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Brown adipose tissue (BAT) is a specialized tissue that regulates non-shivering
thermogenesis. In Syrian hamsters, interscapular adipose tissue is composed primarily
of white adipocytes at birth, which is converted to BAT through the proliferation and
differentiation of brown adipocyte progenitors and the simultaneous disappearance of
white adipocytes. In this study, we investigated the regulatory mechanism of brown
adipogenesis during postnatal BAT formation in hamsters. Interscapular adipose tissue
of a 10-day-old hamster, which primarily consists of brown adipocyte progenitors
and white adipocytes, was digested with collagenase and fractioned into stromal–
vascular (SV) cells and white adipocytes. SV cells spontaneously differentiated into
brown adipocytes that contained multilocular lipid droplets and expressed uncoupling
protein 1 (Ucp1), a marker of brown adipocytes, without treatment of adipogenic
cocktail such as dexamethasone and insulin. The spontaneous differentiation of SV
cells was suppressed by co-culture with adipocytes or by the addition of white
adipocyte-conditioned medium. Conversely, the addition of SV cell-conditioned medium
increased the expression of Ucp1. These results indicate that adipocytes secrete factors
that suppress brown adipogenesis, whereas SV cells secrete factors that promote
brown adipogenesis. Transcriptome analysis was conducted; however, no candidate
suppressing factors secreted from adipocytes were identified. In contrast, 19 genes
that encode secretory factors, including bone morphogenetic protein (BMP) family
members, BMP3B, BMP5, and BMP7, were highly expressed in SV cells compared with
adipocytes. Furthermore, the SMAD and MAPK signaling pathways, which represent
the major BMP signaling pathways, were activated in SV cells, suggesting that BMPs
secreted from SV cells induce brown adipogenesis in an autocrine manner through the
SMAD/MAPK signaling pathways. Treatment of 5-day-old hamsters with type I BMP
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receptor inhibitor, LDN-193189, for 5 days reduced p38 MAPK phosphorylation and
drastically suppressed BAT formation of interscapular adipose tissue. In conclusion,
adipocytes and stromal cells regulate brown adipogenesis through secretory factors
during the postnatal white-to-brown conversion of adipose tissue in Syrian hamsters.

Keywords: adipocyte, brown adipose tissue(BAT), uncoupling protein 1(UCP1), Syrian hamster, secretory factor

INTRODUCTION

Mammals have two types of adipose tissue: white adipose tissue
(WAT) and brown adipose tissue (BAT). WAT stores energy
as triglyceride, and white adipocytes contain a large unilocular
lipid droplet and small cytoplasm. In contrast, BAT is specialized
for non-shivering thermogenesis and dissipates energy as heat
through the activation of mitochondrial uncoupling protein 1
(UCP1) (Cannon and Nedergaard, 2004). Brown adipocytes
contain multilocular lipid droplets and abundant mitochondria.
The physiological role and morphology of WAT and BAT
are significantly different; however, they may convert their
appearance into one another under specific physiological
conditions (Lee et al., 2014). Brown-like adipocytes, known as
beige/brite adipocytes, which contain multilocular lipid droplets
and express UCP1, are induced in WAT during chronic
sympathetic stimulation such as cold exposure (Cousin et al.,
1992; Jimenez et al., 2003; Contreras et al., 2014). This change
is referred to as “browning of WAT.” In contrast, obesity-
induced “whitening of BAT” occurs when the lipid content
increases from overnutrition and the lipid droplets change to a
unilocular form, similar to that in white adipocytes (Sellayah and
Sikder, 2014; Shimizu et al., 2014). Thus, adipose tissues undergo
drastic remodeling by environmental stimuli, and the underlying
mechanisms, especially the role of local environment, for these
changes have not been fully elucidated.

Syrian hamsters are a unique model to investigate the
mechanism of adipose tissue remodeling. In most mammals,
BAT development is completed before or soon after birth
because BAT thermogenesis is indispensable in neonates and
infants. In contrast, Syrian hamsters are born without BAT
as it develops postnatally by the time of weaning (Smalley
and Smalley, 1967; Houstek et al., 1990) when the complete
homeothermic phenotype is acquired (Tsubota et al., 2019).
Interscapular adipose tissue, where BAT is present in other
animals, is occupied by white adipocytes at birth. Brown
adipocyte progenitors appear at the edge of the tissue, proliferate
and increase in number, and then differentiate into brown
adipocytes (Okamatsu-Ogura et al., 2018). This white-to-
brown conversion of adipose tissue is also accompanied by
active vascularization along with the proliferation of vascular
endothelial cells (Okamatsu-Ogura et al., 2018).

