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Abstract: With the completion and near completion of many malaria parasite genome-sequencing projects, efforts are 

now being directed to a better understanding of gene functions and to the discovery of vaccine and drug targets. Inter- and 

intraspecies comparisons of the parasite genomes will provide invaluable insights into parasite evolution, virulence, drug 

resistance, and immune invasion. Genome-wide searches for loci under various selection pressures may lead to discovery 

of genes conferring drug resistance or encoding for protective antigens. In addition, the Plasmodium falciparum genome 

sequence provides the basis for the development of various microarrays to monitor gene expression and to detect nucleo-

tide substitution and deletion/amplification. Genome-wide profiling of the parasite proteome, chromatin modification, and 

nucleosome position also depend on availability of the parasite genome. In this brief review, we will highlight some re-

cent advances and studies in characterizing gene function and related phenotype in P. falciparum that were made possible 

by the genome sequence, particularly the development of a genome-wide diversity map and various high-throughput 

genotyping methods for genome-wide association studies (GWAS). 
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MALARIA PARASITES AND GENOMES 

 Malaria is one of the most important tropical parasitic 
diseases in humans, causing great morbidity and mortality in 
many developing countries. Approximately 300–500 million 
clinical cases and ~1 million deaths are reported each year 
[1]. Human malaria is caused by five species of the Plasmo-
dium parasites, namely Plasmodium falciparum, Plasmo-
dium vivax, Plasmodium ovale, Plasmodium malariae, and 
Plasmodium knowlesi [2]. Among these, P. falciparum 
causes the most serious forms of the disease. The life cycle 
of the malaria parasite involves multiple tissues and different 
stages (sexual and asexual) inside two distinct hosts, mosqui-
toes and humans. Within its complicated life cycle, the para-
site has a diploid genome for a short period of time during its 
development in the mosquito vector and has a haploid ge-
nome throughout the majority of its life cycle. The haploid 
parasite is amenable to the application of many genetic and 
genomic tools that play an important role in functional ge-
nomics research. 

 P. falciparum has 14 chromosomes containing ~23 mil-
lion base-pair nucleotides with high AT content (~82%) and 
is predicted to have approximately 5,500 genes [3-5]. The 
number of protein-coding genes in P. falciparum is compa-
rable to those in free-living yeasts, but the latter organism 
has a considerably smaller genome in comparison to P. fal-
ciparum. In addition to differences in coding capacity, the  
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P. falciparum genome also has a greater number of hypo-
thetical proteins (~60%) with limited homology to genes 
with known functions; the functions of these proteins are 
therefore unknown. Additionally, approximately 1/4 of the 
current gene models in the P. falciparum genome database 
may contain errors [6,7]. 

 Various genomic approaches have been applied to define 
possible gene functions since the completion of the P. falci-
parum genome sequencing project in 2002 [5] (Fig. 1), and 
significant progress has been made. Here we briefly review 
some of these developments, focusing on progress in genetic 
mapping using high-throughput genotyping. 

GENOME DIVERSITY AND GENETIC MAPPING 

 Genetic diversity is considered to contribute to the major-
ity of phenotypic differences; therefore the function of a 
gene can be inferred either from the linkage or association of 
genetic polymorphisms to differences in phenotypes [8,9]. 
Genetic crosses have been successfully applied to identify 
genes in P. falciparum involved in drug resistance, such as 
pfcrt in chloroquine (CQ) resistance [10-12], pfdhfr in 
pyrimethamine resistance [13], and most recently pfrh5 in 
determination of the species-specific pathway of P. falcipa-
rum invasion [14]; however, the cost and intensive lab work 
of this approach have limited its application for larger-scale 
functional analysis in human malaria parasites. 

