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Abstract
There are numerous mathematical models simulating the behaviour of cancer by
considering variety of states in different treatment strategies, such as chemotherapy.
Among the models, one is developed which is able to consider the blood vessel‐
production (angiogenesis) in the vicinity of the tumour and the effect of anti‐angiogenic
therapy. In the mentioned‐model, normal cells, cancer cells, endothelial cells, chemo-
therapy and anti‐angiogenic agents are taking into account as state variables, and the rate
of injection of the last two are considered as control inputs. Since controlling the
cancerous tumour growth is a challenging matter for patient's life, the time schedule
design of drug injection is very significant. Two optimal control strategies, an open‐loop
(calculus of variations) and a closed‐loop (state‐dependent Riccati equation), are applied
on the system in order to find an optimal time scheduling for each drug injection. By
defining a proper cost function, an optimal control signal is designed for each one. Both
obtained control inputs have reasonable answers, and the system is controlled eventually,
but by comparing them, it is concluded that both methods have their own benefits which
will be discussed in details in the conclusion section.

1 | INTRODUCTION

Cancer is the name of a group of diseases in which a fact
causes an uncontrolled proliferation of cells that could invade
other tissues of the body. There are over hundreds of different
types of cancer, which is one of the leading causes of death
around the world. In general, researchers are interested in the
numerous fields of cancer control such as early diagnosis,
control signals during treatment sessions, and possible final
care. [1]. There are several ways to treat this disease such as
open surgery, radiotherapy, immunotherapy and chemotherapy.
Among these various ways of cancer treatment, chemotherapy
that is related to the injection of certain medications called
chemotherapy medicines is assessed as an efficient and inclu-
sive method, and many researchers have investigated the ef-
fects of this medicines on the cancer dynamics. In general, the
papers that present a new mathematical model with the subject
of cancer dynamics behaviour analysis follow below procedure:
First, some state variables are taken into account as the basic
states that have great effects on the cancer dynamics. Second,
the corresponding mathematical model is dynamically analysed

via stability theorems around the points of equilibrium. As
expected, it is concluded that the system tends to the death
state without any treatments and to healthy state with drug
injection in some cases. Third, the proposed system is
compared in two situations of with and without drug in-
jections, in order to prove the effects of drugs and whether all
the states behave logically or not. In each mathematical model,
various states are considered such as cells in the patient's body
[immune cells, normal cells (NCs) and etc.], effective drugs,
and of course, tumour cells. In the mathematical models
proposed in this field, various states are considered. Each
model is capable of justifying a particular manner of this
illness.

Before reviewing recent mathematical models, let us
discuss the free‐model control method, a common method for
complicated system dynamics, such as cancer. Machine
learning (ML) and artificial intelligence (AI) methods are ap-
proaches that are based only on the laboratory data and
learning algorithms for classifications or detection [2–4].
Although these methods determine the closed‐loop solution
based on the previous information, it does not provide any
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data on changes of other variables in patient's body during
treatment. For this reason, differential equations, based on time
variation, are presented to simulate such action, considering
different states and variety of cancer effects in body, which will
be discussed briefly in the following.

Models that simulate cancer behaviour are constantly being
updated. The ones that choose chemotherapy as the main
treatment have started with proposing a first‐order differential
equation which are log kill [5] and Emax [6]; Norton & Simon
[7] continued with considering variety of states along with
different effects, such as metastasis [8], angiogenesis [9], fat
[10], and delay differential equations [11]. The mathematical
models can be helpful to find the best rate of drug injection
during the patient's treatment for different purposes, like
decreasing the toxicity risk of chemotherapy drugs [12] or
finding the optimum drug rate injection. Therefore, it is a great
challenge for researchers to obtain an accurate mathematical
model and eventually controlling it. Among numerous models
investigated in the field of simulating chemotherapy, some of
them together with the procedures proposed to control the
system are reviewed in the following.

