic location and income level (i.e.,
high-income, mid-income and low-income levels). The historical urban land areas
for the years 1975, 1990, 2000 and 2014 are acquired from the Global Human
Settlement Layer (GHSL) dataset56 (Here urban land refers to artificial cover and
paved surfaces). The concurrent statistical data of population, urbanisation rate
and GDP are obtained from the World Bank57 and United Nations58. We then
apply the built panel data regression model to project the urban land areas for each
scenario based on the predictions of future population, urbanisation rate and GDP,
which are available in the SSP database.

We simulate the spatial distribution of urban land expansion using the FLUS
model. This model employs artificial neural networks (ANNs) to estimate urban
development potential using a set of spatial driving factors (e.g., population, GDP,
distance to city centre, distance to road network, distance to airport, elevation,
slope, eco-region and water resource condition). The spatial simulation of future
urban development, as constrained by the estimated potential, is based on CA. We
further enhance the performance of the FLUS model by incorporating a patch-
based simulation strategy59–61, aiming at preserving the scaling property of actual
urban systems61,62 (a detailed flowchart is presented in Supplementary Fig. 18).

Estimation of urban land demand. We use the panel data regression model to
estimate the urban land demand for each SSP scenario. Specifically, we use his-
torical statistical data and urban land data to establish the relationships between
per capita urban land demand (CA′) and the explanatory variables of per capita
GDP (GDPC) and urbanisation rate (PU) at the macro regional level:

CA0
r;t ¼ β0 þ β1 ´GDPCr;t þ β2 ´ PUr;t þ

XN

i¼2

αi ´Zr;i þ εr;t

r ¼ 1; ¼N

ð1Þ

where Z is the regional dummy variable; ε is the error term; and r and t refer to the
region and year, respectively.

A total of 32 macro regions are considered (the extent of each region is shown
in Supplementary Fig. 19) according to the regionalisation scheme of the SSP
database (https://tntcat.iiasa.ac.at/SspDb). The historical urban land data are
acquired from the GHSL dataset56, which cover the years 1975, 1990, 2000 and
2014. The concurrent statistical data of population, per capita GDP and
urbanisation rate are collected from the World Bank57 and United Nations58 and
aggregated at the macro regional level. The estimated coefficients have passed a
significance level of 0.01. The values of β0 in each region reflect the heterogeneity
between different regions42 (detailed results of the estimated coefficients are shown
in Supplementary Table 3).

After it is established, Eq. (1) can then be applied to the prediction of future per
capita urban land demand using the scenario projections of per capita GDP and the
urbanisation rate provided by the SSPs database (https://tntcat.iiasa.ac.at/SspDb).
The regional urban land demand in a future year, t+, therefore, can be calculated
by multiplying the estimated per capita urban land demand at year t+ by the
projected total regional population at year t+. The global and selected regional
results of future urban land demand, with 95% confidence intervals, are shown in
Fig. 1.

Spatial simulation of urban land expansion and validation. We use the FLUS
model to simulate future urban land expansion at a 1-km resolution. This model
adopts several assumptions: first, urban conversion on other land cover types is
irreversible and hence any recovery from urban land to non-urban land is not
allowed; second, for any regions, if the estimated urban land demand is smaller
than the existing area of land that is already built-up, then no changes are simu-
lated; third, the spatial driving factors are held constant in future projections of
urban land expansion.
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The FLUS model is established under the framework of CA, which has been
widely applied in land change modelling9,29. This framework assumes that the
probability of a non-urban grid being converted into an urban grid (TP) is a
product of the urban development potential (P; also termed the probability-of-
occurrence), neighbourhood effect (Ω), development restriction (con) and
adjustment factor (inertia).

The urban development potential (P) represents the site conditions for urban
development according to a set of spatial driving factors (see Supplementary
Table 5 for the full list of these factors). Specifically, for each macro region, urban
and non-urban grid samples in a balance are collected and used to train an ANN
classifier to yield the urban classification probability, with the spatial driving factors
as input features. The trained ANN classifiers are then used to estimate the urban
classification probability for each grid throughout the entire region. The resulting
urban classification probability is regarded as the urban development potential (P).
Note that this procedure is implemented separately for each of the 32 macro
regions.

The neighbourhood effect (Ω) factor is calculated as the fraction of existing
urban land area in a neighbourhood consisting of 5 × 5 grids. This factor represents
the effect of positive feedback during actual urban development, i.e., new
developments are more likely to occur in/near places that are already built-up. The
development restriction (con) factor has binary values, with 0 referring to the
condition of no developments allowed (otherwise, 1). The adjustment factor
(inertia) is used to adjust the growth rates of urban land in the simulations and
facilitate convergence towards an expected quantity.