 With multiple technologic advances, particularly devel-
opment of high-throughput genotyping since the publication 
of the P. falciparum genome, the genetic markers used for 
mapping purposes in P. falciparum have shifted from the 
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Fig. (1). Genetic mapping, comparative genomic analysis, and combination of transcriptomic, epigenomic and proteomic approaches can play 

important roles in understanding gene functions in P. falciparum.  

a. Sequence analysis to identify genetic polymorphisms; b. sequence comparison to search for homolog genes or elements; c, microarray 

chips to evaluate the gene expression at mRNA level; d, e. analysis of different phenotype and genotype data to locate candidate genes/loci 

associated with drug resistance and other traits; f, g. population genetic analysis to detect genetic loci under selection or with elevated recom-

bination frequency; h. protein expression analysis and association with developmental stages; and i. predicated functions of candidate genes 

can be studied using genetic knock-out and other methods.  

microsatellite (MS) to single nucleotide polymorphism 
(SNPs). A project of systematic identification of SNP mark-
ers in the P. falciparum genome was initiated approximately 
8 years ago [15,16]. By resequencing approximately 20% of 
the genome from four parasites (HB3, Dd2, 7G8, and D10) 
that originated from different geographic locations, ~ 4,000 
SNPs were identified after alignment of the sequences with 
that of 3D7 that was available in the public databases. With 
the joining of two groups from major sequencing centers at 
the Broad Institute and the Wellcome Trust Sanger Institute, 
more parasite genomes have been re-sequenced, and a much 
larger data set is now available [17,18]. Currently, approxi-
mately 180,000 SNPs have been identified from 18 full or 
partially sequenced P. falciparum strains (http://www.ncbi. 
nlm.nih.gov/projects/SNP/), although some of the SNPs 
could be errors from sequence alignments that required fur-
ther verification. Additional strains from global populations 
are being sequenced using parallel sequencing, which will 
provide information for better understanding of parasite ge-
nome diversity, population structure, and gene functions 
[19]. 

 In addition to the resequencing approach, high-density 
tiling arrays have also been developed to study gene expres-
sion and genome diversity in malaria parasites [20-23]. Nu-
cleotide change—including nucleotide substitution, deletion, 
and insertion—results in a reproducible loss or reduction of 
hybridization signal and therefore allows identification of the 
region with genetic changes. Several studies have used mi-
croarrays to detect nucleotide substitution and copy number 
variation (CNV) [20,24]. Approximately 20,000 single–

feature polymorphisms (SFPs) from 14 field isolates and 
laboratory lines were identified using an Affymetrix array 
containing 298,782 oligonucleotide probes [20]. A similar 
study using a higher-density array (PFSANGER array) 
containing 2.5 million probes also detected more than 40,000 
SFPs from five P. falciparum isolates [21]. Moreover, 
high-throughput SNP typing arrays have been developed for 
studying parasite population and genetic mapping. Two dif-
ferent platforms are currently available: one utilizes a stan-
dard Affymetrix hybridization array [27], and another is 
based on molecular inversion probe (MIP) technology [25]. 
Both chips can interrogate ~3000 SNPs and are being up-
graded to larger-scale chips that can detect more SNPs. In-
deed, a limited numbers of upgraded MIP array chips con-
taining ~8000 SNPs is currently available for public uses at 
MR4 (http://www.mr4.org/). The Affymetrix standard hy-
bridization chip has been applied to evaluate linkage dise-
quilibrium (LD) and natural selection near the pfcrt loci on 
chromosome 7 in parasite populations from different conti-
nents [24], and the MIP array has been used to genotype 
parasite isolates that have different phenotypic variation. The 
genotypic data obtained from the MIP array was applied to 
scan the parasite genome for population recombination 
events, recent positive selection signatures and association of 
genetic loci with multiple drug-resistant phenotypes in P. 
falciparum [25]. Undoubtedly, microarrays will play an im-
portant role in studying parasite genomes and in genetic 
mapping in the near future. 