One of the interesting field is finding the optimum treat-
ment protocol for these patients. Various models are consid-
ered to extract the effective dose rate. The effect of immune
cells, NCs and cancer cells (CCs) along with chemotherapy is
mainly analysed in Reference [13] and controlled with basic
optimal control approach by means of calculus of variations. In
recent years, the effect of obesity as an effective and a signif-
icant factor in the treatment of cancer was also added to the
previous model and mathematically analysed [10]. Afterwards,
the basic optimal control approach (using calculus of variation
method) was applied by defining a proper cost function, which
was reducing the amount of CCs in the final day of treatment
[14]. This optimum trajectory was later taking into account as
the desired path for a sliding surface, and a robust sliding mode
controller was designed to overcome the uncertainties and
disturbances of the system [15].

The study of the three different control approaches for the
three first‐order basic models was investigated in Reference
[16]. Another strategy of using optimal approach in the treat-
ment of cancer is to first apply a linear or nonlinear controller
and then optimise the parameters by algorithms such as
Genetic Algorithms (GA) [17]. It is worth‐noting that GA
could also be the only tool for finding the best therapeutic
protocol [18]. Recently, the combination of GA with other
estimation algorithms for diagnosis [19] and adaptive
approaches for prognosis [20] have been also an interesting
field for researchers. Particle swarm optimisation for detection
and fuzzy logic for prediction of cancer in patients are also
utilised, respectively, in References [21,22].

The basic optimal control approach based on calculus of
variations achieves the open‐loop solution for the controller
design. However, some optimal control approaches such as
state‐dependent Riccati Equation (SDRE) have a closed‐loop
control structure and is suitable for complex nonlinear systems
in which the controller design is accomplished in the presence
of unmodeled dynamics. Since cancer mathematical models

include highly nonlinear terms, and uncertainties and distur-
bances have significant effects in the system behaviour, SDRE
controller seems to be a powerful tool. Itik et al. [23] obtained
the control signal using SDRE on the dynamics as proposed in
Reference [13] and analyzed the effect of weighting matrices in
the cost function in order to find the solution which leads
to the less drug injection and more CCs' reduction comparing
to others.

The formation of new blood vessels is a natural process for
the growth and healing, called angiogenesis. It is found that
tumours induce the sprouting of new blood vessels in sur-
rounding in order to supply tumour with oxygen and nutrients.
Anti‐angiogenic refers to the drug that prevents the delivery of
the signals from the tumour to the blood vessel, and di-
minishes the proliferation of new blood vessels, but this drug
should not eliminate blood vessels because there must be a way
to deliver the chemotherapy drug to tumour as a matter of
destruction [24]. In fact, use of both anti‐angiogenic and
chemotherapy drugs can cure cancer more effectively [25].

There are different strategies investigating the concurrent
cooperation of chemotherapy and anti‐angiogenic experimen-
tally or analytically. Like previous mentioned researches, some
considered several states and proposed a mathematical model in
the form of ODEs like, [26], and then designed optimal con-
trollers for the obtained theoretical model, and some like, [27],
succeeded in presenting a model in the field of cooperation of
chemotherapy and anti‐angiogenic. This model was improved in
[28]. One of the most comprehensive mathematical models for
cancer dynamics with simultaneous impression of these two
drugs was presented in Reference [29] by Pinho and co‐workers.
In this model, the effects of chemotherapy and anti‐angiogenic
drugs on NCs, CCs and endothelial cells (ECs) are considered,
and a set of ODEs with five state variables is presented and
mathematically analysed in detail. The stability and the equilib-
rium points of the proposed model are completely investigated
in each subsystem. Afterwards, the idea of personalising the
drug injection for each patient according to the individual
optimum trajectory was investigated in Ref. [30] by means of
adaptive controller design based on Pinho's model.

In this study, the five‐state mathematical model for cancer
dynamics with the effects of chemotherapy and anti‐angiogenic
injections is considered [29]. To attain the goal of reducing
CCs, control signals are designed such that they will be opti-
mum and have an acceptable consequence on other states. To
do so, two optimal approaches are chosen: basic optimal
control approach based on calculus of variations as an open‐
loop [32] and SDRE as a closed‐loop controller. In the first
control approach, steepest descent method is selected to
calculate the solution in calculus of variations. The results of
each are compared together.