It is unclear how this adipose tissue conversion is regulated;
however, environmental temperature appears to have a distinct
role because the proliferation of the progenitor and endothelial

Abbreviations: BAT, brown adipose tissue; BMP, bone morphogenetic protein;
FGF, fibroblast growth factor; LDN, LDN-193189; PDGF, platelet-derived growth
factor; SV, stromal–vascular; UCP1, uncoupling protein 1; VEGF, vascular
endothelial growth factor; WAT, white adipose tissue.

cells is suppressed in pups raised in a warm environment (Nagaya
et al., 2019). However, the BAT formation process itself occurs
and functional BAT is formed even in a warm environment,
suggesting that there may be some cell-intrinsic regulatory
mechanism. Interestingly, the process of BAT formation in
hamsters is also the process in which white adipocytes gradually
disappear. White adipocytes not only store excess energy as
triglycerides, but also secrete various adipokines that regulate the
metabolism of other tissues, not only locally, but systemically.
Some of the adipokines modulate adipose tissue remodeling
in an autocrine or paracrine manner (Goralski et al., 2007;
Than et al., 2012; Choi et al., 2020). In addition, certain
populations of stromal cells have been reported to modulate
adipogenesis in a paracrine manner (Ruan et al., 2002; Sakaue
et al., 2002; Hutley et al., 2004; Goto et al., 2016; Meissburger
et al., 2016; Machida et al., 2018; Schwalie et al., 2018; Buffolo
et al., 2019). Therefore, it is possible that brown adipogenesis
is regulated by surrounding stromal cells or white adipocytes
through secretory factors (Poulos et al., 2010). In this study,
we evaluated the regulatory mechanism of brown adipogenesis
during postnatal white-to-brown conversion of adipose tissue
in hamsters.

MATERIALS AND METHODS

Animals
The experimental procedures and care of animals were approved
by the Animal Care and Use Committee of Hokkaido University
(Sapporo, Japan) and conducted in an animal facility approved by
the Association for Assessment and Accreditation of Laboratory
Animal Care International. Parental Syrian hamsters were
purchased from Japan SLC (Hamamatsu, Japan) and housed
in plastic cages in an air-conditioned room at 23◦C along
with a 12:12 h light:dark cycle. They were given free access
to laboratory chow (Oriental Yeast, Tokyo, Japan) and tap
water. Male and female hamsters were mated by putting a
female into a cage with a male for 1 week. At the indicated
day, pups or adult hamsters were euthanized by intraperitoneal
injection of pentobarbital (Somnopentyl; Kyoritsu Seiyaku
Co., Tokyo, Japan). In experiment of acute effect of BMP
type I receptor inhibitor LDN-193189 (LDN, 3 mg/kg; R
& D System, Minneapolis, MN, United States), 10-day-old
hamsters were subcutaneously injected with LDN or vehicle
(0.5 w/v% carboxymethylcellulose sodium, 0.9 w/v% NaCl,
0.4 v/v% Tween80, 0.9 v/v% benzyl alcohol), and euthanized
by intraperitoneal injection of pentobarbital 30 min later. In
experiment of chronic effect of LDN, 5-day-old hamsters were
subcutaneously injected with LDN (3 mg/kg) or vehicle once a
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day for 5 days and euthanized by intraperitoneal injection of
pentobarbital 24 h after the last injection. The interscapular and
inguinal adipose tissues were collected.

Histological Analysis
Tissue specimens were fixed in 10%-buffered formalin
and embedded in paraffin according to the conventional
method, cut into 4-µm-thick sections, and stained with
hematoxylin and eosin.

Isolation of Adipocytes and
Stromal–Vascular (SV) Cells
Tissues were minced into small pieces and incubated with
DMEM-high glucose (FUJIFILM Wako Pure Chemicals
Corporation, Osaka, Japan) containing 1% fatty acid-free BSA
(FUJIFILM Wako Pure Chemicals Corporation) and 2 mg/ml
collagenase (FUJIFILM M Wako Pure Chemicals Corporation) at
37◦C for 1 h while shaking at 90 cycles/min. The suspension was
filtered through a 200-µm nylon filter and centrifuged at room
temperature at 120 g for 5 min. The floating cells were collected
as the mature adipocyte fraction. The pellet was re-suspended in
a hemolytic buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM
Na2EDTA, pH 7.4), and passed through a 25-µm nylon filter.
The filtrate was then centrifuged at 120 g for 5 min, and the pellet
obtained represented the SV cells.

Preparation of Conditioned Medium
Adipocyte fractions derived from the interscapular or inguinal
adipose tissues of three pups were pooled and cultured
in an OptiCell cell-culture system (BioCrystal, Ohio State,
United States). This enables culture of the adipocytes floating
in the upper layer of the medium while protecting them from
drying out by using gas-permeable membranes with efficient
O2 and CO2 exchange. The OptiCell chamber was filled with
10 ml of culture medium [10% fetal calf serum (Cytiva, Tokyo,
Japan), 100 U/ml penicillin, 100 µg/ml streptomycin-containing
DMEM-high glucose] and cells were cultured at 37◦C and 5%
CO2. SV cells derived from the interscapular adipose tissues of
three pups were cultured in 35-mm dishes coated with Type I
collagen (IWAKI AGC Techno Glass Co., Ltd., Shizuoka, Japan)
at a density of 7.5 × 105 cells/dish. 3 days later, the culture
medium was centrifuged at 200× g for 5 min to remove the cells
and filtered through a 0.2-µm filter. The filtrate was obtained as
conditioned medium and stored at –20◦C.

Primary Culture
Stromal–vascular cells derived from the interscapular or inguinal
adipose tissues were cultured in a 35-mm dish coated with
Type I collagen (IWAKI AGC Techno Glass Co., Ltd.) at a
density of 7.5 × 105 cells/dish in culture media with or without
conditioned medium. In co-culture experiments, the SV cell
fractions obtained from the three pups were suspended in 10-ml
culture medium as one pool and cultured in the OptiCell chamber
(BioCrystal) for 3 days with or without the pooled adipocyte
fraction obtained from the three pups.

