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Abstract
Interpolating the exchange–correlation energy along the density-fixed adiabatic connection of density functional theory is a 
promising way to build approximations that are not biased toward the weakly correlated regime. These interpolations can be 
performed at the global (integrated over all spaces) or at the local level, using energy densities. Many features of the relevant 
energy densities as well as several different ways to construct these interpolations, including comparisons between global 
and local variants, are investigated here for the analytically solvable Hooke’s atom series, which allows for an exploration 
of different correlation regimes. We also analyze different ways to define the correlation kinetic energy density, focusing on 
the peak in the kinetic correlation potential.

Keywords  Density functional theory · Exchange–correlation functionals · Electronic correlation

1  Introduction

The density-fixed adiabatic connection [1] of Kohn–Sham 
(KS) density functional theory (DFT) is a powerful theoreti-
cal tool for the construction of approximate exchange–cor-
relation (XC) functionals: for example, hybrid [2] and dou-
ble-hybrid functionals [3] can be constructed from simple 
models of the adiabatic connection integrand [4–6]. These 
approximations, however, use exact ingredients only for the 
limit of small coupling strength and are thus biased toward 
the weakly correlated regime.

A class of approximations that removes this bias is based 
on the idea of Seidl et al. [7–9] to interpolate the adiabatic 
connection integrand between its weak- and strong-interac-
tion limits. This way, information from both extreme cor-
relation regimes is taken into account on a similar footing. 
These interpolations can be performed on the global [7–12] 
(i.e., integrated over all spaces) ingredients, or in each point 
of space, using energy densities [13–15]. As well known, 
energy densities are not uniquely defined and one should be 
sure, when doing an interpolation between weak coupling 
and strong coupling in each point of space, that all the input 
local quantities are defined in the same way [13–16], which 
makes the use of semilocal approximations very difficult, 
a problem shared with local hybrids [17–20]. Non-local 
functionals for the strong-interaction limit [21, 22] or the 
physical regime [23] are needed in this context, as full com-
patibility with the exact exchange energy density is required.

Interpolations constructed from the global ingredients are in 
general computationally cheaper than their local counterpart, 
not only because they can use semilocal approximations for 
the strong-interaction functionals, but also because they do not 
need energy densities from exact exchange and from second-
order perturbation theory, but only their global values. These 
global interpolations are in principle not size consistent, but it 
has been recently shown that their size consistency error can 
be fully corrected at no additional computational cost [12], 
allowing for the calculation of meaningful interaction energies 
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[12]. On the other hand, in all the tests performed so far on 
small chemical systems [14, 15], the local interpolations have 
always been found to be more accurate than the correspond-
ing global ones for systems with more than two electrons. In 
the He isoelectronic series, the global and local interpolations 
perform similarly [14].

The purpose of the present work is to further compare and 
analyze local and global interpolations when the physical sys-
tem is in different correlation regimes. In order to disentangle 
the errors coming from the interpolation itself from those on 
the input ingredients, we use a model system, two Coulombi-
cally interacting electrons in the harmonic potential (“Hooke’s 
atoms”) [24–26], which allows us to explore the whole range 
from weak to strong correlation always using exact input ingre-
dients. We also analyze the kinetic correlation energy density, 
and particularly how its peak in the origin, which in systems 
with Coulomb confinement plays an important role for strong 
correlation [27–29], varies as the system becomes more and 
more correlated.

2 � Theoretical background

2.1 � Density‑fixed adiabatic connection

By defining the �-dependent density functional F�[�] in the 
Levy constrained search formalism [30],

with T̂  the electronic kinetic energy operator, Ŵ  the Cou-
lomb electron–electron interaction operator, and “ � → � ” 
indicating all fermionic wavefunctions yielding the one-
electron density �(�) , one obtains an exact formula [1] for 
the XC energy functional of KS DFT,

In Eq. (2), W�[�] is the global adiabatic connection integrand,

where ��[�] is the minimizing wavefunction in Eq. (1) and 
U[�] is the Hartree repulsion energy. The real parameter � 
is a knob that controls the interaction strength, defining an 
infinite set of systems all with the same one-electron den-
sity �(�) = ��=1(�) , but with different correlation. The global 
adiabatic connection integrand has the known expansions at 
small and large �,

(1)F𝜆[𝜌] ≡ min
𝛹→𝜌

⟨𝛹 �T̂ + 𝜆Ŵ�𝛹⟩,

(2)Exc[�] = ∫
1

0

W�[�] d�.