This study is organized as follows: The mathematical
model of cancer dynamics is introduced in Section 2. The basis
of the two selected optimal control strategies is reviewed, and
accordingly, the suitable control signals are designed in Section
3. In Section 4, simulation results of each proposed controller
are figured and compared. Finally, Section 5 concludes the
paper.
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2 | MATHEMATICAL MODEL

In this section, the mathematical dynamic model considered in
this study, [29], is reviewed in the state‐space form. It should
be mentioned that x1, x2 and x3 represent NCs, CCs and ECs,
and express chemotherapy agent (CA) and anti‐angiogenic
agent (AA), respectively. The non‐dimensional state‐space
mathematical model of cancer includes five ODEs as follows:

x
:

1 ¼ α1x1ð1 − x1Þ − q1x1x2 − p1ðx3;wÞ
x1y

a1 þ x1

x
:

2 ¼ α2x2
�

1 −
x2

1þ γx3

�

− q2x1x2 − p2ðx3;wÞ
x2y

a2 þ x2

x
:

3 ¼ βx2 þ α3x3ð1 − x3Þ −
p3x3w
a3 þ x3

y
:
¼ δ −

�

ξþ d1
x1

a1 þ x1
þ d2

x2
a2 þ x2

�

y

w
:
¼ ϕ −

�

ηþ d3
x3

a3 þ x3

�

w

ð1Þ

where pi(x3,w) ¼ pi0þpi1x3þpi2w, i ¼ 1,2.
It is assumed that NCs and CCs exhibit logistic prolifera-

tion with different rates (α1 and α2). The term 1þ γx3 in the
second equation shows that the increase in ECs production
enhances the tumour growth. The q1 and q2 represent the
competitive rates, and � x1x2 is the term that shows the
competence between NCs and CCs. These two cells also get
destroyed by CA with the rate of pi. There is a saturation term
xi/(ai þ xi) in the end of the first two equations, where ai is
each saturation rate. The intention of saturation terms is that as
xi → ∞, the fraction tends to value one. Note that pij (i ¼ 1,2)
is the contribution effect of killing xiby CA in the absence of x3
and w(j ¼ 0), CA per concentration of x3 and w(j ¼ 1,2).

ECs has a logistic growth (x3(1� x3)) with the rate of α3,
and also duplicates based on tumour size (βx2). Since ECs
proliferation is less than NCs and CCs, α3 is assumed to be
smaller than α1 or α2. Similar to NCs and CCs, ECs is killed
with a saturation term in which AA is the matter of destruction
(x3/(a3þx3)) with the rate of p3.

δ and ϕ are CA and AA rate of injections or control signals
of the system. Both are destroyed depending on their half‐lives
(ξ and η). CA also disappears by the effect of NCs and CCs
with d1 and d2 rate, respectively. However, AA is lost only in
ECs based on the model assumptions. Note that all the
destruction terms in the last two equations appear as a
saturation fraction along with their rates (xi/(ai þ xi),
i ¼ 1,2,3).

This model is able to justify the system's behaviour in
the following categories confirmed by empirical data. Since the
mathematical proofs are presented in Reference [29], the
results are just listed in the following.

a. All states remain in the positive region with any nonnega-
tive initial conditions.

b. Without any treatment courses, patient cannot be cured by
immune body system and always leads to death
undoubtedly.

c. AA is not able to cure cancer disease [31].
d. CA is capable of slowing down the progression of cancer

under some circumstances.
e. CA with the aid of AA is a more powerful approach

comparing to case (d) in cancer's remedy.

3 | OPTIMAL CONTROL FOR CANCER
DYNAMICS

In this section, two different optimal control approaches, a
closed‐loop SDRE and an open‐loop method utilizing steepest
descent technique, are applied on the dynamic of cancer in
order to figure out which one is the better choice.

