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Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary
biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence
that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is
expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila.
ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the
founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing
myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects
sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-
expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for
ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally
located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In
addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of
FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by
activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by
its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in
Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1.
The ladybird/Lbx1 gene family appears as a part of an ancient genetic circuitry determining leg-specific properties of
myoblasts and making an appendage adapted for locomotion.
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INTRODUCTION
Skeletal leg musculature is required for walking in all animals, but

the genetic mechanisms that control its development have been

analysed mainly in vertebrates [1–6]. Although much knowledge

has been gained from these studies, little is known about the

mechanisms governing patterning and diversification of leg

muscles, pointing to a need for other model systems to study

these processes. Interestingly, the conserved family of Distal-less/

Dlx homeobox genes was found to be involved in outgrowth of

appendages over a broad spectrum of proteostome and deutero-

stome phyla, suggesting the existence of ancient genetic circuitry

controlling leg development [7–9]. This prompted us to find out

whether the genetic programme governing leg muscle formation,

required for the main biological leg function, which is locomotion,

was under the control of conserved genes. With this aim we

investigated myogenic functions of genes known to control

vertebrate appendicular myogenesis in Drosophila.

In Drosophila leg muscles derive from myoblasts associated with

the leg imaginal disc. The leg disc is a flat epithelial sheet of cells

during the first and second larval instar stages. With the onset of

third instar, though still monolayered, it begins to develop

concentric folds, undergoes cell shape changes, and divides into

the leg disc proper and a proximal region that corresponds to the

ventral thorax/adult body wall. It has been shown that these two

regions have different genetic requirements [10,11]. During the

pupal stage, the disc epithelium telescopes out from its centre and

elongates along the proximal-distal axis to make the slender adult

leg epidermis by cell rearrangement [12,13]. The signalling

pathways and factors that control patterning of leg disc epithelium

have been extensively studied [14–18]. However, the mechanisms

governing the myogenic programme in the developing leg disc

remain largely unknown.

Previous studies indicate that two different developmental

strategies are used during the development of adult Drosophila

muscles, namely muscle template-based myogenesis and de novo

muscle formation. A subset of indirect flight muscles (IFMs), the

dorsal longitudinal muscles (DLMs), uses larval templates for
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formation [19,20], whereas the other set of IFMs, the dorsoventral

muscles (DVMs), the direct flight muscles (DFMs) and leg muscles

develop de novo from a pool of twist-positive precursors of adult

muscles [21,22]. These pathways imply distinct regulatory

mechanisms that control the development of sets of flight muscles

and the muscles of the leg. It has been demonstrated [23–25] that

the homeobox genes cut and apterous (ap) are autonomously

required for the formation of DFMs, whereas vestigial (vg) controls

the formation of IFMs. Besides these intrinsic factors, Wingless

(Wg) signalling from the imaginal disc epithelium contributes to

the functional diversification of myoblasts forming DLMs and

DFMs [25]. The myogenic role of extrinsic Wg is reminiscent of

that of its vertebrate counterpart Wnt6 expressed in the ectoderm

overlying dorsal somites [26,27] and involved in the specification

of myogenic progenitors in the dermomyotome. Interestingly, the

initially distinct genetic pathways underlying template-based and

de novo adult muscle formation in Drosophila converge to activate the

muscle founder cell marker, dumbfounded (duf) [22,28]. During

embryonic myogenesis, segregation of duf-positive muscle founders

is mediated by the Notch pathway [29–31]. They express

a combinatorial code of transcription factors, known as muscle

identity genes, and are thought to carry all the information

required to display unique properties of resulting muscle fibres

[32]. As demonstrated recently by Dutta et al., [33] in adult

thoracic and abdominal myogenesis, Duf is initially activated in all

myoblasts and subsequently founder myoblasts are chosen by Htl-

transduced FGF signals by the up-regulation of Duf in a subset of

myoblasts corresponding to differentiating founders. Duf is down-

regulated in other myoblasts that will become fusion competent

cells. Thus adult Drosophila myogenesis also involves founder

myoblast selection through FGF-dependent signalling. In chick

embryos, the FGF8 and its receptor FREK/FGFR4 were found to

promote muscle differentiation [34], indicating potentially con-

vergent roles for FGF in invertebrate and vertebrate myogenic

programs. In addition, several transcription factors have been

found to control somitic and appendicular myogenesis in

vertebrates [5,27]. One of these genes is the Lbx1, specifically

expressed in appendicular myoblasts and required for their

migration into the limb buds [2,3,35].

Here we show that the invertebrate counterpart of Lbx1, ladybird

(lb), known to specify the identity of a subset of embryonic

Drosophila muscles [36], plays a key role in adult leg myogenesis in

Drosophila. The leg disc associated lb expression is positively

regulated by extrinsic Wg signals and is a key marker for the

appendicular myogenic programme. lb expression precedes that of

duf and coincides with the read-out of FGF signalling DOF. Our

data demonstrate that during the development of adult Drosophila

muscles lb is required for the establishment of morphological,

ultrastructural and functional properties of leg muscles. Thus it is

likely that the ladybird/Lbx1 gene family is part of an ancient

genetic circuitry that makes an appendage adapted for locomotion

through the control of appendicular muscle development.

RESULTS

ladybird early is expressed in leg disc associated

myoblasts
Earlier work [22] showed the dorso-ventral organisation of

Drosophila leg muscles to be similar to that observed in the

vertebrate leg. This suggested that gaining insights into the genetic

control of leg muscle patterning in the fruit fly could improve our

understanding of how appendicular myogenesis is regulated in

general. We found that ladybird early (lbe), an orthologue of a key

regulator of appendicular myogenesis in vertebrates, Lbx1 [27], is

dynamically expressed in myoblasts associated with the leg

imaginal disc proper (Fig. 1, Video S1 and Video S2). As reported

previously [21,22], (see also Fig. 1A) all leg myoblasts express

a bHLH factor Twist (Twi). Initially, at early third larval instar,

Lbe is detected in a small subset of Twi-expressing cells located in

the dorsal femur (arrows in Fig. 1A and B) and giving rise to the

tibia levator muscle (tilm) (Fig. 1C; see also [22] for leg muscle

nomenclature. Most ventrally, Lbe marks individual myoblasts

(arrowheads in Fig. 1A and B) that give rise to the tibia depressor

muscle (tidm) (Fig. 1C). The number of leg myoblasts expressing

Lbe gradually increases (compare corresponding groups of

myoblasts indicated by arrows and by arrowheads in Figs 1B

and 1E), and at the beginning of pupation all of them express at

least a low level of Lbe (Fig. 1D–F0). In contrast, myoblasts

associated with the proximal portion of the leg discs (asterisks in

Fig. 1C, F and G) remain Lbe-negative. To determine the spatial

distribution of Lbe-expressing myoblasts, 3D reconstructions of

several early pupa discs were performed and visualised using

VolocityTM software. The reconstruction of a 0 h APF disc

(Fig. 1F) is shown in Video S1 and Video S2. The 3D analyses

reveal that Lbe-positive myoblasts form spatially restricted groups

of cells lying at highly stereotyped positions that can be correlated

with defined muscles in the adult leg (see schematic, Fig. 1G). This

is particularly obvious in the tibia and femur (Video S1 and snap

shots from the 3D-reconstruction, Fig. 1F9 and F0). In these

segments, at 0 h APF the groups of Lbe-expressing myoblasts are

seen located dorsally and ventrally at positions representing the

levator [talm, tilm] and the depressor (tadm, tidm) muscles.