(3)W𝜆[𝜌] ≡ ⟨𝛹𝜆[𝜌]�Ŵ�𝛹𝜆[𝜌]⟩ − U[𝜌],

(4)W�→0[�] =W0[�] + �W �
0
[�] +⋯ ,

(5)W�→∞[�] =W∞[�] +
W �

∞
[�]

√
�

+⋯ ,

where W0[�] = Ex[�] is the exact exchange energy (the 
same expression as the Hartree–Fock exchange, but with 
KS orbitals), W �

0
[�] = 2EGL2

c
[�] is twice the Görling–Levy 

[31] second-order correlation energy (GL2), W∞[�] is the 
indirect part of the minimum possible expectation value of 
the electron–electron repulsion in a given density [32], and 
W �

∞
[�] is the potential energy of coupled zero-point oscilla-

tions around the manifold that determines W∞[�] [33].

2.2 � Energy densities

Equation  (2) can also be written in terms of real-space 
energy densities w�(�;[�]),

which are, of course, not uniquely defined. For the purpose 
of building �-interpolation models on energy densities, 
the choice of the gauge of the electrostatic potential of the 
exchange–correlation hole h�

xc
(�1, �2) seems so far to be the 

most suitable [16],

where h�
xc
(�1, �2) is defined in terms of the pair density 

P�
2
(�1, �2) and the density � (see also [34]),

with P�
2
 obtained from ��[�],

Energy density at � = 0 . At � = 0 , we have the Kohn–Sham 
or exchange hole, which yields in the case of a closed-shell 
singlet considered in this work (with real orbitals)

where �i(�) are the occupied KS spatial orbitals.
Slope of the energy density at � = 0 . The slope w�

0
(�) of 

the energy density at � = 0 in the gauge of Eq. (7) is given, 
again for a closed-shell singlet with real orbitals, by [14]

(6)Exc[�] = ∫ d� �(�)∫
1

0

d�w�(�;[�]),

(7)w�(�) =
1

2 ∫
h�
xc
(�, �2)

|� − �2|
d�2,

(8)h�
xc
(�1, �2) =

P�
2
(�1, �2)

�(�1)
− �(�2),

(9)

P
�
2
(�, ��) = N(N − 1)

∑

�,��,�3…�
N

∫ |��(��, �
���, �3�3 … �

N
�
N
)|2d�3 … d�

N
.

(10)w0(�) = −
1

2�(�)

N∕2∑

i,j

�i(�)�j(�)∫ d��
�j(�

�)�i(�
�)

|� − ��| ,

(11)

w�
0
(�) = −

1

�(�)

�

abij

4⟨ij�ab⟩ − 2⟨ij�ba⟩
�a + �b − �i − �j

�i(�)�a(�)∫ d��
�j(�

�)�b(�
�)

�� − ��� ,
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where �a and �b are unoccupied and �i and �j are occupied 
Kohn–Sham orbitals, ⟨ij�ab⟩ denotes the Coulomb integral 
over the spatial orbitals, and the �i are the Kohn–Sham 
orbital energies. For systems with N > 2 , there should be 
also a term with single excitations [31], which we do not 
consider here as we focus on N = 2.

Energy density at � = ∞ . In the � → ∞ limit we obtain 
a system of strictly correlated electrons (SCE), for which it 
has been shown [13] that

where vH(�) is the Hartree potential and �i(�) are co-motion 
functions that determine the position of the ith electron given 
the position � of a chosen reference electron (as the �i(�) sat-
isfy cyclic group properties it does not matter which electron 
is chosen as reference), and are non-local functionals of the 
density �(�) [32, 35].

There is at present no local expression in the gauge 
of Eq. (7) for the next leading term W �

∞
[�] in the � → ∞ 

asymptotic expansion. In fact, the functional W �
∞
[�] can be 

computed from an integral on position-dependent zero-point 
energies [33], which, however, do not provide an energy 
density within the definition of Eq. (7).