3.1 | Optimal controller design using the
closed‐loop SDRE approach

The idea of controller design using SDRE approach is origi-
nated from Linear Quadratic Regulator (LQR), in which for a
state vector x ∈ℜn�1 and a control signal u ∈ℜm�1 we have,

x:ðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð2Þ

where A ∈ℜn�nand B ∈ℜn�m. This could be used either for
linear plant dynamics or for the linearized dynamic of
nonlinear systems, which is obtained based on Taylor series
expansion of each term [32]. The first step in finding the op-
timum solution of a system is to define a cost function ac-
cording to the system's aim in the interval of [t0� tf] that
generally is written in the following form,

J ¼
1
2
xT
�
tf
�
Hx
�
tf
�
þ

1
2

∫
tf

t0

�
xðtÞTQðtÞxðtÞ þ uðtÞTRðtÞuðtÞ

�
dt

ð3Þ

where H and Qare real symmetric semi‐definite, and R is real
symmetric positive weighting matrices for states and control
signals. Note that the cost function must be in quadratic form.
Generally, weighting matrices are diagonal matrices which qii
(rjj or hkk) represents the importance of xi(t) (ujj or xkk(tf)) in
the purpose, unless term xi(t)xj(t) (uiuj or xi(tf)xj(tf), i ≠ j) has a
physical meaning and is important in the cost function. The
aim is to find x∗ and u∗such that the cost function is mini-
mised. It is worth noting that the phrase within the integral
minimises the states and control signals during simulation and
matrix H minimises states at final time. According to the
studies in Riccati equation, the following relation must be
calculated:
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ATP þ PA � PBR� 1BTP þQ¼ 0 ð4Þ

where P ∈ℜn�n is a real symmetric positive definite matrix
that is to be calculated. Whenever P is obtained, the optimal
control vector is determined from Equation (5).

uopt� LQR ¼ � R� 1BTPx ð5Þ

As mentioned earlier, in order to utilize LQR for nonlinear
dynamics, the Taylor expansion is used with eliminating
nonlinear terms, which in some cases does not provide
acceptable answer due to the large approximations. SDRE
could be counted as an advanced LQR approach. The
advantage of this method is that all nonlinear terms are pre-
served. The first step is to turn the system dynamics into below
form:

x:ðtÞ ¼ AðxÞxðtÞ þ BðxÞuðtÞ ð6Þ

Upon comparing (2) with (6), it is concluded that the el-
ements of A(x) and B(x) matrices contain nonlinear terms of
ODEs, and their values depends on the states at each time that
makes the controller closed‐loop. Then, the following SDRE
must be solved to determine matrix P(x):

AT ðxÞPðxÞ þ PðxÞAx�
PðxÞBðxÞR� 1ðxÞBT ðxÞPðxÞ þQðxÞ ¼ 0

ð7Þ

where P(x), R(x) and Q(x) have the same properties as
mentioned before, but are dependent to states during simula-
tion. Finally, the control signal vector is calculated by (8), which
is similar to (5) with the difference of state dependent matrices.

uopt� SDRE ¼ � R� 1ðxÞBT ðxÞPðxÞx ð8Þ

Remark 1 In nonlinear systems, choosing A(x) and B(x)
to produce the dynamics into the form of (6) is not
unique. The choice must be such that controllability of
matrix pairs A(x) and B(x) would be undeniable for all
x ∈ Ω. In other words, matrix [B(x) A(x)B(x) ... An� 1(x)
B(x)] must be full rank pointwise [33].

Remark 2 In order to calculate matrix P, the MATLAB
routine “lqr” can be used. The advantage of using this
command is that the Riccati equation [see Equation (7)]
is calculated by defining A,B, Q and R on each time
step. Then, K ≜ � R� 1ðxÞBT ðxÞPðxÞ is displayed as the
output of the written code.

As discussed above, the first step is to define A(x) and
B(x) such that it is be controllable. In addition to that,

when simulation is running, it is programmed to display an
error message if the matrix is not full rank in any time
step. By considering x ≜ ½x1 x2 x3 y w� T as the state vector
and u ≜ ½δ ϕ� T as the control vector, matrix A(x) is
selected as,

AðxÞ ¼

2

6
6
6
6
4

A11 A12 A13 A14 A15
A21 A22 A23 A24 A25
0 β A33 0 A35
A41 A42 0 � ξ 0
0 0 A53 0 � η

3

7
7
7
7
5

ð9Þ

where,

A11 ¼ α1ð1 � x1Þ;A12 ¼ � q1x1;A13 ¼ �
p11x1y
a1 þ x1

;