Interestingly, they lie close to Stripe (Sr)-expressing tendon

precursors (Video S2), highlighting possible interactions with

invaginating internal tendons [22] and their role in the spatial

distribution of myoblasts within the leg segments.

In addition to myoblasts, Lbe was detected in the ventral

portion of the leg disc epithelium and in the Sr-expressing

precursor cells of the long tendon (yellow arrow in Fig. 2E, see also

Video S2).

ladybird is required for the proper patterning and

ultrastructure of leg muscle fibres
Finding that Lbe marks specifically differentiating leg myoblasts

suggested an instructive role in leg myogenesis. To characterise

Lbe functions we undertook to knock down its activity by RNAi.

As the lb locus contains the lbe and functionally redundant ladybird

late (lbl) gene [37–39], we generated UAS-RNAi lines carrying

constructs against both lb genes (see Materials and Methods for

details). One of the generated lines was able significantly to

decrease levels of both Lbe and Lbl proteins (Fig. 2G). To

attenuate lb gene activity in myoblasts, the selected UAS-lbRNAi

line was crossed to an adult myoblast driver 1151-GAL4 [40]

combined with MHCtauGFP [22]. The MHCtauGFP-revealed

muscle pattern clearly showed that the general architecture of leg

muscle fibres devoid of lb function was severely affected (Fig. 2A–F

and Video 3–Video S8). We can distinguish two classes of

phenotypes: i) a mild muscle phenotype (Figs 2B, E, Video S4 and

Video S7), in which the muscle mass and the number of muscle

fibres were only slightly reduced; and ii) a strong lbRNAi

phenotype (Figs. 2C, F, Video S5 and Video S8), in which leg

muscles were significantly smaller and were composed of a reduced

number of fibres. Importantly, in both classes of phenotypes the lb-

deficient muscle fibres were misshapen and adopted irregular

rounded or spiracle-like forms surrounding internal tendons

(compare tadm fibres indicated by arrows and talm fibres

indicated by arrowheads in Fig. 2A and 2B). This was most

Drosophila Leg Myogenesis
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probably due to abnormal growth of myotubes and/or their

impaired ability to recognise epithelial attachment sites. The

reduced number of muscle fibres observed in legs displaying strong

RNAi phenotypes can result from the degeneration of some of the

misshapen myotubes. The loss of leg muscle mass in lb-deficient

flies was the cause of morphological leg deformations most

frequently seen within the femur segment (arrows in Fig. 2E, F).

To test whether the reduced muscle mass could result from

a smaller number of leg myoblasts, we examined Twi expression in

discs from the third instar 1151.lbRNAi larvae. No changes in

the number of Twi-expressing cells were observed [data not

shown], indicating that lb is not involved in myoblast proliferation.

We had previously shown that adult myoblast driver 1151-GAL4

was also expressed in internal tendon precursors of the leg disc

[22]. To rule out any influence of lb attenuation in tendon cells on

the observed muscle phenotypes or any influence of lb attenuation

in myoblast on tendon cell specification, we expressed lbRNAi

using a tendon specific SrGal4;UASGFP and 1151Gal4;UASGFP

strains (Materials and Methods). We did not find any effects on

tendon specification in Stripe.lbRNAi leg discs (data not shown).

This rules out tendon-mediated non-autonomous effect of lb

attenuation on muscle phenotypes. We also found that all tendons

were present in 1151.lbRNAi legs (Fig. S1) ruling out the

possibility of a non-specific effect of lb attenuation on tendon

specification. However, some of the internal tendons appeared

reduced (yellow arrows in Fig. S1) in 1151.lbRNAi animals,

suggesting that their morphogenesis was affected. This is most

probably due to a non-autonomous effect of lb knock-down in

muscles, leading to impaired muscle-tendon interactions, which

are known to be required for final tendon morphogenesis [41].

In addition to morphological defects, RNAi-mediated lb knock-

down induced alterations in the ultrastructure of leg muscle fibres

(Fig. 2H–K). As revealed by electron microscopy analysis, the

number of mitochondria associated with the sarcomeric Z line was

significantly reduced (arrows in Fig. 2H and asterisks in Fig. 2I)

and myofilaments appeared interrupted or irregularly arranged

(arrowheads in Fig. 2I compared with Fig. 2H). Also, a reduced

intensity of electron-dense desmosomes is visible at the junction

between muscle fibres and the internal tendons (compare Fig. 2K

and Fig. 2J). Overall, the observed morphological and ultrastruc-

tural alterations suggest that attenuation of lb may affect muscle

fibre assembly and contractility, leading to reduced leg muscle

performance.

To determine whether increased lb expression could also influ-

ence leg muscle development, we analysed muscle pattern in 1151-

GAL4; MHCtauGFP;UAS-Lbe newborn flies. The 1151-driven

Figure 1. Lbe is dynamically expressed in leg disc myoblasts.
(A–F) Confocal images of leg imaginal discs stained with anti-Twi (A, D and blue in merge C, F), and anti-Lbe (B, E and green in merge C, F) antibodies.
(A–C) Third instar leg imaginal disc. (B) Lbe expression can be seen in subsets of Twi myoblasts, associated with regions of the leg disc that develop
into different segments of the adult leg. Arrows in (B, E) show a group of myoblasts that give rise to dorsal femur muscle, tilm. The arrowheads in (B,
E) point to precursors of ventral femur muscle, tidm. (D–F0) 0 hr APF leg imaginal disc. Myoblasts are regionalised at this stage and are seen at future
muscle-forming sites in adult tibia (tadm, talm), femur (tidm, tilm), trocanter (Tr), coxa (Co). Lbe is expressed in almost all Twist myoblast subsets at
specific sites along the proximal-distal axis in the leg disc proper. Most proximal cells including the dorsal proximal myoblasts (asterisks in C, F) are
devoid of Lbe expression. (F9, F0) Two different views of a 3D reconstruction (see also Video 1S) of the disc presented in (F) showing spatial
distribution of different groups of leg myoblasts. (G) The schematic of (F) showing positions of Lbe-positive myoblasts within the leg segments. Lbe is
also expressed in leg disc epithelium in the ventral region (black asterisks in B, E) and the long tendon (yellow arrow in E). Abbreviations: Ta, tarsus, Ti,
tibia, Fe, femur, see also (22) for muscle nomenclature.
doi:10.1371/journal.pone.0000122.g001
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gain-of-lbe function led to severe defects in the patterning of