Real-Time PCR
Cells were treated with RNAiso (Takara Bio, Shiga, Japan),
and total RNA was extracted according to the manufacturer’s
instructions. Total RNA was reverse-transcribed using a 15-
mer oligo(dT) adaptor primer and M-MLV reverse transcriptase
(Thermo Fisher Scientific, Waltham, MA, United States).
Real-time PCR was performed using a fluorescence thermal
cycler (LightCycler system, Roche Diagnostics, Mannheim,
Germany) and FastStart Essential DNA Green Master Mix (Roche
Diagnostics). Absolute expression levels were determined using a
standard curve using respective cDNA fragments as standards.
The mRNA levels are expressed as relative values compared with
Actb mRNA levels. The primers used in this study are listed in
Table 1.

Next-Generation Sequence Analysis
(mRNA-Seq Analysis)
Total RNA (5 µg) extracted from the SV cells or adipocyte
fractions derived from the interscapular and inguinal adipose
tissue was prepared. Next-generation sequence analysis was
performed by Eurofin Genomics Co., Ltd. (Tokyo, Japan) using
a HiSeq 2500 system (Illumina, San Diego, CA, United States).
Ingenuity Pathway Analysis software (Qiagen, Hilden, Germany)
was used for GO analysis. The set of genes, in which the ratio
of expression in interscapular SV cells relative to interscapular
adipocytes was greater than 5, was extracted, and enrichment
analysis was conducted using Metascape1. For enriched GO,
p-values were less than 0.01, the enrichment factor was
greater than 1.5, and the “signaling (GO:0023052)” as Parent
GO was extracted.

Western Blotting
Tissue specimens were homogenized in ice-cold Tris-
ethylenediaminetetraacetic acid (EDTA) buffer (10 mM
Tris and 1 mM EDTA, pH 7.4) containing cocktails of
phosphatase inhibitor (Nacalai Tesque, Kyoto, Japan) and
protease inhibitor (Sigma-Aldrich, St. Louis, MO, United States).
After centrifugation at 800 × g for 20 min at 4◦C, the resulting
supernatant obtained as total protein was used for western
blotting analysis. In brief, the protein was separated by SDS-
PAGE and transferred to a polyvinylidine fluoride membrane
(Immobilon; Millipore, Tokyo, Japan). After blocking with 5%
skimmed milk (Morinaga Milk Industry Co., Tokyo, Japan) or
2% BSA, the membrane was incubated with a primary antibody
overnight. Primary antibodies against phospho-SMAD1,5
(catalog number #9516), total SMAD1 (#6944), phospho-
p44,p42 mitogen-activated protein kinase (MAPK: ERK; #9101),
total ERK (#9102), phospho-p38 MAPK (#4511), total p38
MAPK (#9212) were purchased from Cell Signaling Technology
(Beverly, MA, United States), and for Tubulin (#T5168) from
Sigma-Aldrich. The bound antibody was visualized using an
enhanced chemiluminescence system (GE Healthcare UK Ltd.,
Little Chalfont, Bucks, United Kingdom) using a horseradish
peroxidase-linked secondary antibody.

1http://metascape.org/
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TABLE 1 | Primers for real-time PCR.

Gene name (Gene symbol) Primer sequences

Actin beta (Actb) Forward: 5′-AAG TGT GAC GTT GAC ATC CCG-3′

Reverse: 5′-GAT CCA CAC AGA GTA CTT GC-3′

Bone morphogenetic protein 3b (Bmp3b) Forward: 5′-CGGACATCGGGTGGAATGAA -3′

Reverse: 5′-TCTGGAACACAACAGGGCTC -3′

Bone morphogenetic protein 5 (Bmp5) Forward: 5′-TCTCATCAGGACCCCTCCAG-3′

Reverse: 5′-CCCTTCCGGTGCTATGATCC-3′

Bone morphogenetic protein 7 (Bmp7) Forward: 5′-GGG CTG TAA CTC TGG CAC AT-3′

Reverse: 5′-ACG TGG CCA ATG GAC TCT TT-3′

Fatty acid binding protein 4 (Fabp4) Forward: 5′-GAG ATG TGA TCA CCA TCC GAA C-3′

Reverse: 5′-ACC CTC ACG CTT CCT CTT TA-3′

Fatty acid synthase (Fasn) Forward: 5′-AAG TAC CAT GGC AAC GTG AC-3′

Reverse: 5′-CAA TGA TGT GCA CAG ACA CC-3′

Hormone sensitive lipase (Hsl) Forward: 5′-CTC TAA GTG TGT CAG TGC CT-3′

Reverse: 5′-TCC AGG AAG GAG TTG AGC CA-3′

Leptin (Lep) Forward: 5′-TCT GCA GGA CAT TCT CCG AC-3′

Reverse: 5′-AGA CAC CTG GAA GCT AAG GC-3′

Lipoprotein lipase (Lpl) Forward: 5′-TCT CTT CAT TGA CTC CCT GCT G-3′

Reverse: 5′-GTC TTC AGG TAC ATC TTG CTG C-3′

Peroxisome proliferator activated receptor gamma (Pparg) Forward: 5′-TTA GAT GAC AGT GAC TTG GC-3′

Reverse: 5′-CTC GAT GGG CTT CAC GTT CA-3′

Uncoupling protein 1 (Ucp1) Forward: 5′-GAG CTG GTA ACA TAT GAC CT -3′

Reverse: 5′- TGT CCT GGC AGA GAG TTG AT -3′

Data Analysis
Values are expressed as the mean ± standard error. Statistical
analyses were performed using a Student’s t-test or two-way
analysis of variance followed by the Tukey–Kramer post hoc test.