2.3 � Global and local interpolations

The original idea of Seidl et al. [7–9] was to build an approx-
imate adiabatic connection integrand W ISI

�
[�] by interpolat-

ing between the two limits of Eqs. (4) and (5). These interac-
tion strength interpolation (ISI) functionals typically use as 
input the four ingredients (or a subset thereof) appearing in 
Eqs. (4) and (5): {W0[�],W

�
0
[�],W∞[�],W

�
∞
[�]} , denoted � 

in short. The XC energy functional EISI
xc
[�] is then obtained 

from Eq. (2), by integrating W ISI
�
[�] over � , which will result 

in a nonlinear function of the input ingredients � . Because 
of this nonlinear dependence, the ISI-type functionals are 
not size consistent when a system dissociates into unequal 
fragments, even when the input ingredients are size consist-
ent themselves. However, in this latter case, size consistency 
can be easily restored with a very simple correction [12]. 
The ISI-type functionals are, instead, automatically size 
extensive [12]. Several formulas for interpolating between 
the two limits of Eqs. (4) and (5) have been proposed in the 
literature and are reported in “Appendix”.

More recently, these same interpolation formulas have 
been used to build, in each point of space, a model energy 
density wISI

�
(�;[�]) , with Eqs. (10)–(12) as input ingredients 

[14, 15]. This way, by integrating wISI
�
(�;[�]) over � between 

0 and 1, one obtains an exchange–correlation energy 
density in the gauge of the coupling constant averaged 

(12)w∞(�) =
1

2

N∑

i=2

1

|� − �i(�)|
−

1

2
vH(�),

exchange–correlation hole. Such interpolations performed 
in each point of space are size consistent in the usual DFT 
sense [36, 37].

2.4 � Hooke’s atom series

The Hooke’s atom series consists of two electrons bound by 
an harmonic external potential, with hamiltonian

with ri = |�i| and r12 = |�1 − �2| . At large � the system has 
high density and is in the weakly correlated regime, which 
can be fully described by using the scaled coordinates 
�i ≡ √

� �i , while as � → 0 the system becomes more and 
more correlated [25], and the relevant scaled variables are 
�̃i ≡ 𝜔2∕3 �i.

As well known, there is an infinite set of special values of 
� for which the hamiltonian (13) is analytically solvable [24] 
once rewritten in terms of center of mass and relative coor-
dinates. These analytic solutions have the center of mass in 
the ground state of an harmonic oscillator with mass m = 2 
and frequency 

√
2� , and the relative coordinate in an s-wave 

with the radial part described by a gaussian times a poly-
nomial [24]. We denote here the various analytic solutions 
with the degree n − 1 of the polynomial in r12 . At n = 1 we 
have the non-interacting system, and as n increases the sys-
tem becomes more and more correlated, with � smaller and 
smaller [24]. The values of � corresponding to the different 
values of n considered here are reported in Table 1.

3 � Computation of exact energy densities

Given the analytic solutions [24] � (r1, r2, r12) of the hamil-
tonian (13) for n = 2,… , 6 , we have computed the corre-
sponding densities �(r) , which are also analytic. Although 
leading to cumbersome expressions, these densities allowed 
us to  obtain analyt ic  Kohn–Sham potent ials 
vs(r) =

∇2
√
�(r)

2
√
�(r)

+ � , with � = E2 − E1 , the energy difference 

between the physical states with two and one electrons.

(13)Ĥ = −
1

2

(
∇2

1
+ ∇2

2

)
+

𝜔2

2

(
r2
1
+ r2

2

)
+

1

r12
,

Table 1   Values of � for the 
various analytic solutions of 
the hamiltonian of Eq. (13) 
considered here, corresponding 
to different degrees n − 1 of the 
polynomial in the solution for 
the relative coordinate r

12
 [24]

n �

2 0.5
3 0.1
4 0.0365373
5 0.0173462
6 0.00957843
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3.1 � Energy densities at � = 0

For a singlet N = 2 state Eq.  (10) reduces to 
w0(r) = −

1

4
vH(r) , with vH(r) the Hartree potential, leading 

to the simple expression

with the cumulant Ne(r) defined as

We have obtained these energy densities analytically from 
the exact densities. They are shown in Fig. 1 for the different 
analytic solutions considered here.