dorsally located leg muscles (Fig. 3A–D). The tibia talm muscle

was abnormally shaped (arrows in Fig. 3A, B) and the homologous

levator muscle in the femur [tilm] was completely disrupted

(arrows in Fig. 3C, D and Video S9). A large proportion of dorsally

located femur fibres normally contributing to the tilm muscle were

unable to attach to the tilt tendon, most probably leading to its

degeneration (see Video S9). Instead, they attached on both sides

to the disc epithelium, adopting orientations perpendicular to the

proximal-distal axis. In addition, some ectopic dorsal muscle fibres

were observed in the proximal part of the tibia and femur

(arrowheads in Fig. 3A–D). Thus when over-expressed lbe was able

to influence properties of dorsal rather than ventral muscle fibres,

suggesting that ventral and dorsal myoblasts may have different

requirements for the levels of Lbe protein. To test this possibility

we measured intensity of fluorescence of ventral and dorsal femur

myoblasts from leg discs stained for Lbe (Fig. 3E–G). As shown in

Fig. 3E–G, myoblasts that give rise to ventrally located tidm

muscle express significantly higher levels of Lbe protein than those

growing into dorsal tilm muscle. This observation can explain the

sensitivity of dorsal muscles to increased levels of Lbe, indicating

that proper patterning of leg muscles depends on precise

regulation of lbe expression.

As the total number of myoblasts [data not shown] and muscle

fibres in Lbe GOF (Fig. 3A–D and data not shown) and LOF

(Fig. 2A–F) contexts are similar to that in the wild type we

conclude that Lbe functions to set properties rather than number

of leg myoblasts.

Role of ladybird in leg muscle performance and

mobility of adult flies
Both the RNAi-based attenuation of lb gene activity and the 1151-

targeted over-expression of Lbe resulted in affected locomotion in

surviving adult flies. This prompted us to test the performance of

leg muscles with reduced and forced lb expression. Two different

Figure 2. Effects of RNAi-based attenuation of Lb gene function.
(A–F) Anterior views of tibia (A–C) and femur (D–F) musculature revealed in wild type (A, D) and lbRNAi (B, C, E, F) flies carrying MHC-tauGFP
transgene. (B, E) show mild phenotypes whereas (C, F) show severe lbRNAi phenotypes. 3D reconstructions from confocal scans were used to
generate the presented views (see corresponding 3D videos in Video S3-S8). Muscle fibres from lbRNAi legs are smaller in both ventral (arrows in A–C)
and dorsal (arrowheads in A–C) tibia. General muscle mass appears reduced in tibia (C) and femur (asterisks in E and F). Loss of muscle mass and the
abnormal attachment of muscle fibres to the leg epithelium lead to morphological defects most frequently manifested by bending of the femur
segment (arrows in E and F). Note also the altered shape of muscle fibers in tadm muscles (B, C) and tilm muscle (E). (G) RNAi induced reduction in
Lbe and Lbl protein levels revealed by Western blot using two different anti-Lb antibodies. Note that a low level of Lbe is still detected in embryos
ubiquitously expressing lbRNAi constructs (see Materials and Methods for details). (H, J) Wild type electron microscopy micrographs and (I, K)
micrographs from lbRNAi femur muscles showing (H, I) sarcomeric ultrastructure and (J, K) muscle-tendon junction area. The Z line associated pairs of
mitochondria (dyads, arrows in H) are absent in lbRNAi muscle (asterisks in I) and the few mitochondria still present (arrow in I) appear to have altered
internal structures. Also, myofilaments from lbRNAi sarcomeres are highly disorganised and some of them are disrupted (arrowheads in I). A lower
intensity electron dense desmosomes are detected in muscle-tendon junctions from lbRNAi legs (arrow in K) when compared to the wild type (arrow
in J).
doi:10.1371/journal.pone.0000122.g002
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behavioural assays were performed. In the first one (see Materials

and Methods for technical details) we evaluated the capacity of

male flies to catch, maintain and rotate a small polystyrene ball

(Fig. 4A and Video S10–Video S12). All the wild type flies were

able to catch and maintain the ball at least for 30 s, but some of

the lbRNAi individuals failed to catch it and several of them were

unable to maintain it (compare Wt Video S10 with lbRNAi Video

S11). In ball rotation assay the lbRNAi flies were also significantly

less efficient (Fig. 4A and Video S10, S11). The reduced muscle

performance was consistent with morphological and ultrastruc-

tural alterations observed in leg muscles with attenuated lb

function. Interestingly, the over-expression of Lbe also leads to

dramatic defects in muscle performance. The majority of 1151.

Lbe flies tested were unable to catch the ball, and only a few of

them maintained it for a 30 s period with sporadic rotations

(Fig. 4A and Video S12). We speculate that the inability of

1151.Lbe flies to successfully perform the ball tests may be due to

degeneration of dorsal tendons accompanying the altered leg

muscle pattern.

To determine whether lb induced muscle defects influenced

walking behaviour we performed a ‘‘leg print’’ test (Fig. 4B). Adult

flies walking on a carbon-coated slide leave tracks that can be used

as a read-out of their gait. Wild type flies use an ‘alternating-

tripod’ gait, characteristic of insects walking briskly. This gait

leaves a pattern on the carbon-coated slide that is stereotypic and,

easily recognised, and is shown in (Fig 4Bi). When lb levels are

down- regulated using the UAS-lbRNAi under the control of the

1151-GAL4 driver, a very strong and noticeable difference is seen

in the leg-prints (Fig 4Bii). The legs can be deduced to be

positioned closer to the body axis than in the wild type, and

a shuffling-gait also results in a reduced stride-length. In contrast,

the GOF phenotype that results from the use of the UAS-lbe

under 1151-GAL4 control results in a pattern of leg prints, which

reflect poor co-ordination and a spread-out positioning of the legs

with respect to the body axis.