RESULTS

First, we histologically analyzed interscapular adipose tissue
collected from 5– to 15-day-old hamsters. The color of the
tissue was white in the 5-day-old hamster, gradually changed
to a brownish color, and showed a typical BAT appearance in
the 15-day-old hamster (Figure 1A). Histologically, the tissue
of the 5-day-old hamster mainly consisted of white adipocytes
containing unilocular lipid droplets, whereas the tissue of the
15-day-old hamster primarily consisted of brown adipocytes
with multilocular lipid droplets (Figures 1B,C). In the 10-day-
old hamster, the non-adipocyte cells with large nucleus, which
suggested a brown adipocyte progenitor in a previous study,
presented as a cluster surrounded by white adipocytes.

We previously showed that SV cells isolated from
interscapular adipose tissues differentiate into brown adipocytes
when treated with adipogenic cocktail such as dexamethasone
and insulin (Okamatsu-Ogura et al., 2018). Interestingly, SV
cells isolated from the interscapular adipose tissue of a 10-
day-old hamster spontaneously differentiated into adipocytes
that contain lipid droplets without treatment with adipogenic
cocktail (Figure 2A). These cells expressed genes encoding the
adipokine, Lep, and brown adipocyte marker, Ucp1, indicating
differentiation into brown adipocytes (Figure 2B). In contrast,

SV cells isolated from adult hamsters failed to differentiate into
adipocytes, and the expression of Lep and Ucp1 was extremely
low under these conditions. These results indicate that brown
adipocyte progenitors in SV cells isolated from developing
hamsters can spontaneously differentiate into brown adipocytes
even without adipogenic cocktail treatment.

FIGURE 1 | Postnatal development of brown adipose tissue in hamsters.
Interscapular adipose tissue was obtained from 5– to 15-day-old Syrian
hamsters. Gross images (A) and histological images (B,C) are shown. In
5-day-old, the tissue was mainly composed of white adipocytes, which
disappeared thereafter. In the 10-day-old hamsters, brown adipocyte
progenitors were observed and surrounded by white adipocytes. The tissue
was primarily composed of brown adipocytes in the 15-day-old hamsters.
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FIGURE 2 | Spontaneous brown adipogenesis of SV cells isolated from
interscapular adipose tissue of 10-day-old hamsters. Interscapular adipose
tissues collected from 10-day-old or 6-month-old hamsters were digested by
collagenase treatment and the stromal–vascular (SV) cell fraction was
collected by centrifugation. SV cells were cultured for three days without
adipogenic induction cocktail treatment. (A) Representative microscopic
images of primary cultured SV cells. Cells from 10-day old hamsters showed
round shape with multilocular lipid droplets (arrows), whereas those from
6-month-old hamsters showed fibroblast-like shape without lipid droplet.
Insets show higher magnification images. (B) Expression of the Ucp1 and Lep
genes were measured by real-time PCR. The expression values were
normalized to the expression of Actb and expressed as mean
values ± standard error of three and four independent experiments for the
6-month and 10-day group, respectively. An asterisk indicates a significant
difference (p < 0.05) between groups. The mean Ct values are shown in
parentheses.

Next, we examined the effect of co-culture with adipocytes
on the spontaneous differentiation of SV cells (Figure 3A). In
culture system using an OptiCell chamber, adipocytes floated
to the top, and SV cells attached to the bottom side. When
cultured alone, SV cells spontaneously differentiated into lipid
droplet-containing adipocytes (Figure 3B), similar to the results
shown in Figure 2. However, lipid droplet-containing cells were
not observed when SV cells were co-cultured with adipocytes.
Expression of Ucp1 was significantly lower in the co-culture
group compared with the single culture group (Figure 3C). The
expressions of adipogenesis marker Pparg and its target gene Lpl
were also significantly lower in the co-culture group compared
with the single culture group (Figure 3D). The expressions of
mature adipocyte markers such as Fabp4, Lep, Fas, and Hsl
tended to, but not significantly, be lower in the co-culture group
compared with the single culture group. These results indicate
that co-culture with adipocytes suppresses the spontaneous
differentiation of the progenitors into brown adipocytes.

Suppression of the spontaneous differentiation of progenitors
by co-culture with adipocytes may result from direct cell–
cell interaction or an indirect interaction through secretory

factors. To examine this in more detail, a conditioned medium
was prepared from interscapular adipocytes, and its effect on
differentiation was determined. When SV cells were cultured
with a low concentration (25%) of the conditioned medium, the
expression of Ucp1 was significantly reduced to approximately
30% of that in cells cultured without the conditioned medium
(Figure 4A). Ucp1 expression was further reduced when
cultured with a high concentration (50%) of the conditioned
medium. Conditioned medium from interscapular adipocytes
also suppressed the expression of marker genes for adipogenesis
or mature adipocyte (Figure 4A). On the other hand, conditioned
medium prepared from adipocytes isolated from the inguinal
adipose tissue, a traditional WAT depot, showed no effect
on Ucp1 and adipocyte marker gene expressions in SV cells.
When SV cells from adult hamsters (Figure 4B) or those from
the inguinal adipose tissue of 10-day-old pups (Figure 4C)
were used, spontaneous differentiation was not observed and
the expression of Ucp1 was extremely low compared with
that in SV cells from the interscapular adipose tissue of 10-
day-old hamsters. Effect of interscapular adipocyte-conditioned
medium on Ucp1 expression was not observed. These results
indicate that interscapular adipocytes from developing hamsters
secrete a factor(s) that suppresses the differentiation of brown
adipocyte progenitors.