A14 ¼ �
p10x1
a1 þ x1

;A15 ¼ �
p12x1y
a1 þ x1

;

A21 ¼ � q2x2;A22 ¼ α2

�

1 �
x2

1þ γx3

�

;

A23 ¼ �
p21x2y
a2 þ x2

;A24 ¼ �
p20x2
a2 þ x2

;

A25 ¼ �
p22x2y
a2 þ x2

;A33 ¼ α3ð1 � x3Þ;

A35 ¼ �
p3x3

a3 þ x3
;A41 ¼ �

d1y
a1 þ x1

;

A42 ¼ �
d2y

a2 þ x2
;A53 ¼ �

d3w
a3 þ x3

ð10Þ

and B(x) is chosen as,

BðxÞ ¼

2

6
6
6
6
4

0 0
0 0
0 0
1 0
0 1

3

7
7
7
7
5

ð11Þ

The last step is to define matrices Q and R, that are based
on system's aim. The main goal is to reduce CCs as quickly as
possible, which must be included in matrix Q.. It is obvious
that if we just consider this term in the cost function, the
control signals increase to make the goal happen. As a result,
the increment rate of drug delivery would harm the healthy
tissue which put the life of patient at risk. Therefore, it is
rational to consider minimising control efforts as well by
tuning the values of matrix R. For more precautions, the
elements of matrix Q regarding to the states y and w are also
considered to be non‐zero.

The last assumption is that because the period of treatment
is specified by doctor before therapy started, the treatment is
considered known. With above assumptions, the following
matrices are defined for this controller:
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Q¼

2

6
6
6
6
4

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 10

3

7
7
7
7
5
;R¼

�
1 0
0 5

�

ð12Þ

which makes the cost function as:

J ¼
1
2

∫
tf

t0

�
x22 þ y2 þ 10w2 þ δ2 þ 5ϕ2�dt ð13Þ

It should be noted that the optimal control signals vector
will be calculated as the product of matrix K and state vector,
regarding to Remark 2.

3.2 | Controller design using calculus of
variations and steepest descent method

In this section, another optimal controller basis is considered.
The same as previous section, a cost function must be defined
depends on the assumptions. In order to utilise calculus of
variation to find the optimum solution, a continuous system as
(14) is considered,

x:ðtÞ ¼ aðxðtÞ; uðtÞ; tÞ ð14Þ

The general form of cost function is as follows.

J ¼ h
�
x
�
tf
�
; tf
�
þ ∫

tf

t0
gðxðtÞ; uðtÞ; tÞdt ð15Þ

which is familiar with Equation (3). All the discussion
mentioned in Section 3.1 is also valid here. Variables that have
a high impact level have grater values and vice versa (The same
use as matrix Q and R in Equation (3)).

To find the extremum of above cost function (x∗and the
corresponding u∗), the Hamiltonian functional for the system
is defined as [32].

ΗðxðtÞ; uðtÞ; pðtÞ; tÞ≜
gðxðtÞ; uðtÞ; tÞ þ PTaðxðtÞ; uðtÞ; tÞ

ð16Þ

where P ¼ [P1 P2 P3 P4 P5] T and Pi s' are co‐state (Lagrangian
multipliers). The following equations are derived to be solved
for finding the control signal.

� ODEs for system dynamics (state‐space equations, see (1))

x
˙ ∗ ðtÞ ¼

∂Η
∂p
ðx∗ðtÞ; u∗ðtÞ; p∗ðtÞ; tÞ ð17Þ

� ODEs for co‐states

p
: ∗ ðtÞ ¼ −

∂Η
∂x
ðx∗ðtÞ; u∗ðtÞ; p∗ðtÞ; tÞ ð18Þ

� Algebraic equation for control signals

0¼
∂Η
∂u
ðx∗ðtÞ; u∗ðtÞ; p∗ðtÞ; tÞ ð19Þ

The remaining point is the boundary conditions (BCs) for
above ODEs, which is the key to solving differential equations.
For states, the initial conditions are defined based on the
system's state when the time started. However, the BCs for
co‐states are derived by [32]:

�
∂h
∂x
�
x∗� tf

�
; tf
�
� P∗� tf

�
�T

δxfþ

�
Η
�
x∗� tf

�
; u∗� tf

�
; P∗� tf

�
; tf
�
þ

∂h
∂t
�
x∗� tf

�
; tf
�
�

δtf ¼ 0

ð20Þ

In order to apply calculus of variation method on the dy-
namics of cancer, similar to SDRE, the first step is to define a
proper cost function based on the aim of problem. As
mentioned earlier, the main goal is to reduce the number of
CCs. According to the assumptions stated in Section 3.1 about
the limitation of the control inputs amount, and considering
the problem as a final time fixed‐final states free one, Hamil-
tonian could be written as follows,

P
:

1 ¼ −P1

�

α1ð1 − x1Þ − α1x1 − q1x2 −
p1x4

a1 þ x1
þ

p1x1x4
ða1 þ x1Þ2

�

þP2q2x2 þ P4

�
d1

a1 þ x1
−

d1x1
ða1 þ x1Þ2

�

x4

P
:

2 ¼ −2k1x2 þ P1q1x1 − P2

�

α2

�

1 −
x2

1þ γx3

�

−
α2x2

1þ γx3

−q2x1 −
p2x4

a2 þ x2
þ

p2x2x4
ða2 þ x2Þ2

�

−P3βþ P4

�
d2

a2 þ x2
−

d2x2
ða2 þ x2Þ2

�

x4

P
:

3 ¼ −
P2α2x22γ
ð1þ γx3Þ2

− P3

�

α3ð1 − x3Þ − α3x3 −
p3x5

a3 þ x3

þ
p3x3x5
ða3 þ x3Þ2

�

þ P5

�
d3

a3 þ x3
−

d3x3
ða3 þ x3Þ2

�

x5

P
:

4 ¼
P1p1x1
a1 þ x1

þ
P2p2x2
a2 þ x2

− P4

�

− ξ −
d1x1

a1 þ x1
−

d2x2
a2 þ x2

�

P
:

5 ¼
P3p3x3
a3 þ x3

− P5

�

− η −
d3x3

a3 þ x3

�

ð22Þ
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Η¼ k1x22ðtÞ þ k2δ2 þ k3ϕ2 þ ∑
i¼5

i¼1
Pix

:

iðtÞ ð21Þ

where ki is a positive constant which represents the efficacy of
its corresponding variable in the Hamiltonian.

The second step is to specify three sets of equations (see
Equations (17)–(19)). The ODEs of states are derived based
on Equation (17), which is the dynamics of the system [see
Equation (1)]. The co‐states' ODEs which are obtained based
on Equations (18) and (21) are calculated in Equation (22).

Defining BCs for above ODEs is inseparable in this step.
For states, x1(0) ¼ 0.6, x2(0) ¼ 0.6, x3(0) ¼ 0, y(0) ¼ 0 and w
(0) ¼ 0 are chosen as initial conditions based on the study in
Reference [29]. Since the treatment is assumed to be a final
time fixed‐final states free problem, the co‐states’ BCs are
obtained based on Equation (20) as below.

�
∂h
∂x
�
x∗� tf

�
; tf
�
� P∗� tf

�
�T

¼ 0 ð23Þ

Since h ¼ 0 according to the assumptions, it is obvious that
all co‐states’ values must be zero at final time. The difference
of states and co‐states calculations appears here, that states are
defined in initial time, but co‐states in final time. This point
makes the analytical solution impossible for most problems,
especially nonlinear ones. Therefore, numerous numerical
methods are used to make sure that all the ODEs along with
their BCs and optimal control signals are obtained based on all
the facts mentioned above.

As states above, there are five conditions that must be
satisfied in calculus of variations optimal problems: The states'
and co‐states’ ODEs with their BCs and the algebraic equation
for control signals [see Equation (19)]. Each numerical method
considers several of these five conditions known, and the
remaining is calculated based on the trial and error procedure.
At the end of each step, these values are compared with their
exact ones and will be updated for the next step. This will
continue until the stopping condition is satisfied. In steepest
descent method, all ODEs along with their BCs are considered
known, and control signals will be corrected by a mathematical
basis expressed in Remark 3.