3.2 � Energy densities for the slope at � = 0

The analytic exact Kohn–Sham potentials were used to 
obtain the virtual Kohn–Sham orbitals needed for the evalu-
ation of Eq. (11). We used an isotropic spherical Gaussian 
basis with � as the width parameter. Angular momentum 
values were included from l = 0 to l = 9 , with 5–30 basis 
states for every value of l. All matrix elements were obtained 
analytically in this basis, including the Coulomb integrals.

(14)w0(r) = −� ∫
∞

r

r��(r�) dr� −
Ne(r)

4 r
,

(15)Ne(r) = 4� ∫
r

0

r�2�(r�) dr�.

We first analyze the convergence of the global slope of the 
coupling constant integrand, W �

0
= 2EGL2

c
 , with increasing 

basis set size nbasis in the first panel in Fig. 2. The number of 
basis states is that per angular momentum quantum number, 
with all l up to l = 9 included. As � decreases (the quantum 
number n increases), the l = 0 contribution becomes less 
important, with the l > 0 contributions gaining more weight, 
as shown in the second panel in Fig. 2, where the result from 
each channel l with nbasis = 30 is reported.

For the local slope w�
0
(�) , only 10 basis states are used. In 

the present case of a two-electron system, w�
0
(�) can also be 

simplified, as there is only one occupied Kohn–Sham spa-
tial orbital. Additional utilization of the spherical symmetry 
then yields the following expression, by using the spherical 
harmonic expansion of the Coulomb potential,

where the functions Rl
n
(r) are the radial functions of the spa-

tial orbitals and occ is the occupied Kohn–Sham orbital. 

(16)

w�
0
(r) = −

2

�(r)

�

nanbl

1

�a + �b − 2�occ
⟨(occ)(occ)�ab⟩

R0
occ

(r)Rl
na
(r)

�
r−l−1 ∫

r

0

dr�r�l+2R0
occ

(r�)Rl
nb
(r�)

+ rl ∫
∞

r

dr�r�−l+1R0
nj
(r�)Rl

nb
(r�)

�
,

Fig. 1   Energy densities at � = 0 
for the Hooke’s atoms series 
with n = 2,… , 6 , correspond-
ing to the � values in Table 1. 
In the second panel, the energy 
density has been multiplied by 
the density and by the volume 
element. The high-density scal-
ing has been used

Fig. 2   Convergence of W �
0
= 2EGL2

c
 with the size nbasis of the gaussian basis set used to expand the KS orbitals, relative to nbasis = 30 (first panel) 

and contribution of the different angular momentum l (second panel)
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The full local slope is shown in the first panel in Fig. 3. 
Numerical issues appear at around the scaled variable values 
s ≳ 4.5 , but this is of no relevance to the integrated energy 
as it is clear upon multiplication by the volume element and 
the density (second panel in Fig. 3).

3.3 � Energy densities at � = ∞

The energy density w∞(�) of Eq. (12) in the case of N = 2 
electrons in a spherical density is known to be determined by 
the radial co-motion function f(r), which gives the full � (�) via 
�(�) = −

f (r)

r
� [13, 32, 38, 39], yielding

In turn, f(r) is a fully non-local functional of the density 
�(r) , given in terms of the cumulant Ne(r) of Eq. (15) and 
its inverse N−1

e
,

(17)w∞(r) =
1

2(r + f (r))
−

1

2
vH(r).

(18)f (r) = N−1
e
(2 − Ne(r)).

In Fig. 4, we report the energy densities w∞(r) for the ana-
lytical solutions corresponding to the � values in Table 1.