To preserve the scaling property of actual urban systems, we further adjust the
conversion probability (TP) using a patch-based urban growth strategy. The scaling
property of actual urban systems refers to the characteristic of far more small
things than large ones in urban systems63. This property has been identified in the
distribution of cities around the world61 and the distribution of urban land patches
at the intra-urban scale as well62. The scaling property of urban systems is the
result of, and is enhanced by, the rich get richer effect, which means that large
entities (e.g., cities or land patches) grow faster than small ones. The patch-based
urban growth strategy, therefore, is to represent this effect when shaping urban
systems. Specifically, the conversion probability (TP) of a non-urban grid is
increased if it is located near a large patch. The larger the patch that this non-urban
grid is close to, the greater the increase in the conversion probability (denoted as
TPpatch) (the technical details of this adjustment are described in the
Supplementary Information).

The land conversion from non-urban to urban land is then simulated following
these procedures (i.e., the roulette selection): first, randomly select a non-urban
grid and compare its adjusted conversion probability TPpatch against a randomly
generated value of [0, 1]; second, convert this non-urban grid into an urban grid if
TPpatch is greater than the random value; otherwise, the grid remains unchanged;
and third, repeat the first and second steps until the simulated urban land
expansion satisfies the expected quantity of the new urban land.

The agreement between the simulated and observed urban land expansion is
evaluated using the FoM (Figure of Merit) indicator64. We use this indicator
because it avoids the drawback of accuracy overestimation in conventional
validation metrics (e.g., the Kappa coefficient)65. FoM is calculated as the ratio of
the correct predicted change to the sum of the observed change and predicted
change. The value of FoM ranges from 0 to 1, with 1 representing a perfect fit
between the simulated and observed changes. However, existing applications of
land change modelling usually report FoM values of 0.1–0.39,60 because of the
path-dependence effects32 that hamper land change models in making more
accurate predictions. Nevertheless, the performance of our model is reliable, as the
resulting FoM values are similar or greater than those of applications with land
change modelling at a global scale9. Please refer to the Supplementary Information
for more details on the implementation and validation of the FLUS model.

In the predictions of future urban development, due to the projected downward
demographic trends, certain regions are likely to encounter the declines in urban
land demand (e.g., China), which may further reach a level that is below the
regional total of existing urban land. That is, the existing urban land is sufficient in
satisfying the needs of the shrinking population. In this case, no changes in urban
land are simulated, and the spatial extent of existing urban land also remains
unchanged.

Estimation of food production losses and affected population. We estimate
food production losses based on the global maps of crop production (SPAM 2005)
developed by You et al.38. These maps contain 27 major categories of food crops,
with a spatial resolution of 5-arc minutes (~10 km at the equator). As the crop
production maps are much coarser than the 1-km resolution land-use data used,
we assume that crop productions are the same within a 10-km grid, and therefore,
the crop production losses are proportional to the areal losses in croplands within a
10-km grid. By adopting this assumption, we estimate the crop production losses
according to the identified conversions from cropland to simulated urban land. We
selected five major food crops (rice, wheat, maize, potatoes and vegetables) to
estimate their production losses. The choice of these crop types is based on their
important roles in global crop production (see Supplementary Fig. 20 for their
respective proportions to the global crop production).

The diet structures of people vary largely from one place to another. To estimate
the number of people affected by the global crop production losses, we use the
global average per capita food supply of rice, wheat, maize, potatoes and vegetables
as the basis for the estimation. These statistics can represent the overall
situation of food supply worldwide and hence are adequate to apply in our analysis
(http://www.fao.org/faostat/en/). These statistics cover a wide range of crop types
over multiple years. Specifically, we use the 2013 statistics, which are the latest
statistics. We then estimate the affected population by dividing the estimated losses
of a certain crop type (e.g., rice, wheat, maize, potatoes and vegetables) by the
global annual per capita consumption of that crop type. The results for the five SSP
scenarios are provided in Table 2.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The historical GDP and population statistics are available from http://www.fao.org/
economic/ess/ess-economic/gdpagriculture/en/. The historical proportion of the urban
population can be retrieved from http://www.un.org/en/development/desa/publications/
2014-revision-world-urbanization-prospects.html. The historical area of urban land
cover for the panel data regression is calculated from the GHSL dataset, which is available
at https://ec.europa.eu/jrc/en/scientific-tool/global-human-settlement-layer. The official
SSP database can be obtained at https://tntcat.iiasa.ac.at/SspDb/. The CCI-LC product is
available from http://maps.elie.ucl.ac.be/CCI/viewer/download.php. The spatial variables
for estimating the probability-of-occurrence surfaces are collected from various sources,
the list of which is available in Supplementary Table 5.

Code availability
We used the FLUS software for generating modelling results in this manuscript. FLUS
which is freely accessible to all users can be downloaded at http://www.geosimulation.cn/
flus.html. Specific FLUS configurations and modifications to be used to generate the
results in this study are described in the Supplementary Information.
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