In some contexts, affects of muscle or tendon anatomy do not

result in any obvious behavioural changes. In other situations,

Figure 3. Differential requirement for Lb in dorsal and ventral
muscles.
(A–D) Muscle phenotypes observed in (A, B) tibia and (C, D) femur after
1151-Gal4 driven overexpression of Lbe. Anterior (A, C) and posterior (B,
D) views from 3D reconstructed confocal scans. Muscles are visualised
by MHC-tauGFP. Reconstructions were performed using Volocity 3.0
software (Improvision); (see also corresponding 3D Video S9). Arrows in
(A–D) point to abnormally shaped dorsal levator muscles and the tibia
reductor muscle. Within the femur (C, D) dorsal muscle fibres are
misoriented and attached on both sides to the epithelium. Arrowheads
in (A, C, D) indicate ectopically located muscle fibres. Within the
proximal femur (C, D) ectopic fibres form a condensed muscle mass. (E,
F) A 0 h APF leg disc showing Lbe expressing groups of myoblasts
(arrowheads). (E) Myoblasts that give rise to dorsal (tilm) and ventral
(tidm) femur muscles are outlined. (G) Intensity of fluorescence
measured within the outlined areas using Fluoview software (Olympus).
Note that ventrally located femur myoblasts express significantly higher
levels of Lbe than those in the dorsal region.
doi:10.1371/journal.pone.0000122.g003

Figure 4. lb is required for proper leg muscle performance and
walking behaviour
(A) The ball test (see Videos S10–S12). The abilities of flies to catch,
maintain and rotate a polystyrene ball were tested. The number of
individuals tested (males only) is indicated in upper case after the
genotype. Each male performed each of the tests three times. The
number of asterisks (max. 5) illustrates the average performance. Notice
that the RNAi-based attenuation of lb leads to a reduced ability to catch
(about 20% of failures) and especially to maintain the ball (about 60% of
failures) with slower and irregular rotations. Defects in catching,
maintaining and rotating the ball were comparatively stronger in flies
overexpressing lb. About 60% of flies were unable to catch the ball and
more than 80% lost it in less than 30 s.
(B) The ‘leg-print’ test for walking pattern. Two-day old flies were
allowed to walk on a carbon-soot coated glass slide and their tracks
were examined. The direction of movement is towards the top of each
panel. The imprints made by the first (1) second (2) and third leg (3) of
the left hemisegment are marked in each panel. Wild type flies (B9)
show a stereotypic pattern of prints, a consequence of a ‘tripod’ gait. In
male flies where UAS-lbRNAi expression is under the control of the
1151GAL4 driver (B0) the legs are held closer to the body and the leg-
print is the consequence of a shuffling gait. In male flies where UAS-lbe
expression is under the control of the 1151GAL4 driver the pattern of
prints (B90) illustrates a bias towards one side, a consequence of the legs
being abnormally positioned with respect to the body.
doi:10.1371/journal.pone.0000122.g004
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strong behavioural consequences are seen when sensitive compo-

nents of the motor network are disrupted. Hence sensitive but

readily performed behavioural assays are valuable in determining

the contribution of specific components to normal motor function.

In this case, given the expression of lb both in myoblasts and

during morphogenesis, behavioural assays additionally allow the

use of genetics to isolate interacting genes as well as alleles that

may allow the dissection of the roles of lb between muscle

specification and morphogenesis.

Extrinsic Wingless signalling is required for lbe

expression in leg myoblasts
Wingless signalling plays a pivotal role in specification of the

proximal-distal and dorsal-ventral axes of the leg disc [15,42–44],

and has also been reported to control muscle development in the

thoracic portion of the wing disc [25]. Also, in the embryo Wg

promotes myogenic differentiation of mesodermal cells and is

required for Lb expression in muscle and cardiac cells [36,38]. We

therefore wondered whether Wg regulated Lbe in the leg disc

myoblasts. As stated above (see also Fig. 5, asterisk), Lbe is

excluded from the myoblasts populating the most proximal part of

the leg disc, known to contribute to the ventral thorax. These

myoblasts are located far from Wg-expressing ventral epithelium

(see schematic in Fig. 5K), suggesting that they do not receive

enough Wg to express Lbe. Among proximal myoblasts the most

distant with respect to the source of the Wg signal are myoblasts

populating the dorsal-proximal area, the stalk. As shown in Fig. 5A

(yellow arrowhead) and 5C, the stalk myoblasts express a high level

of Vestigial (Vg), which is also expressed at a lower level in some

other proximal leg myoblasts (arrowhead in Fig. 5A). To test

whether Wg signalling regulates Lbe expression during appendic-

ular myogenesis, we used 1151-GAL4 driver to over-express

a dominant negative form of Wg effector dTCF or a constitutively

active form of b-catenin/Armadillo. The attenuation of Wg

signalling led to a dramatic fall in Lbe expression in myoblasts

(compare Figs 5B, C with 5E, F), whereas ectopic activation of the

Wg pathway induced Lbe expression in proximal myoblasts

associated with the stalk (Fig. 5H, I), normally expressing Vg. Thus

Wg signals from the ventral epithelium do indeed regulate Lbe

expression in leg myoblasts and are most probably the origin of

differential Lbe levels in ventral versus dorsal femur myoblasts

(Fig. 3E–G and scheme in Fig. 5K). The key role of Wg in leg

myogenesis and differential requirements of ventrally and dorsally

located myoblasts for Wg signals is supported by abnormal leg

muscle pattern and preferential loss of ventrally located leg

muscles in flies expressing a dominant negative form of dTCF

(Fig. 5J, J9).

Subdivision of leg disc associated myoblasts into Vg-positive

proximal population and the Lbe-expressing myoblasts of the leg

disc proper suggests that Vg and Lbe repress each other.

When ectopically expressed Lbe was able to down-regulate Vg

in proximal leg myoblasts as well as in wing disc associated

myoblasts (Fig. 6A–D). This resulted in disruption of thoracic IFM

muscles (Fig. 6E,F). Likewise in leg discs ectopically expressing Vg,

Lbe was inhibited leading to an adversely affected leg muscle

Figure 5. Wg signals are required for Lbe expression and play a key role in leg myogenesis
(A–I) Confocal images of third instar leg imaginal discs. (A–C) Wild type leg disc stained for Lbe and Vestigial (Vg). Lbe positive myoblasts are seen in
leg disc proper (B and green in merge C), while the myoblasts associated with the dorsal proximal region corresponding to the ventral thorax express
Vg (A and red in merge C). Vg myoblasts are devoid of Lbe (asterisk in B). (A) Yellow arrowhead shows myoblasts expressing high levels of Vg and
white arrowhead those expressing Vg at lower levels.
(D–F) Leg disc, in which a dominant-negative TCF has been expressed in the myoblasts. Myoblasts are present as shown by anti-Twist antibody
staining (D and blue in merge F), but Lbe expression in myoblasts is lost (asterisks in E and green in F). (G–I) Leg disc, in which activated Armadillo
(Arm) transgene has been expressed in the myoblasts. Lbe is ectopically expressed in dorsal proximal myoblasts (arrow in H and green in merge I),
normally devoid of Lbe. Myoblasts are visualised with anti-Twi antibody (G and blue in I).
(J–J9) show adult muscle phenotypes in the femur region induced by 1151-Gal4-driven forced expression of a dominant-negative TCF. Ventral
muscles (tidm) are partially lost (asterisks in J) or completely lost (asterisks in J9) and dorsal muscles (tilm) are severely affected. Muscles are visualised
using MHC-tauGFP. Anterior views from the 3D reconstructions of confocal scans.
(K) A schematic showing position of Lbe-expressing dorsal (tilm) and ventral (tidm) precursors of femur muscles (green areas) with respect to
epithelial Wg expression domain (violet triangle). The dorsal tilm myoblasts, located comparatively far from the Wg domain, receive a lower level of
Wg morphogen (long thin arrow) than ventrally located tidm myoblasts (short thick arrow).
doi:10.1371/journal.pone.0000122.g005
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pattern (Fig. S2). However, Lbe was not derepressed in stalk

myoblasts of Vg null mutants and Vg was not expanded to

myoblasts associated with leg disc proper after RNAi mediated

attenuation of Lbe (data not shown). This suggests that Lbe and

Vg are not the only players that diversify leg disc myoblasts. As

Lbe is activated in stalk myoblasts after overexpression of Arm

(Fig. 5H, I) we speculate that Wg signalling contributes to this

diversification process.