To examine the possibility that SV cells also secrete factors that
regulate brown adipogenesis, the effect of SV cell-conditioned
medium was also examined. When interscapular SV cells from
10-day-old hamsters were cultured in a low (25%) or high (50%)
concentration of interscapular SV cell-conditioned medium,
the expression of Ucp1 increased in a dose-dependent manner
and was more than 2- and 4-fold higher than that in the
control group, respectively (Figure 4D). In contrast, conditioned
medium from interscapular SV cells showed no effect on the
expressions of marker genes for adipogenesis or mature adipocyte
(Figure 4D). SV cell-conditioned medium from adult hamsters
failed to show any effect on Ucp1 expression (Figure 4E). These
results indicate that SV cells secrete a factor(s) that enhances
brown adipogenic program, but not adipogenesis itself, during
spontaneous differentiation of progenitors.

To explore the inhibitor and promoter of brown adipogenesis
secreted from adipocytes and SV cells, respectively, mRNA-seq
analysis was conducted, and gene expression was compared
among three types of cells: interscapular SV cells, interscapular
adipocytes, and inguinal adipocytes. Genes classified as
“cytokines” or “growth factors” that exhibited an expression
value (TMM-normalized counts) differing by more than 2-fold
between groups were selected. As shown in Figure 5A, 19 genes
were found to be highly expressed in interscapular SV cells alone
(Int-SV group), whereas no genes were identified that were
highly expressed in the interscapular adipocytes alone (Int-Adip
group). Int-SV group contained genes for bone morphogenetic
protein (BMP) family members BMP3b, BMP5, and BMP7,
which are involved in BAT formation in mice (Figure 5B;
Blazquez-Medela et al., 2019). These results were validated
by real-time PCR (Figure 5C). Genes for vascular endothelial
growth factor (VEGF) -D and nerve growth factor, which
promote angiogenesis and neurogenesis and are deeply related to
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FIGURE 3 | Co-culture with adipocytes suppresses the spontaneous differentiation of SV cells. (A) Stromal–vascular (SV) cells and adipocytes were fractionated by
centrifugation after collagenase digestion of the interscapular adipose tissue of 10-day-old hamsters. SV cells were cultured in an OptiCell chamber with or without
adipocytes for three days without adipogenic induction cocktail treatment. Adipocytes floated at the top of the medium, and SV cells were attached at the bottom of
the chamber. (B) Representative microscopic image of the bottom side of the OptiCell chamber is shown. SV cells cultured alone showed spontaneous
differentiation into lipid droplet-containing adipocytes (arrows), but lipid droplet-containing cells were not observed when SV cells were co-cultured with adipocytes.
The expression of Ucp1(C) and marker genes of adipogenesis or mature adipocyte (D) in SV cells cultured with or without adipocytes for 3 days were measured by
real-time PCR. The expression of each gene was normalized to the expression of Actb and expressed relative to the value of the SV cells cultured alone. Values
represent means ± standard error for three independent experiments. An asterisk indicates a significant difference (p < 0.05) between groups. The mean Ct values
in the SV cells cultured alone are shown in parentheses.

BAT function (Xue et al., 2009; Wang and Seale, 2016), were also
found in the Int-SV group. The group of genes highly expressed
in interscapular SV cells and adipocytes compared with inguinal
adipocytes (Int-SV/Int-Adip group) included Gdf15 and Nrg4,
which is also known as BATkine (Wang et al., 2014; Campderros
et al., 2019). In contrast, adipokine Lep was highly expressed in
adipocytes irrespective of depots compared with interscapular
SV cells (Int-Adip/Ing-Adip group).

To identify the activated signaling pathway in interscapular
SV cells, a set of 351 genes that were more than 5-fold
higher in expression in interscapular SV cells compared with
adipocytes was used for enrichment analysis. Signaling pathways
related to MAPK [MAPK cascade, –log10(P) = 4.0; ERK1 and
ERK2 cascade, –log10(P) = 2.4] and BMP [BMP signaling
pathway, –log10(P) = 3.7; transforming growth factor-β (TGF-β)
receptor signaling pathway, –log10(P) = 3.6; SMAD protein
signal transduction, –log10(P) = 2.5] were enriched (Figure 5D).

These results suggest that BMP family proteins secreted from
SV cells activate progenitors to induce differentiation into
brown adipocytes.