3.4 � Energy densities at � = 1

Since we have exact analytic wavefunctions we can also 
compute the exact energy densities at physical coupling 
strength � = 1 , which can be used to test the accuracy of 
local interpolations between � = 0 and � = ∞ , as well 
to study features of the energy densities as the interac-
tion strength is changed. The exact w1(r) are reported in 
Fig. 5. We see that the physical energy densities w1(r) for 
the Hooke’s atom series differ more among each other at 
large r, unlike w0(r) and w∞(r) . This is clearer if we look at 
the correlation energy density wc(r) = w1(r) − w0(r) , which 
is reported in Fig. 6. The correlation energy density wc(r) 
decays ∝ −

1

r3
 , but with different coefficients for different 

values of �.
A comparison of the three energy densities w0 , w1 and w∞ is 

given in Fig. 7 for the Hooke’s atom with n = 6 . An interesting 

Fig. 3   Local slope (first panel) 
and the local slope multiplied 
by the volume element and 
density (second panel)

Fig. 4   Energy densities corre-
sponding to � = ∞ (first panel), 
and energy densities corre-
sponding to � = ∞ multiplied 
by the density and the volume 
element (second panel). The 
coordinates and energy densities 
are scaled according to the large 
� limit

Fig. 5   Energy densities cor-
responding to � = 1 (first panel), 
and energy densities corre-
sponding to � = 1 multiplied 
by the density and the volume 
element (second panel). The 
coordinates and energy densities 
are scaled according to the large 
� limit
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feature of these energy densities, already observed in Ref. [13], 
is that for large r it can be seen that w1(r) < w∞(r) , while 
for the corresponding global quantities we have the strict ine-
quality W1[𝜌] > W∞[𝜌] . However, taking w1(r) ≈ w∞(r) for 
large r only has a small effect on the energy even for the most 
strongly correlated Hooke’s atom considered here ( n = 6 ), as 
it becomes clear once the energy densities are multiplied by 
the density and the volume element (second panel in Fig. 7), 
which is what ultimately determines the correlation energy. 
This crossing of energy densities has never been observed, so 
far, in systems with the Coulomb external potential.

4 � Results from global and local 
interpolations

4.1 � Interpolations using global ingredients

The global ingredients W0[�] , W �
0
[�] have been obtained as 

described in Sects. 3.1 and 3.2, while W∞[�] has been obtained 
by integrating the energy density of Eq. (17). Additionally, 
we have also obtained W �

∞
[�] of Eq. (5), which in this case is 

given by [33]

with

(19)W �
∞
[�] =

1

2 ∫
∞

0

4� r2
�(r)

2

(
�1(r)

2 +
�2(r)

2

2

)
dr,

(20)�1(r)
2 =

r2 + f (r)2

rf (r)(r + f (r))3

and with f(r) given by Eq. (18). Notice that f �(r) < 0 , so 
that 𝜔2(r)

2 > 0.
We have used the interpolation formulas reported in 

“Appendix”, namely SPL [7], LB [40], ISI [9] and revISI 
[33]. The first two, SPL and LB, use only three ingredients 
(they do not include W �

∞
[�] ), while ISI and revISI use all 

the four ingredients of Eqs. (4)–(5). Additionally, we have 
also used a Padé approximant (see “Appendix”) which uses 
W0[�],W

�
0
[�] and the exact W1[�] , to generate plausible refer-

ence adiabatic connection curves, which are shown in Fig. 8. 
As expected, as the Hooke’s atoms get more correlated, the 
AC integrand displays a stronger curvature.

The error resulting in the correlation energy Ec[�] with 
the different global interpolations is shown in Fig. 9. We 
consider only the correlation energy, since all the methods 
utilize 100% exact exchange. The Padé method performs 
best as expected, since it uses the exact W1 , which in practi-
cal situations is unavailable. The LB interpolation formula 
performs second best, while SPL, containing the same ingre-
dients, performs much worse. The ISI and revISI methods 
improve slightly the SPL formula, but are still outperformed 
by LB, despite containing more exact information in the 
form of W �

∞
[�].

For comparison with traditional Density Functional 
Approximations (DFAs), such as the local density approxi-
mation (LDA) [41] and the PBE GGA [42], we show the 
error in the exchange–correlation energy Exc[�] in the 

(21)�2(r)
2 = −

2(1 + f �(r)2)

f �(r)(r + f (r))3
,

Fig. 6   Correlation energy densi-
ties (first panel) and correlation 
energy densities multiplied 
by the density and the volume 
element (second panel). The 
coordinate and energy density 
are scaled according to the large 
� limit