FGF signalling promotes leg myoblast

differentiation by inducing lbe and is involved in

setting the number of myoblasts and resulting leg

muscle fibres
It has been recently reported [33] that Htl-transduced FGF

signalling plays an important role in the differentiation of

abdominal and thoracic adult myoblasts, leading to the segrega-

tion of Duf-expressing founder cells. Here we show that the FGF

receptor Htl and the read-out of FGF signalling, Dof, are

coexpressed with Lbe in leg disc associated myoblasts (Fig. 7).

Lbe positive myoblasts with active Heartless signalling start

expressing presumptive founder cell marker Duf-lacZ. At third

instar, Duf-lacZ expression colocalises with Lbe in myoblasts of the

dorsal femur muscle, tilm (see ringed area in Fig. 7E–H) suggesting

a potential role of FGF in the differentiation of Twi-positive

myoblasts into Lbe- and Duf-expressing cells. At the beginning of

pupation, additional Lbe/Dof-positive myoblasts located in the

tibia and coxa start to express low levels of Duf-lacZ (arrows in

Fig. 7I–L), indicating that activation of Lbe and Dof precedes that

of Duf and represents an early event in myogenic differentiation.

To test the role of FGF in early steps of appendicular

myogenesis and its influence on Lbe expression in leg myoblasts

we analysed targeted attenuation or gain of function of the FGF

receptor Htl using 1151-GAL4; MHC-tauGFP strain (see

Materials and Methods for details). Compared with the wild type

(Fig. 8A–D), the overall leg disc myoblast number appears reduced

in HtlRNAi discs (Fig. 8E–H). To precisely evaluate the effect of

Htl on myoblast number we counted the Twi/Lbe/Duf-LacZ

positive myoblasts in the dorsal femur (tilm) (outlined area 1 in

Figs. 8D, H), as being the first regionalised myoblast group to be

differentiated. We found that in HtlRNAi third instar discs the

number of tilm myoblasts (34,2; n = 5) was significantly reduced

compared with the wild type (55,2; n = 5). In contrast, over-

expression of the constitutively active form of the Htl receptor

results in strongly increased number of leg disc associated

myoblasts (number of tilm myoblasts 118.5; n = 5 see also outlined

area 1 in Fig. 8K) and ectopic activation of Lbe and Duf in all leg

segments (Fig. 8I–L). Interestingly, in addition to premature

activation of Lbe and Duf in the tibia, forced FGF expression leads

to the formation of ectopic Lbe/Duf-positive myoblasts in the

tarsus segments known to be devoid of muscles (outlined area 3 in

Fig. 8L). We also observe that in proximal stalk myoblasts, FGF

induces Duf but not Lbe and that Duf activation but not Lbe

activation is dorsally restricted (Fig. 8J–L). Thus we hypothesise

that Htl acts in cooperation with Wg to induce Lbe and with some

dorsally expressed factors to activate Duf.

To gain a better understanding of the role of FGF in

appendicular myogenesis we also investigated whether the Htl-

induced alterations in the number of Lbe-expressing myoblasts

and differentiating Duf-positive cells influenced muscle organisa-

tion in the adult leg (Fig. 8M–S). Consistent with larval

phenotypes, 1151-driven over-expression of Htlca led to the

significantly higher number of fibres contributing to leg muscles

(arrowheads in Fig. 8M,N). For example, the average number of

Htlca-induced muscle fibres (counted in 10 adult legs) of the tarsus

levator muscle (talm) was 14.8 against 10 fibres in the wild type

(compare Fig. 8Q and 8R). However, the overall leg muscle

pattern and capacity of fibres to interact with internal tendons

appeared unchanged. To rule out any influence of Htl signalling

on the specification and differentiation of tendon precursors in the

leg, we used 1151Gal4;UASFP and SrGal4;UASGFP driver/

sensor strains (Fig. S1 and data not shown). We found no influence

of Htl on specification or differentiation of tendon precursors in

the leg (Fig. S1 and data not shown), and no non-autonomous

effect (via tendons) on myoblast number (data not shown). In some

legs after forced Htlca expression we observed enlarged internal

tendons (Fig. S1). This tendon alteration may be due to the

increased number of muscle fibres that attach to the tendons. Thus

FGF functions to set the number of myoblasts and resulting leg

muscle fibres and appears to contribute to the activation of Lbe

and differentiation of Duf-positive myoblasts. An instructive role of

Htl in appendicular myogenesis is further supported by its capacity

to induce formation of ectopic muscles in the tarsus (arrow in

Fig. 8N and Fig. 8P) and by the reduced number of appendicular

muscle fibres observed after targeted attenuation of Htl by RNAi

(Fig. 8O,S).

DISCUSSION
In both invertebrates and vertebrates, legs are locomotor

appendages formed as an outgrowth of the body wall. In-

terestingly, the expression of the evolutionarily conserved Distal-

Figure 6. Ectopic Lbe represses Vg and interfere with flight muscle
development
(A, B) Third instar leg imaginal discs stained for Vg (green). (C, D) Notum
part of third instar wing imaginal discs stained for Vg (green) and for
Cut (red). In the wild type (A, C) Vg is expressed in a subset of leg disc
myoblasts associated with the dorsal proximal region and in wing disc
myoblasts known to give rise to thoracic flight muscles. In discs
ectopically expressing Lbe in all myoblasts Vg is repressed (asterisks in B
and D). (E, F) Indirect flight muscles (IFMs) in the adult thorax viewed
under polarised light. In the wild type hemithorax (E), there are six DLMs
and three sets of DVMs (out of focus). (F) Ectopic expression of Lbe in
myoblasts leads to disruption of IFMs; DLMs are lost (asterisks) while
DVMs are severely reduced (arrow).
doi:10.1371/journal.pone.0000122.g006
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less (Dll)/Dlx genes marks the initiation of appendage development

in a broad spectrum of animal phyla [7,9]. Our previous work

revealed that Drosophila and vertebrate legs shared similar dorso-

ventral distribution of multi-fibre muscle units [22]. Here we

report evidence for common components of genetic circuitry that

control both invertebrate and vertebrate leg muscle development.