The role of BMP signaling during the postnatal BAT
formation was examined in vivo. The mRNA expression
level of Bmp3b in interscapular adipose tissue was very low
compared with those of Bmp5 and Bmp7 (Figure 6A). The
Bmp7 expression tended to be high during early stage and
decreased thereafter. The phosphorylation of p38 MAPK was
also high during early stage and gradually decreased thereafter,
whereas that of SMAD1/5 failed to show a significant change
during postnatal development (Figure 6B). Postnatal day-
dependent change was not observed in the phosphorylation
of ERK. The administration of LDN (3 mg/kg), an inhibitor
of type I BMP receptor activin receptor-like kinase (ALK)-
2/3, to 10-day-old hamsters significantly reduced the level
of phosphorylated p38 MAPK but not that of SMAD1/5
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FIGURE 4 | Effect of conditioned medium from adipocytes and SV cells on the spontaneous differentiation of SV cells. Stromal–vascular (SV) cells and adipocytes
were fractionated by centrifugation after collagenase digestion of the interscapular (Int) or inguinal (Ing) adipose tissue of 10-day-old hamsters. Adipocytes or SV cells
were cultured for three days, and the medium was collected and designated adipocyte- or SV cell-conditioned medium. SV cells from interscapular adipose tissue
from 10-day-old hamsters (A,D) or 6-month-old hamsters (B,E), and inguinal adipose tissue of 10-day-old hamsters (C) were cultured without adipogenic induction
cocktail treatment in culture media containing the adipocyte- (A-C) or SV cell-conditioned medium (D,E) at the indicated ratio. The expressions of Ucp1 and marker
genes of adipogenesis or adipocyte were measured after the 3-day culture. The expression of each gene was normalized to the expression of Actb and expressed
relative to the value of the control interscapular SV cells from 10-day-old hamsters. Values represent means ± standard error for four independent experiments.
Different letters indicate significant differences (p < 0.05) between groups. The mean Ct values in the control group are shown in parentheses.

(Figure 6C), suggesting that p38 MAPK pathway was primarily
activated by BMPs at this time point. To examine the role of
BMP-induced activation of p38 MAPK pathway during BAT
formation process, LDN (3 mg/kg) was injected daily to 5-
day-old hamsters for 5 days. At 10 days of age, interscapular
adipose tissues of control hamsters consisted of brown adipocyte
progenitors and white adipocytes (Figure 6D). In contrast,
interscapular adipose tissues of LDN-treated hamsters were filled
with white adipocytes and small number of progenitors were
observed at the edge of the tissue. Ucp1 mRNA expression
was significantly reduced by the LDN treatment, indicating that
BMPs – ALK 2/3 – p38MAPK pathway is critical for the BAT
formation in hamsters.

DISCUSSION

In hamsters, BAT postnatally develops by conversion from
WAT. During this process, progenitors proliferate to increase
their number to replace whole tissue, simultaneously with white
adipocyte disappearance, and then differentiate into brown
adipocytes (Okamatsu-Ogura et al., 2018). In this study, we
investigated the role of the interaction between progenitors and
adipocytes in the BAT formation process. First, we established a
primary culture of SV cells isolated from interscapular adipose
tissue from 10-day-old pups, which consisted of progenitors
and white adipocytes. Interestingly, SV cells spontaneously
differentiated into brown adipocytes expressing the brown

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 July 2021 | Volume 9 | Article 698692

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-698692 July 1, 2021 Time: 12:56 # 8

Mae et al. Cell-Cell Interaction Regulates Brown Adipogenesis

FIGURE 5 | Transcriptome analysis of interscapular SV cells and adipocytes. Stromal–vascular (SV) cells and adipocytes were fractionated by centrifugation after
collagenase digestion of the adipose tissues of 10-day-old hamsters. mRNA-seq analysis was performed to identify differentially expressed genes in the SV cells
from interscapular (Int) adipose tissues and adipocytes (Adip) from both the interscapular and inguinal (Ing) adipose tissues (A,B). Genes encoding proteins classified
as “cytokines” or “growth factors” were extracted, and the number of genes highly expressed in each cell type is shown in the Venn diagram (A) and heatmap (B). In
heatmap, the log values of fold changes compared to inguinal adipocytes (the Int-SV and the Int-SV/Int-Adipo groups) or interscapular SV cells (the Int-Adip/Ing-Adip
and the Ing-Adipo groups) are shown. (C) The expression of genes encoding proteins belonging to the BMP family in Int-SV group were analyzed by real-time PCR.
The expression of each gene was normalized to the expression of Actb and expressed relative to the value of the adipocyte fraction. Values represent
means ± standard error for four independent experiments. Asterisks indicate significant difference (p < 0.05) between groups. The mean Ct values in the SV cells
are shown in parentheses. (D) Gene enrichment analysis was done using a set of genes that was highly expressed in SV cells compared with adipocytes.
Significantly enriched pathways with a GO term of “signaling” were extracted.

adipocyte marker, Ucp1. Generally, adipose tissue-derived SV
cells exhibit a fibroblast-like morphology in vitro, and treatment
with adipogenic induction cocktail such as dexamethasone
and insulin are required for adipogenesis. Indeed, spontaneous
differentiation was not observed in SV cells from adult hamsters
where BAT formation had already been completed. Therefore,
the spontaneous differentiation of SV cells from developing

hamsters indicates that the progenitors have a high potential for
differentiation compared with those from adult hamsters.