 Significant insights have been gained in the population 
structure of malaria parasites as well as mapping candidate 
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genes using currently available SNPs. Population structure or 
admixture can potentially lead to both false-positive and 
false-negative results in association studies; thus, structure 
analysis should be investigated prior to an association study. 
Analysis of SNPs from chromosome 3 among 99 globally 
collected parasites showed that malaria parasites could be 
clustered into different major groups according to their geo-
graphic origins independent of time of collection [26]. Simi-
lar results were also obtained in a study using the Affymetrix 
hybridization SNP array, which showed that continental 
boundaries between parasite populations gave rise to most 
population structure [27]; however, caution should be exer-
cised in interpreting population structure results when using 
markers that are likely under selection. For example, SNPs 
from 49 transporter genes in P. falciparum, many of which 
were likely under drug selection, clustered African parasites 
into two groups according to parasite response to CQ [26], 
whereas SNPs in the gene encoding apical membrane anti-
gen 1 (pfama-1), a target of host immunity, grouped para-
sites into six populations that were independent of geo-
graphic origin [28]. Therefore, results of population structure 
analysis will be influenced by the type and nature of genetic 
marker used. 

 Recombination can play an important role in shaping the 
parasite genome. For example, recombination changes the 
size of the LD region (or haplotype block) in the genome and 
generates new parasite variants that may evade host immu-
nity. Locating recombination hotspots or coldspots in the 
genome could therefore provide insight into genome evolu-
tion and parasite transmission dynamics. Studies of single 
chromosome [26] as well as whole genome [25] showed that 
recombination hotspots were located largely at the ends of 
the chromosome that contains many multifamily genes such 
as var, rifin, and stevor. Many of these recombination hot or 
cold spots appeared to be conserved among parasite popula-
tions, although the population recombination rate varied 
greatly, ranging from ~400/mb in American parasites to over 
10

5
/mb in African parasites. Variation of recombination rate 

in different populations has been shown to affect the size of 
LD and haplotype blocks in the genome and therefore should 
be considered in the design of any association studies [26]. 

 Another important source of information to help define 
gene function is determining genetic loci that are under re-
cent positive selection. As shown in the human genome, 
positively selected genes can be classified into groups by 
broad biologic processes of gene function such as gameto-
genesis, spermatogenesis, fertilization, metabolism of carbo-
hydrates, lipids, and phosphates, and vitamin transport [29-
31]. For malaria parasites, systematic evaluation of selection 
have been performed at some candidate genetic loci associ-
ated with drug response, such as pfcrt [32] and dhfr [33], as 
well as at the whole genome level [25]. As expected, genes 
that confer drug resistance are under strong positive selec-
tion, although the strength of selection may vary among dif-
ferent geographic samples. For example, a ~200-kb region 
containing pfcrt was shown to be under positive selection in 
a population isolated from Africa and Southeast Asia [32], 
whereas only ~70 kb was under such selection in a Laotian 
parasite population [33]. Interestingly, several novel genetic 
loci, including ABC transporters, an iron transporter, a 
member of SURFIN and some conserved Plasmodium pro-

teins, were found under significant positive selection by ge-
nome-wide scan [25]. In addition to drug selection, host im-
munity is also a strong force in shaping the parasite genome, 
such as generation of polymorphisms in antigenic gene fami-
lies (diversifying selection). Therefore, screening of highly 
polymorphic genes in the P. falciparum genome may lead to 
discovery of novel vaccine candidate genes [34], although 
polymorphism in vaccine candidates may also pose some 
challenges for vaccine development. 

 In addition to SNP markers, CNV can also be informa-
tive in characterizing gene functions. Copy number changes 
have been linked to various diseases or biologic processes 
and can contribute to phenotypic variation in many organ-
isms [35,36]. In P. falciparum, recent studies have shown 
that amplification of pfmdr1, pfgch1, and pfdxr may be im-
portant for parasite resistance to mefloquine, antifolate 
drugs, and fosmidomycin, respectively [20,24,37,38]. 