Fig. 7   Energy densities for 
the most strongly correlated 
Hooke’s atom considered here 
( n = 6 ), at different values of � 
(first panel). In the second panel 
the energy densities have been 
multiplied by the density and 
the volume element
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first panel in Fig. 10. It is clear that the adiabatic connec-
tion interpolation methods outperform the PBE method, 
however at the increased computational cost of a dou-
ble hybrid. In the second panel in Fig. 10, we compare 
the performance of LDA (PW92 [41]) with GL2 alone 
and with the � → ∞ expansion of Eq. (5) alone, which 
yields Exc[�] = W∞[�] if we retain only the first term, and 
Exc[�] = W∞[�] + 2W �

∞
[�] , if we include also the sec-

ond term. The LDA performs poorly already for the first 
Hooke’s atom and its performance worsens as correlation 

increases. The GL2 method works well for the first 
Hooke’s atom, which is expected since its adiabatic con-
nection integrand resembles a straight line in Fig. 8, but it 
is way too negative for the exchange–correlation energy in 
the more correlated Hooke’s atoms. The � → ∞ expansion 
alone performs better as the Hooke’s atoms become more 
correlated, but with the first term only is still too negative 
by about 15% in the strongest correlated Hooke’s atom. 
Adding the second term contribution reduces the error 
for n > 3 , and the resulting XC energy becomes now less 
negative than the exact one.

4.2 � Interpolations on energy densities

As already mentioned at the end of Sec. 2, an expression 
for the energy density corresponding to W �

∞
[�] in the gauge 

of Eq. (7) is not available. For this reason, we can only test 
local interpolations using the LB and SPL interpolation 
formulas, which do not use the information from W �

∞
[�] . 

We first compare the resulting wc(r) = w1(r) − w0(r) 
from the two interpolation formulas in the first pan-
els in Figs. 11 (LB) and 12 (SPL) with the exact result 
obtained from the analytic wavefunctions. The errors are 
small on an absolute scale, so we show in both figures 
�wc(�) = wc, exact(�) − wc, model(�) and include the volume 
element and density. Notice that �wc(�) = �w1(�) since 
we use the exact w0(�) in the construction of both the 
LB and SPL approximations. In order to assess the cou-
pling constant integrated energy density w̄c , which is not 
known exactly for any of the Hooke’s atoms, we compare 
it with the one obtained from the Padé interpolation, which 
includes the exact w0(r) , w�

0
(r) and w1(r).

We see that in the case of LB there is an overestimation 
of the coupling constant averaged energy density at small r, 
which cancels quite well with an underestimation at large 
r, achieving almost perfect error cancelation. In the case of 
SPL, there is a smaller overestimation of the correlation at 
small r, coupled with a stronger underestimation of the cor-
relation energy at large r, which worsens its performance.

Fig. 8   Scaled adiabatic connection integrand as a function of � 
obtained from a Padé interpolation that includes the exact W1[�] (see 
“Appendix”)

Fig. 9   Errors in the correlation energy resulting from the application 
of several global interpolations (see “Appendix”)

Fig. 10   Errors in the exchange–correlation energy resulting from the application of several global interpolations and approximations (see text)
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4.3 � Comparison between global and local 
interpolations

Of interest is then comparing the performance of the global 
and local variants of the Padé, LB and SPL interpolations. In 
Fig. 13 the relative error on the correlation energy obtained 
from the local and global interpolation is shown, where in 
this case we use for both 10 basis states per angular momen-
tum quantum number for the slope. In the case of the Padé 
interpolation the performance worsens only slightly going 
from the global to the local interpolation, while for the SPL 
interpolation there is a dramatic worsening. In the case of 
the LB interpolation the error switches sign for n ≥ 3 and in 
general worsens.

This is somehow surprising as, instead, for small chemi-
cal systems the local interpolations have been found to be 
of similar quality (for N = 2 ) or to significantly outperform 
(for N > 2 ) their global counterparts [14, 15].

5 � Kinetic correlation energy densities

The coupling constant integration is one possible way to 
recover the correlation part due to the difference between 
the true, interacting, kinetic energy T[�] and the Kohn–Sham 
kinetic energy Ts[�] , Tc[�] = T[�] − Ts[�] . We have

where w(�) is obtained by integrating w�(�) over � between 
0 and 1. Equation (22) defines a possible kinetic correlation 
energy density equal to w(�) − w1(�).