In particular we show that lbe, the Drosophila orthologue of the Lbx1

gene, required for the migration and development of vertebrate

limb muscle precursors [2,3] is essential for establishing morpho-

logical, ultrastructural and functional properties of leg muscles in

the fruit fly.

ladybird - an evolutionarily conserved regulator of

appendicular myogenesis
ladybird/Lbx1 genes are known to determine individual cell fates of

muscular and neural progenitors in Drosophila [36,43] and in

vertebrate embryos [2,3]. The analysis of muscle phenotypes in

mice lacking the functional Lbx1 gene has led to the conclusion

that Lbx1 is involved in the interpretation of signals that guide

appendicular muscle precursor migration [2,3,35]. In addition,

analyses of Lbx1 expression in different vertebrate species show it

to be a hallmark of an appendicular myogenic programme

involving delamination and migration of limb muscle precursors

[1,27]. Here we show that ladybird genes control leg muscle

development in the fruit fly. This raises the intriguing possibility

that appendicular myogenic functions of ladybird/Lbx1 gene family

were acquired early in evolution to generate a specialised type of

appendage adapted for locomotion. Like Lbx1 in vertebrates, lb

marks an entry point in the leg muscle developmental programme

and specifies properties of myoblasts that give rise to appendicular

muscles. The most important feature of vertebrate appendicular

myoblasts, which make them different from other myoblasts, is

their capacity to undergo directed long-range migration. This

feature is severely impaired in Lbx1 knockout mice [2,3]. In

Drosophila, development of the leg muscles involves dorso-ventral

myoblast positioning and subsequent movements during eversion

of the leg discs, suggesting that lb can play a role in interpreting

cues that direct these processes. Moreover, the leg-specific identity

of muscle precursors is manifested by their capacity to interact

with the internal tendons and form a unique pattern of multifibre

muscles. The pattern and sarcomeric ultrastructure of muscle

fibres are altered in flies with attenuated lb expression. Also,

muscle-tendon junctions appear affected, suggesting that perfor-

mance of lb-devoid muscles may be reduced. This possibility was

fully confirmed by tests of muscle efficiency showing that lb activity

is required for proper leg muscle function and thus for walking

behaviour in the adult fly.

ladybird and Wingless control diversification of leg

disc associated myoblasts
The wing and leg imaginal discs contain the progenitors of both

the appendages and the body wall of the thorax. Within the wing

disc myoblasts underlay only the body wall epithelium, whereas

the leg disc associated myoblasts are located on both territories.

Our data demonstrate that Lbe is expressed exclusively in

myoblasts that populate the leg disc proper and is excluded from

the myoblasts underlaying proximal portion of the leg disc

epithelium that contribute to the ventral thorax. This restriction

Figure 7. Components of FGF signalling pathway are expressed in all Lbe myoblasts
(A–L) Confocal images of leg imaginal discs triple-stained with anti-Lbe (A, E, I and green in merge D, H, L), anti-B-galactosidase against Htl lacZ (B and
red in merge D), anti-B-galactosidase against Duf –lacZ (F, J and red in merge H, L), and anti-Dof antibodies (C, G, K and blue in merge D, H, L).
(A–D) A third instar leg disc showing coexpression of FGF receptor Heartless and the downstream target of Htl signalling, Dof in Lbe-positive
myoblasts (see outlined area and myoblasts indicated by arrows. (E–L) Progressive activation of Duf expression in Lbe myoblasts with active FGF
signalling. In third instar leg discs (E–H) Duf is co-expressed with Lbe and Dof in dorsal femur myoblasts (outlined area) but not present in the ventral
myoblasts (arrows). At 3 hr-APF (I–L) in addition to dorsal myoblasts (outlined area) Duf is progressively activated in ventral Lbe- and Dof-positive leg
myoblasts within the femur, tibia (arrows in J) and coxa (yellow arrow in J) segments. All leg disc myoblasts showing Lbe expression have active FGF
signalling, shown by expression of Dof (D, H, L). Arrowhead in (L) points to Lbe expressing long tendon.
doi:10.1371/journal.pone.0000122.g007
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Figure 8. Htl-transduced FGF signals regulate number of leg myoblasts and resulting muscle fibres and when overexpressed promote
expression of Lbe and Duf.
(A–L) Confocal images of third instar leg discs stained for Twi, Lbe and Duf-lacZ. Leg disc (A–D) Control (duf lacZ), and Leg disc (E–H) with attenuated
Htl signalling (htl RNAi), (I–L) with increased Htl signalling (htl-ca), in the myoblasts. Attenuation of Htl expression leads to reduced number of
myoblasts associated with the leg disc (compare A and E). This is particularly obvious when comparing the number of Twi/Lbe/Duf expressing cells
within the outlined area in the dorsal femur. In contrast, forced Htl expression leads to significantly increased number of leg myoblasts (outlined area
1 in I–L). Moreover, Htl, when overexpressed, induces Lbe prematurely in all myoblasts in the leg disc proper and promotes differentiation of dorsally
located myoblasts into Duf-positive cells (K,L, outlined areas 2,3,4). Note that the only leg disc associated Duf-lacZ myoblasts that do not express Lbe
are in area 4, corresponding to the proximal part of the leg disc that contributes to the ventral thorax. Surprisingly, Htlca also induces Lbe/Duf-lacZ
expression in tarsal segments (outlined area 3). These cells give rise to ectopic muscles in tarsal segments (N,P) otherwise devoid of muscles. (M) A
wild type adult muscle pattern revealed in the leg expressing muscle-specific MHC-tauGFP (green) and tendon-specific 1151-DsRed (red). Note that
no muscles are detected in the tarsus. Arrowhead points to the dorsal tibia muscle, talm. (N) Gain of Htl signalling in leg myoblasts leads to the
formation of supernumerary muscle fibres (arrowhead in N). Ectopic muscles form in the tarsus (arrow in (N). (O) RNAi-mediated attenuation of Htl
expression leads to the reduced number of muscle fibres (arrowhead in O). (P) An enlarged view of tarsal segments shown in (N). Ectopic muscle
fibres align along the long tendon but most of them are not attached to the epithelium. (Q) An enlarged view of the distal tibia muscles in wild type
(R); in Htl gain-of-function and after RNAi-based Htl attenuation (S) The number of muscle fibres in the talm muscle (indicated by asterisk) is
significantly increased in (R) and reduced in (S).
doi:10.1371/journal.pone.0000122.g008
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depends on Wg signalling from the ventral epithelium that makes

the most proximal myoblasts located far from Wg source

incompetent to express Lbe. The key role of Wg in Lbe activation

is confirmed by the extension of Lbe expression to proximal

myoblasts in leg discs expressing a constitutively active form of

Arm and by loss of Lbe in disc with attenuated Wg signalling.