 To date, genome-wide analyses of genetic diversity in P. 
falciparum has led to identification of several candidate 
genes or loci for novel vaccine and drug targets. It is ex-
pected that many more such loci will be discovered in the 
near future with the increasing availability of phenotypic and 
genomic data. In particular, the differences in parasite re-
sponses to larger number of chemical compounds can be 
identified as phenotypes for mapping parasite targets of the 
chemical compounds and for inferring gene functions [39]. 

COMPARATIVE GENOMICS AND HOMOLOGOUS 

GENE SEARCHES 

 Along with the dramatic efforts being put forth to search 
for genomic diversity, comparative analysis of the parasite 
genome sequences to discover homologous genes plays an 
important role in elucidating the functions of many predicted 
proteins. Searches based on biased G/C content and RNA 
folding potential have led to identification of a large number 
of noncoding RNA (ncRNA), including splicing RNA, small 
nucleolar RNA (snoRNA), and telomerase RNA in P. falci-
parum [40,41]. In addition to ncRNA with known functions, 
several candidate genes appear to be specific to Plasmodium 
spp. and lie adjacent to members of the var gene family, pos-
sibly contributing to the control of allelic expression of this 
multigene family. Alternatively, these genes could be acting 
as recombination hotspots, generating diversity that can con-
tribute to immune evasion. Although no parasite-encoded 
microRNA (miRNA) genes have been found in P. falcipa-
rum to date and the function of miRNA-mediated control on 
gene expression in malaria parasites remains controversial, 
analysis of potential RNA folding using RNAmicro [42] 
revealed five novel ncRNA that might act as precursors for 
miRNA [41]. Further studies are needed to illustrate the role 
of these ncRNA in gene regulation. 

 Another example of the use of homology search to char-
acterize gene functions is that of the erythrocyte binding-like 
(EBL) and reticulocyte-binding-like protein (RBL) gene 
families that are involved in parasite invasion of erythro-
cytes. Both of the gene families consist of multiple members 
located on different chromosomes of P. falciparum or other 
Plasmodium spp. Characterization of these families has been 
greatly enhanced by use of homology searches among differ-
ent Plasmodium spp. A detailed summary of the functional 



282    Current Genomics, 2010, Vol. 11, No. 4 Mu et al. 

characteristics of these genes can be found in excellent re-
views elsewhere [43-45]. More recently, a gene family of 
intramembrane serine proteases encoded by eight different 
orthologous genes was discovered in the P. falciparum ge-
nome [46]. This gene family, termed rhomboid-like proteins 
(ROMs), is likely involved in host-parasite interaction and is 
present in the genomes of all Apicomplexan parasites whose 
genomes have been sequenced. Other families of essential 
proteases, including those implicated in parasite egress from 
the erythrocyte such as falcipain-2, plasmepsin II, and a fam-
ily of putative papain-like proteases termed SERA, have 
been identified using homology search [47,48]. These prote-
ases may provide key targets for development of new che-
motherapeutic treatment strategies. 

 Comparative genetics have also been important in locat-
ing genetic regulatory elements, particularly the apicom-
plexan AP2 (ApiAP2), in the P. falciparum genome [49,50]. 
These discoveries have drastically changed the landscape of 
transcriptional regulation in P. falciparum. More than 20 
ApiAP2 genes have been identified on different chromo-
somes, all of which were previously annotated as hypotheti-
cal proteins [51]. Detailed investigation of two members of 
this family, PF14_0063 and PFF0200c, suggests an essential 
role in regulating parasite development [50]. These data, 
combined with large catalogs of potential cis-acting se-
quences obtained from in silico discovery of transcription 
regulatory elements [52], have enhanced our understanding 
of the role of transcriptional regulation in P. falciparum. 