Another kinetic correlation energy density that has 
been defined [27] and studied [43–45] in the literature, and 
that has been found to display very interesting features for 
strongly correlated systems [28, 29, 46, 47], arises from the 
work of Baerends and coworkers [27, 43–45],

(22)Tc[�] = ∫ �(�)(w(�) − w1(�)) d�,

(23)

vc,kin(�) =
1

2 ∫
(
|∇

�
�(2, ...,N|�)|2 − |∇

�
�s(2, ...,N|�)|2

)
d2..dN,

Fig. 11   Error �wc(�) = wc, exact(�) − wc, model(�) multiplied by the vol-
ume element and density obtained with the LB approximation (first 
panel) and error in w̄c(r) obtained with the same LB approximation 

(second panel). The high-density scaling is applied. For the LB inter-
polation formula, see “Appendix”

Fig. 12   Error 
�wc(�) = wc, exact(�) − wc, model(�) 
multiplied by the volume 
element and density obtained 
with the SPL approximation 
(first panel) and error in w̄c(r) 
obtained with the same SPL 
approximation (second panel). 
The high-density scaling is 
applied. For the SPL interpola-
tion formula, see “Appendix”

Fig. 13   Comparison of the local and global adiabatic interpolations in 
terms of the relative error in the correlation energy Ec
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where �(2, ...,N|�) is a conditional amplitude defined in 
terms of a wavefunction �  and its density �,

1, ...N denote the spatial and spin coordinates of the N elec-
trons, and in Eq. (23) we consider the conditional amplitude 
from the exact wavefunction (denoted with � ) and for the 
KS determinant (denoted with �s ). Equation (23) can also be 
rewritten in several different interesting and more practical 
forms, for example in terms of first order density matrices, 
or in terms of natural orbitals, or with Dyson orbitals (see, 
e.g., [43–45, 48–53]). In the present case of N = 2 electrons, 
Eq. (23) takes the simple form

where � (�1, �2) is the exact ground state wavefunction of the 
interacting system.

Both w(�) − w1(�) and vc,kin(�) integrate to Tc[�] when 
multiplied by the density �(�) , but they describe the 
kinetic correlation energy locally in a different way. Here 
we compare the features of these two definitions, as the 
kinetic correlation energy is important to capture strong 
correlation. Also, very recently, it has been proposed to 
use the correlated kinetic energy density as an additional 
variable in an extended KS DFT theory for lattice hamil-
tonians [54], and it is thus important to understand which 
definition is the most suitable to generalize this theory to 
the continuum.

In Fig. 14, we show the two different kinetic correla-
tion energy densities, where for w(r) we have used the 
integration over � of the Padé model, which uses the 
exact w0 , w′

0
 and w1 as input. We see that the two are 

rather different: vc,kin(r) displays a peak in the center of 
the harmonic trap, reminiscent of the one appearing in a 
stretched bond [27–29, 47], while w(�) − w1(�) displays a 
weaker peak, which is not located at the center.

(24)�(2, ...,N|1) =
√

N

�(1)
� (1, ...,N),

(25)vc,kin(r) =
1

2�(r) ∫ |∇
�
� (�, ��)|2d�� − |∇�(r)|2

8�(r)2
,

5.1 � Analysis of the peak of vc,kin(�)

In the case of a stretched bond, it has been shown that the 
height of the peak of vc,kin(�) at the midbond saturates as 
the bond is stretched [28], displaying an anomalous scaling 
[29], which is the way in which exact KS DFT can describe 
Mott insulator physics [29], and which is not captured by 
any approximate XC functional. In the low density (small � 
or large n) Hooke’s atom, the system forms a “Wigner mol-
ecule,” with the maximum of the density located away from 
the center of the harmonic trap. It is interesting to analyze 
how the height vc,kin(0) of the peak scales when the system 
becomes very correlated ( � → 0 ); as shown in Fig. 14 it 
seems to saturate when one uses the high-density scaling.

For any two-electron wavefunction of the form 
� (r1, r2, r12) = e

−
�

2
(r2

1
+r2

2
)
p(r12) , the peak’s height is given 

by the simple expression

We have used up to the second order of the small-� (strong 
correlation) expansion of the exact wavefunction [25], finding 
that in the scaling used in Fig. 14 the peak does not saturate, 
but eventually will decrease and then go to zero very slowly, 

(26)vc,kin(0) =
∫ ∞

0
e−�x

2

x2 p�(x)2 dx

2 ∫ ∞

0
e−�x

2
x2 p(x)2 dx

.