Interestingly, the Lbe-negative proximal leg disc myoblasts express

vg, previously found to control IFM development [25]. When

ectopically expressed lbe is able to repress vg and interfere with

flight muscle development. In a similar manner, in gain-of-

function conditions, vg represses lbe, leading to the formation of

morphologically altered leg muscles. Thus we hypothesise that lbe

and vg control two distinct programmes of muscle development and

that lbe acts as an effector of Wg signalling in the diversification of

leg disc associated myoblasts.

In addition, we observed that within the femur the level of lbe

expression was significantly lower in dorsally than in ventrally

located myoblasts. This is most probably due to a low Wg

concentration in the dorsal region. Thus by differential regulation

of Lbe, Wg appears to contribute to dorso-ventral diversity of

muscle groups within the leg. This possibility is supported by the

dorsally restricted muscle defects observed in lb gain of function

mutants and by preferential loss of ventral muscles in the legs from

flies over-expressing dnTCF.

Heartless transduced FGF signals are required to set

the number of leg myoblasts and promote their

differentiation
It has been recently shown [28,33] that the formation of the body

wall muscles of the adult fly involves the Htl-directed differenti-

ation of Duf-expressing cells. Here we present evidence that the

FGF pathway plays an important role in setting the number and

promoting the differentiation of myoblasts associated with the leg

discs. We show that all the Lbe-positive myoblasts express FGF

receptor Heartless and downstream intracellular protein Dof,

known to be a specific read-out of FGF signalling [46]. We also

demonstrate that forced expression of an activated form of FGF

receptor Htl leads to an increased number of leg myoblasts and to

their premature differentiation into Lbe-positive muscle precur-

sors. Importantly, FGF signalling is also able to induce ectopic Duf

expression in the dorsal region of all leg segments. As

a consequence, we observe that a higher number of fibres

contribute to the leg muscles. This indicates that regulated by FGF

signals, the number of Duf-expressing myoblasts is directly related

to the number of fibres composing adult leg muscles, consistent

with a role of the FGF pathway in the differentiation of the adult

abdominal muscle founders [33]. The instructive myogenic

potential of the FGF pathway is also illustrated by the capacity

of Htlca to induce myogenesis in tarsal segments otherwise devoid

of muscle. The FGF-induced formation of tarsal muscles involves

maintenance of Twist expression in tarsal adepithelial cells

followed by differentiation of Lbe/Duf-positive myoblasts, thus

indicating that activation of Lbe and Duf are obligatory steps in leg

muscle development. Moreover, the observation that forced Htlca

expression leads to the differentiation of supernumerary Duf-

positive cells only in the dorsal portion of the leg disc suggests

cooperation of FGF with a secreted signal from the dorsal

epithelium. The observed inability of ectopic Htl to promote

differentiation of the ventral population of myoblasts in the third

instar larvae seems not to be maintained in later stages, since the

number of fibres composing ventrally-located depressor muscles

was also increased in legs from the 1151.Htlca flies. Thus we

conclude that the FGF pathway promotes the differentiation of

both dorsal and ventral myoblasts into Lbe/Duf-expressing cells,

but that this process is delayed in the ventral region. The timely

distinct differentiation of ventrally located myoblasts probably

underlies a specific developmental programme enabling the

formation of functionally distinct depressor muscles.

Taken together, our data provide evidence that in Drosophila like

in vertebrates, multi-fibre appendicular muscles develop from

a specialised pool of myoblasts expressing ladybird/Lbx1 homeobox

genes. ladybird genes determine leg-specific properties of myoblasts

and muscle fibres, thus ensuring adaptation of the muscle system

to walking behaviour. Given that Wg/Wnt and FGF signals

promote leg muscle development in both Drosophila larvae and

vertebrate embryos [26,34,47], we consider that further insight

into Drosophila leg myogenesis should improve our understanding

of the genetic control of appendicular muscle formation and

function in general.

MATERIALS AND METHODS

Drosophila strains
1151-Gal4 has been described elsewhere [25,33]. 1151-Duf-lacZ

and 1151-GFP are double transgenic strains generated from the

1151-Gal4 driver line combined with the Duf-lacZ line (from A.

Nose) and UAS-GFPnls strain (from Bloomington Stock Centre),

respectively. To visualise adult leg muscles in different genetic

contexts we generated the 1151-MHC-GFP muscle driver/sensor

line by combining 1151-Gal4 with MHC-tauGFP strain (a gift

from E. Olson). The Gal4-UAS system [48] was used for directed

expression of genes during adult myogenesis. To study the role of

lb and investigate the role of Wg and FGF signalling in leg

myogenesis, UAS-transgenic lines were crossed to 1151-MHC-

GFP, 1151-GFP or 1151-Duf-lacZ. The UAS-lbe line has been

described elsewhere [37] and UAS-lbRNAi lines were generated in

the laboratory to investigate lb gene function tissue- and time-

specifically. The UAS-lbRNAi19/8 line analysed here is a homozy-

gous combination of UAS-lbeRNAi19 and UAS-lblRNAi8 trans-

genic lines. It carries dsRNA producing pUAST constructs

specifically targeting lbe and lbl genes. These constructs were

generated by cloning, in inverted orientations, 800 bp cDNA

fragments from the divergent 59 regions of lbe and lbl. Heartless

stocks (Htl-lacZ a gift from A. Stathopoulous; UAS-Htlca and

UAS-Htldn from the Bloomington Stock Centre; UAS-HtlRNAi

obtained from K. VijayRhagavan’s laboratory) were used to study

the role of FGF signalling. Stripe-Gal4; UAS-GFP line was

obtained from G. Morata. UAS-dsRED strain was a gift from S.

Heuser.

Evaluation of RNAi-based attenuation of lb gene

expression
To test the efficiency of UAS-lbRNAi constructs we crossed males

from all generated lines with Actin-Gal4 virgin females. The

resulting embryos were grown at 29uC for 7 h and then

dechorionated and used for total protein preparation followed

by Western blot. An equal number of embryos were used to obtain

the all the analysed protein samples. Lb proteins were revealed

using rabbit polyclonal anti-Lb antibody (1:10000) detecting both

Lbe and Lbl and mouse monoclonal anti-Lbe (1:5000) [37]. To

control protein loading a monoclonal anti-a-Tubulin antibody

(DSHB) (1:100) was used. Secondary anti-rabbit or anti-mouse

antibodies (1:5000) conjugated with peroxidase followed by the

ECL chemiluminescence detection kit (Amersham) were used to

reveal the Western blots.
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Dissections and mounting
Wandering third instar larvae were collected for larval dissections.

White pre-pupae (0 h APF) were collected and grown at appro-

priate temperatures for desired times before dissection. Crosses

were set at 25uC and then either grown at 25uC or transferred to

29uC after 3 days of egg laying. Larvae and pupal preparations

were dissected in phosphate-buffered saline (PBS), fixed for 30 min

in 4% paraformaldehyde (PFA) in PBS, washed and stained with

appropriate antibodies. For leg dissections, adult legs were directly

dissected in 4% PFA in PBS, fixed for 30 min, and washed twice

for 10 min. All the preparations were mounted in 70% glycerol.