 Comprehensive comparative genomics have opened the 
door for other newly emerging fields in P. falciparum, such 
as secretome and epigenome research. Through close exami-
nation of known exported proteins in P. falciparum, con-
served motifs termed Plasmodium export element (PEXEL) 
and vacuolar transport signal (VTS) have been identified 
from the parasite genome [53,54]. These elements are neces-
sary for export of hundreds of proteins from the parasites 
that serve to remodel the host erythrocyte [53-57]. The role 
of these unique modifications on the infected erythrocyte has 
already been examined by genetic knockout and functional 
screens [55]. Molecules with secretion signals might be 
evaluated for antivirulence targets, as some of these genes 
are important in knob formation and/or involved in the in-
creased rigidity of the infected erythrocytes [55]. A central 
portal through which most or all of these exported proteins 
are transported through the erythrocyte has been recently 
characterized [58]. Further investigations into the functions 
of these exported proteins are needed to gain additional in-
sight into the P. falciparum secretome. 

VARIATION IN GENE EXPRESSION AT mRNA AND 
PROTEIN LEVELS 

 Identification of the genes involved in epigenomic con-
trol in the P. falciparum genome, such as histone acetylation, 
methylation, and phosphorylation [59-61], has brought a new 
level to our understanding of parasite biology and the dis-
covery of new drug targets. 

 Gene functions can also be predicted by monitoring the 
dynamic of mRNA or protein expression in combination 
with related phenotypes or developmental stages. Prior to 
availability of the whole genome sequence, methods for 

measuring gene expression level in P. falciparum were 
mostly based on gene-by-gene methods such as northern 
blot, reverse transcriptase-PCR, and complementary DNA 
(cDNA) libraries. Although these methods have contributed 
significantly to our understanding of gene expression and 
function, DNA microarray—which utilizes the genomic se-
quence for designing oligonucleotide probes—becomes the 
favored platform for studying gene expression in malaria 
parasites due to its higher resolution, reproducibility, and 
coverage. A microarray transcriptome analysis identified 
clusters of genes with similar expression patterns that were 
differentially regulated across the life cycle [62]. Further 
analysis using an improved clustering approach called ontol-
ogy-based pattern identification (OPI) in combination with 
evidence-based annotation revealed 320 gene clusters repre-
senting various biologic processes, leading to functional pre-
dictions for hundreds previously uncharacterized malaria 
genes [63-65]. Comprehensive comparison of in vitro 
[52,62,66,67] and in vivo [68] gene expression patterns 
among different parasite isolates as well as expression level 
polymorphisms (ELPs) in a genetic cross [69,70] have al-
lowed identification of hundreds of transcription regulatory 
elements and regulatory hotspots. Interestingly, although 
both in vitro and in vivo experiments demonstrated that gene 
transcription in P. falciparum parasites is rigidly pro-
grammed throughout the erythrocytic cycle, the expression 
profiles showed dramatic differences for parasites grown in 
these two different environments [68]. At least three distinct 
physiologic states, which related to glycolytic growth, star-
vation response, and a general stress response, were found in 
P. falciparum parasites isolated directly from patients; only 
one state could match the in vitro parasite life stage [68]. A 
recent study suggested, however, that the "hidden" state of 
expression might be, in fact, transcripts from gametocytes 
[71]. 

 The determinants of these transcriptional regulations re-
main elusive, although increasing identification of genetic 
regulatory elements and expression quantitative loci (eQTLs) 
has narrowed down the genetic regions for further investiga-
tions. Comparison of the gene expression profile of geneti-
cally modified parasites such as drug-selected [72-74] or 
gene knock-out parasites [75] with their parental wild-type 
parasites will allow identification of genes that interact with 
those functionally modified genes. 