Fig. 14   Two kinetic correlation 
energy densities of Eqs. (22) 
and (23) for the different 
Hooke’s atoms considered here. 
The high-density scaling is 
applied

Fig. 15   Peak vc,kin(0) as a function of � . The first three orders in the 
small-� (strong correlation) expansion are compared with the values 
(dots) from the exact wavefunctions of Taut [24], and with the large-
� (weak correlation) expansion
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as �1∕6 . In Fig. 15, we show the peak’s height as a function of 
� for the analytic solutions, compared to the first three orders 
in the small-� (strong correlation) expansion (Eq. (32) of [25]) 
and with the large-� (weak correlation) expansion (Eq. (22) of 
[25]). We see that the strong-correlation expansion for the peak 
is much more accurate than ordinary perturbation theory from 
the weak correlation limit even for very moderate correlation 
(the Hooke’s atom with � = 1∕2 resembles the He atom as far 
as the degree of correlation is concerned).

6 � Conclusions

We have analyzed the performances of exchange–correla-
tion functionals built from global and local interpolations 
between the weak- and the strong-interaction limits of DFT 
for the Hooke’s atom series. This case study allows for the 
use of exact analytical input ingredients, thus disentangling 
the errors coming from the interpolation itself from those 
on the input quantities. Surprisingly, we have found that for 
these systems the global interpolations always outperform 
their local counterparts, in striking contrast with what had 
been observed so far for small chemical systems [14, 15].

We have also compared two different definitions of the 
kinetic correlation energy density, which plays a crucial role 
for strongly correlated systems [28, 29], and that can help in 
understanding how to extend to the continuum a KS theory 
that recovers the exact kinetic energy density recently pro-
posed for lattice models [54].
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Appendix: Interpolation formulas

In the following we report the interpolation formulas in 
terms of the global ingredients W0 , W ′

0
 , W∞ and W �

∞
 . For 

the interpolation on energy densities, we have used the 
same SPL, LB and Padé[1/1] formulas below in each point 
of space, replacing the global quantities Wi with their local 
counterparts wi(�).

Interaction Strength Interpolation (ISI) formula [8, 9]

(27)W ISI
�

= W∞ +
X√

1 + �Y + Z
,

with

After integration in Eq. (2), we have

Revised ISI (revISI) formula [33]

where

The corresponding XC functional is

Seidl–Perdew-Levy (SPL) formula [7]

with

The SPL XC functional reads

Notice that this functional does not make use of the informa-
tion from W �

∞
.

Liu-Burke (LB) formula [40]

where

(28)X =
xy2

z2
, Y =

x2y2

z4
, Z =

xy2

z3
− 1 ;

(29)x = −2W �
0
, y = W �

∞
, z = W0 −W∞ .

(30)

EISI
xc

= W∞ +
2X

Y

�
√
1 + Y − 1 − Z ln

�√
1 + Y + Z

1 + Z

��
.

(31)W revISI
�

= W∞ +
b
�
2 + c� + 2d

√
1 + c�

�

2
√
1 + c�

�
d +

√
1 + c�

�2
,

(32)

b = −
4W �

0
(W �

∞
)2

(
W0 −W∞

)2 , c =
4(W �

0
W �

∞
)2

(
W0 −W∞

)4 ,

d = − 1 −
4W �

0
(W �

∞
)2

(
W0 −W∞

)3 .

(33)ErevISI
xc

= W∞ +
b√

1 + c + d
.

(34)WSPL
�

= W∞ +
W0 −W∞√
1 + 2��

,

(35)� =
W �

0

W∞ −W0

.

(36)ESPL
xc

=
�
W0 −W∞

�
�√

1 + 2� − 1 − �

�

�
+W0 .

(37)WLB
�

= W∞ + �(y + y4) ,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Using Eq. (2), the LB XC functional is found to be

Also the LB functional does not use the information from 
W �

∞
.

Padé[1/1] formula with the exact W1 [55]

with

yielding
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