Immunostaining and imaging analysis
The following primary antibodies were used: rabbit anti-Twi

antibody, dilution 1:200 (generated in the laboratory); monoclonal

anti-Ladybird early (Lbe), dilution 1:5000 (generated in the

laboratory); goat anti-LacZ, dilution 1:1000 (Biogenesis); rabbit

anti-Dof, dilution 1:500 (a gift from M. Leptin); rabbit anti-

Vestigial, dilution 1:200 (a gift from S. Carroll); and monoclonal

anti-Cut, dilution 1:1000 (DSHB). The following secondary

antibodies were used: donkey anti-rabbit and donkey anti-mouse

(Jackson) antibodies conjugated to Alexa 488 or CY3 fluorochromes

(dilution 1:300) and donkey anti-goat antibody conjugated to Biotin

(dilution 1:2000) followed by Streptavidin-CY3 or -CY5 (dilution

1:300). All the preparations were visualised on ZEISS LSM 510

Meta or Olympus FV300 confocal microscopes. 3D reconstructions

and image analyses were performed using Volocitytm (Improvision)

and Fluoview (Olympus) software.

Electron microscopy
Transmission electron microscopy (TEM) material was fixed for

24 h in a modified Karnowsky’s liquid (1% paraformaldehyde, 1%

glutaraldehyde in 0.1 M phosphate buffer). The material was

rinsed repeatedly in the same buffer and post-fixed for 2 h in 1%

OsO4 in phosphate buffer, pH 7.4. After rinsing in 0.1 M

phosphate buffer, the material was dehydrated in a graded alcohol

series and acetone, and embedded in Epon 812 epoxy resin. The

Epon blocks were cut on a Reihert Ultracut E ultramicrotome.

Ultrathin sections were contrasted with uranyl acetate and lead

citrate by the standard Reynolds method, and examined under

a Zeiss EM 900 TEM at an accelerating potential of 80 kV.

Muscle performance assessment
Ball test Adult wild type, 1151.lbRNAi and 1151.lbe males

were fixed on microscope slides in the ‘‘legs-up’’ position using

a sealing solution prepared from double-sided 3M Scotch tape and

N-heptane as a solvent. The polystyrene balls were prepared

manually. Flies were tested for their ability to catch, maintain and

rotate the ball. A Canon MVX4i video camera was used to record

the ball test data.

Leg print test Microscope slides were coated with soot using

a candle flame. One- to two-day old flies were anaesthetised by

chilling them on ice, their wings trimmed to prevent them from

flying and on recovery placed on the carbon soot coated slide and

allowed to walk. Tracks were photographed using a Canon digital

SLR camera.

SUPPORTING INFORMATION

Figure S1 The 1151-GFP revealed internal leg tendons. (A)

Wild type internal tendons of tibia and femur segments (for tendon

nomenclature refer to Soler et al., 2004); (B) Internal tendons in

a lbRNAi leg. Note that all tendons are present, however the

1151-GFP labeling appears weaker in some of them (eg. tadt

yellow arrow). (C) The 1151-driven Lbe gain of function leads to

abnormal pattern of the dorsal tilt tendon and reduced labeling of

tadt and talt tendons (yellow). This may result from the affected

properties of muscle fibres that are unable to interact with their

attachment sites leading to tendons degeneration. (D) Over-

expression of Vg leads to dramatic alterations of internal leg

tendons. Asterisks indicate lacking tendons. (E) Forced expression

of HtlRNAi construct leads to a reduced tendon labeling,

especially within the tibia segment. This is consistent with the

loss of muscle fibres in the legs with attenuated Htl. (C) In legs

expressing Htlca all tendons are present and some of them display

a high levels of 1151GFP (eg. tadt, red arrow).

Found at: doi:10.1371/journal.pone.0000122.s001 (6.86 MB TIF)

Figure S2 Forced expression of Vg represses Lbe and affects leg

muscle pattern. (A, B) Third instar leg discs stained for Lbe. (B)

Myoblast-specific expression if Lbe is lost in leg discs ectopically

expressing Vg (asterisks). (C) Anterior and (D) posterior view of the

MHC-tauGFP revealed femur muscles from legs overexpressing

Vg. Arrows indicate abnormally patterned muscle fibres.

Found at: doi:10.1371/journal.pone.0000122.s002 (2.34 MB TIF)

Video S1 Spatial distribution of Lbe expressing cells in a 0h APF

leg disc double-stained for Lbe (green) and Twist (blue).

Found at: doi:10.1371/journal.pone.0000122.s003 (5.24 MB

MOV)

Video S2 Spatial distribution of Lbe expressing cells in a 0h APF

leg disc triple-stained for Lbe (red) and Twist (blue) and Stripe

(green).

Found at: doi:10.1371/journal.pone.0000122.s004 (8.05 MB

MOV)

Video S3 3D view of MHCtauGFP revealed wild type tibia

muscles.

Found at: doi:10.1371/journal.pone.0000122.s005 (3.65 MB

MOV)

Video S4 3D view of tibia muscles from the adult lbRNAi flies

(mild phenotype).

Found at: doi:10.1371/journal.pone.0000122.s006 (2.51 MB

MOV)

Video S5 3D view of tibia muscles from the adult lbRNAi flies

(strong phenotype).

Found at: doi:10.1371/journal.pone.0000122.s007 (4.47 MB

MOV)

Video S6 3D view of MHCtauGFP revealed wild type femur

muscles.

Found at: doi:10.1371/journal.pone.0000122.s008 (3.87 MB

MOV)

Video S7 3D view of femur muscles from the adult lbRNAi fly

(mild phenotype).

Found at: doi:10.1371/journal.pone.0000122.s009 (3.85 MB

MOV)

Video S8 3D view of femur muscles from the adult lbRNAi fly

(strong phenotype).

Found at: doi:10.1371/journal.pone.0000122.s010 (3.25 MB

MOV)

Video S9 3D view of femur muscles from the adult 1151.Lbe fly.

Found at: doi:10.1371/journal.pone.0000122.s011 (3.90 MB

MOV)

Video S10 The ball performance assay. A wild type male fly is

shown.
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Found at: doi:10.1371/journal.pone.0000122.s012 (7.63 MB

MOV)

Video S11 The ball performance assay. Effect of lb attenuation.

A 1151.lbRNAi male fly is shown.

Found at: doi:10.1371/journal.pone.0000122.s013 (13.23 MB

MOV)

Video S12 The ball performance assay. Effect of gain of lb

function. A 1151.lbe male fly is shown.

Found at: doi:10.1371/journal.pone.0000122.s014 (7.82 MB

MOV)
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