It is also possible that differentiation of the progenitors was
stimulated by another mechanism. Consistent with this, the
interscapular SV cell-conditioned medium increased expression
of Ucp1 in a dose-dependent manner, suggesting that SV
cells secrete some factor(s) that induces the differentiation
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FIGURE 6 | Effect of BMP signaling inhibition on postnatal development of brown adipose tissue in hamsters. (A) The mRNA expression of BMPs in interscapular
adipose tissue of 7- to 16-day-old hamsters were analyzed by real-time PCR. The expression of each gene was normalized to the expression of Actb and expressed
as mean values ± standard error for four independent experiments. Asterisks indicate significant differences (p < 0.05) between groups. The mean Ct values in Day
7 are shown in parentheses. (B) Phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), SMAD1/5, and ERK in interscapular adipose tissue of 7- to
13-day-old Syrian hamsters were analyzed by Western blotting. Representative images are shown. Graphs show mean values ± standard error for four independent
experiments. Asterisks indicate significant differences (p < 0.05) between groups. (C) LDN-193189 (LDN; 3 mg/kg), an inhibitor of type I BMP receptor, was injected
to 10-day-old hamsters and interscapular adipose tissue was collected 30 min later. Phosphorylation levels of p38 MAPK and SMAD1/5 were analyzed by Western
blotting. Graph shows mean values ± standard error for four independent experiments. Asterisk indicate significant differences (p < 0.05) compared to the control
group. (D) LDN (3 mg/kg) was injected daily to 5-day-old hamsters for 5 days. Histological images of interscapular adipose tissues of 10-day-old hamsters show
area of clusters of progenitors surrounded by white adipocytes in the control group, whereas the tissue was primarily composed of white adipocytes and small
number of progenitors were observed at the edge of the tissue in the LDN-treated group. The expression of Ucp1 was measured and normalized to the expression
of Actb and expressed relative to the value of the control group. Values represent means ± standard error for six and eight samples for the control and the LDN
group, respectively. Asterisk indicate significant differences (p < 0.05) compared to the control group.

of progenitors in an autocrine manner. Interestingly, the
interscapular SV cell-conditioned medium did not affect the
expression of marker genes of adipogenesis or mature adipocytes.
It is possible that factors secreted from SV cells enhances
brown adipogenic program, but not adipogenesis itself, in
progenitors. Since SV cells include several types of cells
in addition to progenitors, such as endothelial or immune
cells (Machida et al., 2018), it is unclear which type of cell
secretes a stimulating factor for brown adipocyte differentiation.
It has been reported that paracrine and endocrine factors,
such as IGF-1 (Boucher et al., 2016), FGF-1 (Jonker et al.,

2012), and FGF-10 (Sakaue et al., 2002), control adipose
tissue development. Macrophages are also reported to be
involved in beige adipocyte differentiation (Fischer et al., 2017;
Machida et al., 2018), although the mechanism is controversial
(Fischer et al., 2017; Boulet et al., 2020). Endothelial cells
secrete platelet-derived growth factor (PDGF) that induces
differentiation of beige adipocyte progenitors by binding to
its receptor, PDGFRα (Seki et al., 2016). Thus, it is likely
that the local environment is important for regulating brown
adipogenesis. Of note, the promoting effect of the conditioned
medium on brown adipocyte differentiation was not observed
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in SV cells isolated from adult hamsters. Thus, SV cells secrete
promoting factors; however, the high adipogenic potential of
progenitors is also indispensable for their action. Otherwise,
the expression of receptors for these factors would change
depending on growth.

To explore the factors secreted from SV cells, mRNA-seq
analysis was conducted. Nineteen genes were highly expressed in
interscapular SV cells compared with interscapular or inguinal
adipocytes. Of these, three genes encoding BMP family proteins,
BMP3b, BMP5, and BMP7, were identified. BMPs belong to the
TGFβ family and are known to be involved in adipose tissue
development and adipogenesis (Blazquez-Medela et al., 2019)
by activating intracellular signaling pathways, such as SMAD
and MAPK (Jia and Meng, 2021). BMPs have been classified
into several subgroups, BMP2/4, BMP5/6/7/8, BMP9/10, and
BMP12/13/14, and show distinct effects on adipocytes (Blazquez-
Medela et al., 2019): BMP2 and BMP4 are reported to be
involved in white adipogenesis (Guiu-Jurado et al., 2016; Modica
et al., 2016; Denton et al., 2019), whereas BMP6, 7, and 8B are
associated with brown adipogenesis. For example, BMP6 induces
brown adipogenesis from skeletal muscle precursor cells (Sharma
et al., 2014), whereas BMP8b is secreted from brown adipocytes
and promotes thermogenesis through autocrine effects on brown
adipocytes (Whittle et al., 2012). BMP7 treatment induces the
commitment of mesenchymal stem cells to the brown adipogenic
lineage (Tseng et al., 2008), and the deletion of the Bmp7
gene in mice resulted in defective BAT formation (Tseng et al.,
2008). The role of BMP5 and BMP3b in brown adipogenesis
is unknown so far, although it was reported that BMP3b is
highly expressed in preadipocytes and suppresses adipogenesis
in 3T3-L1 pre-white adipocytes (Hino et al., 2012). In this
study, enrichment analysis of highly expressed genes in SV
cells revealed that the BMP and MAPK pathways, both major
signaling pathways of BMPs, were activated in interscapular SV
cells, and phosphorylation of SMAD 1/5 and p38 MAPK was
detected in interscapular adipose tissue during BAT formation.
Furthermore, treatment of developing hamsters with LDN,
which inhibits BMP type 1 receptors ALK2 and 3, caused
a significant reduction of p38 MAPK phosphorylation and
drastically suppressed the BAT formation. Collectively, these
results indicate that interscapular SV cells of developing hamsters
secrete BMPs to induce differentiation or enhance commitment
of brown adipocyte progenitors.