 The mechanism of gene expression variation has been 
linked not only to DNA sequence alterations but also to epi-
genetic modifications and other mechanism in P. falciparum 
[76-78]. The most extensively studied gene family is the var 
gene family, which encodes hypervariable surface antigens 
and displays mutually exclusive expression in infected red 
blood cells [79,80]. Switching of gene expression states from 
active to silent or vice versa may be associated with chroma-
tin modifications [77,81], locations of active genes in the 
nucleus [82,83], and presence of regulatory introns [84,85]. 
Histone acetylation has been associated with gene activation 
[82,83], whereas trimethylation of lysine 9 of histone H3 
(H3K9me3) was found to silent the genes in P. falciparum 
parasites [81,86]. Genome-wide analysis of histone 3 modi-
fication using a chromatin immunoprecipitation (ChIP) assay 
revealed the cycle-regulated H3K4me3 and H3K9ac at asex-
ual developmental stages in P. falciparum [87,88]. Disrup-
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tion of one of the key genes in chromatin modification 
(pfSir2) that encodes a histone deactylase caused changes in 
the H3K9me3 profile, and inhibitors of this enzyme showed 
high potency against cultured P. falciparum parasites in vitro 
[89]. Given the observed differences in the epigenetic code 
compared with all other organisms studied, Plasmo-
dium-specific epigenetic enzyme inhibitors could be ex-
plored for new therapeutic agents against P. falciparum [89]. 

 Gene functions have also been predicted by large-scale 
comparative analysis on the protein expression level in P. 
falciparum. Although it can be difficult to obtain sufficient 
material and to prevent contamination from host cells, two 
large-scale studies using high-throughput proteomics have 
detected many stage-specific predicted gene products consis-
tent with results from transcript profiling studies [90,91]. 
This genomics-based approach has also been widely applied 
in studies of drug targets [92-94], organelle composition 
[95], stage- and sex-specific gene functions [23,96,97], vali-
dation of data from genomic annotation, post-translational 
modifications [98,99]. With the completion of its human and 
insect host genome project, genomic, metabolomic and pro-
teomic analyses of host-pathogen interactions have shed 
light on many malaria genes’ functions [100-102]. This im-
portant research topic has been reviewed elsewhere recently 
[103-105]. Combined transcriptomic, epigenetic, and pro-
teomic data also allowed uncovering regulatory mechanisms 
of gene expression in P. falciparum [23,99]. With the avail-
ability of newer methodologies, analysis of expression varia-
tion at the protein level may permit investigation of protein 
interaction and discovery of targets for new drugs and vac-
cines. 

FUTURE PROSPECTS 

 Functional genomic research in P. falciparum will un-
doubtedly continue to contribute greatly to our battle against 
this deadly parasite. As more phenotypic data become avail-
able, the ability to identify gene function will be greatly en-
hanced by high-throughput, genome-wide approaches. 
High-throughput assays for parasite phenotypes such as drug 
response, variation in invasion efficiency, population expres-
sion profiling, and variation in parasite metabolites can lead 
to gene function assignment with the use of genomic data. 
Moreover, next-generation sequencing methods are emerg-
ing as the dominant genomic technologies and can be ap-
plied in a variety of contexts for functional genomics re-
search, including whole-genome sequencing, targeted rese-
quencing, deep transcriptome analysis to complement mi-
croarray analysis, and other genome-wide approaches. In 
addition, application of novel genetic manipulation tools 
such as transposon mutagenesis (piggyBac) [106] and im-
proved transfection methods [107] will be extremely valu-
able for generating functional mutations and for verifying 
gene functions. 
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ABBREVIATIONS 

cDNA = Complementary DNA 

ChIP = Chromatin immunoprecipitation 

CNV = Copy number variation 

CQ = Chloroquine 

EBL = Erythrocyte binding-like 

ELP = Expression level polymorphisms 

LD = Linkage disequilibrium 

MIP = Molecular inversion probe 

miRNA = microRNA 

MS = Microsatellite 

ncRNA = Noncoding RNA 

OPI = Ontology-based pattern identification 

PEXEL = Plasmodium export element 

RBL = Reticulocyte-binding like protein 

SFP = Single-feature polymorphism 

snoRNA = Small nucleolar RNA 

SNP = Single nucleotide polymorphism 

SP = Sulfadoxine-pyrimethamine 

VTS = Vacuolar transport signal 
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