In contrast to the role of SV cells, spontaneous differentiation
of progenitors was suppressed by co-culture with white
adipocytes. Adipocytes share cytoplasm and signals through
gap junctions (Zhu et al., 2016); however, a direct interaction
between adipocytes and progenitors is not required because the
inhibition of spontaneous differentiation was also observed after
the addition of adipocyte-conditioned medium. These results
suggest that interscapular adipocytes, but not inguinal adipocytes,
from developing hamsters secrete some factor(s) that suppress
the differentiation of the progenitors. However, no candidate
was identified in the RNA-seq analysis with criteria for highly
expressed genes in interscapular adipocytes compared with both
interscapular SV cells and inguinal adipocytes. Recently, it has
been reported that adipocytes secrete not only peptides, but also

lipid molecules called “lipokines” (Li et al., 2020) or metabolites
called “metabokines” (Whitehead et al., 2021). In addition,
adipose tissues secrete vesicles that contain and deliver miRNA
or enzymes to other cells or tissues (Thomou et al., 2017; Yoshida
et al., 2019). Thus, it is plausible that the suppression factors
secreted from adipocytes are non-protein factors, although there
is another possibility that the factors are protein but cannot
be identified by transcriptome analysis because the regulation
of translation or secretion of the protein is different between
interscapular adipocytes and SV cells or inguinal adipocytes in
spite of the similar mRNA level. The spontaneous differentiation
of progenitors in vitro that we observed in this study may result
from their separation from surrounding white adipocytes, which
inhibit differentiation. Of note, the Ucp1 expression levels in the
interscapular adipocytes from 10-day-old hamsters were as low
as that in SV cells, indicating that interscapular adipocytes at this
age were white rather than brown adipocytes.

A limitation to this study is that we used SV cells that
contain many cell types. Therefore, it is unknown which types
of cells secrete the factors that regulate adipogenesis and exhibits
activated BMP and MAPK pathways. Indeed, the factors highly
expressed in SV cells include VEGF-D and nerve growth factor,
which induce proliferation and differentiation of endothelial cells
and neurons (Chaldakov et al., 2009; Herold and Kalucka, 2020).
BAT is highly vascularized and innervated with sympathetic
nerves, both of which are indispensable to the thermogenic
function of BAT (Xue et al., 2009; Blaszkiewicz et al., 2019).
The BMP pathway plays an important role in the adult vascular
endothelium and promotes angiogenesis (Dyer et al., 2014), and
BMP8b secreted from brown adipocytes enhances sympathetic
innervation and vascularization (Dyer et al., 2014) in addition to
its effects on brown adipocytes (Pellegrinelli et al., 2018). Indeed,
BAT formation in hamsters is also accompanied with sympathetic
innervation and vascularization (Okamatsu-Ogura et al., 2018;
Nagaya et al., 2019). Further experiments are required, for
example, the purification of the progenitors using a cell surface
marker protein, such as monocarboxylate transporter 1 (Iwanaga
et al., 2009; Okamatsu-Ogura et al., 2018).

In this study, we found that the differentiation of brown
adipocyte progenitors is positively and negatively regulated by
the factors secreted from SV cells and adipocytes, respectively.
It is possible that progenitors proliferate within the area of
their clusters because surrounding adipocytes inhibit their
differentiation. Disappearance of surrounding adipocytes leads
to the release from their inhibition and may proceeds the
progenitor differentiation into brown adipocyte. Although
the mechanism of adipocyte disappearance is unknown, we
previously showed that there was no evidence for apoptosis,
and direct conversion of adipocytes from white to brown was
indicated (Okamatsu-Ogura et al., 2018). In either case, this
study suggests that adipocyte disappearance is a crucial event
for initiating progenitor differentiation. In addition, an increase
in the number of progenitors by proliferation may also enhance
their differentiation through secretory factors. Collectively, this
study suggests the important role of local cell–cell interactions
through secretory factors and changes in cell population during
BAT formation in Syrian hamsters. It is unclear if such
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cell–cell interactions also contribute to BAT development in other
mammals. In mice, white adipose tissue develops after birth;
however, adipocytes containing large unilocular lipid droplets
were observed in the BAT at birth (Iwanaga et al., 2009).
Beige adipogenesis may be more susceptible to the factors
secreted by surrounding white adipocytes. In the past decade,
the rediscovery of metabolically active BAT using radionuclide
imaging techniques in adult humans has dramatically accelerated
translational studies of BAT in health and disease (Saito et al.,
2020). Since human BAT is a mixture of classical brown and beige
adipocytes (Wu et al., 2012; de Jong et al., 2019) and surrounded
by white adipocytes in most cases (Saito et al., 2009; Zingaretti
et al., 2009), the regulation of adipogenesis through cell–cell
interaction may be important. Further studies are required to
understand adipose tissue biology, and hamsters may represent
a unique model for such investigations.
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