Remark 3 Gradient vector represents the variation of a
function, such that the direction of the vector is
perpendicular to the function in each point, and its
orientation is in the direction of the greatest increment
of the function. By knowing the fact that, first, the aim
in optimal problems is to find x∗ and u∗ such that
Hamiltonian is minimised (Pontryagin principle) [32].

Therefore, the control signals are updated according to
equation (24) with an initial guess for the desired control
trajectory.

uðiþ1ÞðtÞ ¼ uðiÞðtÞ � τ
∂Η
∂u
ðtÞ ð24Þ

where τ is the rate that specifies the speed of movement. The
large value represents the quick steps towards the extremum of
the Hamiltonian. Larger steps might result in skipping the
minimum value and divergence of the algorithm. Therefore, it
is reasonable to choose a large value for the beginnings and a
small one for the remaining of the procedure.

According to Hamiltonian [see Equations (21) and (24)],
the rate of CA delivery is obtained by

δðiþ1ÞðtÞ ¼ δðiÞðtÞ � τ1
�
2k2δðiÞ þ P4

�
ð25Þ

and the rate of AA injection is calculated by

ϕðiþ1ÞðtÞ ¼ ϕðiÞðtÞ � τ2
�
2k3ϕðiÞ þ P5

�
ð26Þ

where τ1 and τ2 are the time constants and are chosen 1/
(iteration)0.3 and 1/iteration respectively, such that the step
number is the denominator of the fractions.

Remark 4 Since the mathematical model of cancer is
non‐dimensional, control signals must vary within the
range of zero to one. Note that the negative control
signal concept is not admissible in cancer models. This
constraint should be checked after calculating the
control signals from each method. A saturation func-
tion is used for the values beyond the limit.

4 | SIMULATION RESULTS AND
DISCUSSION

In this section, the computer simulation results are discussed in
detail. Before talking about the behaviour of the system, let us
pay attention to Figure 1. In this figure, the application of the
proposed controllers has been illustrated. The aim of the
controllers is to identify the optimal treatment protocol. Since
calculus of variation method is an open‐loop approach, the
controller is just affected by the patient's initial conditions.
However, the closed‐loop SDRE has the feedback to over-
come the uncertainties.

The SDRE matrices are defined in Section 3.1 and the
calculus of variation approach and steepest descent method are
in Section 3.2, respectively. For steepest descent method, the
control signals are updated based on Equations (25) and (26)
with 400 steps of iteration.k1 ¼ 0.043, k2 ¼ 0.5 and k3 ¼ 0.001
are selected for Equation (21) from trial and error method.
The control signals are validated in 250 days of treatment for
both controllers.

Figure 2 illustrates all the states in SDRE (dashed‐line) and
steepest descent method (thick‐line). The variation of each
state is compatible with the mathematical model behaviour in
both optimal controllers. In both curves, NCs have a down-
ward trend in the beginning of treatment (Figure 2a). This is
because of the CCs invasion to healthy tissues of body. Since
CCs improvement in body is controlled (Figure 2b), NCs
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experienced an increment trend in both methods and tends to
its desire value, one; its non‐dimensional quantity based on the
model assumptions in Section 2. However, a difference be-
tween the values of the two curves in a specific time is visible.
Since in SDRE method, CCs has reached zero earlier, and the
corresponding NCs converge to one. It should be noted that if
the treatment duration is increased in steepest descent method,
the concentration of NCs would be closer to one.

CC s’ variation results with time in both controllers are
shown in Figure 2b. Descending trend of CCs is one of the
criterion that indicates the both optimal control goals have
been achieved. However, the final value in steepest descent
method did not reach zero. It is also valid, since All the effects
or other simultaneous treatments, like radiotherapy or immu-
notherapy, are not considered in the mathematical model. In
real life experience, if the tumour still remains after therapies, it
is extracted from the body by a surgeon. The key point in this

part is that optimal control signals are found such that are
capable of stopping CCs proliferation in patient's body.

In steepest descent method, ECs has three different
behaviours with the passage of time: First, it has an increasing
trend, which is because of the existence of CCs in body due to
angiogenesis. Second, a decreasing trend which is the effect of
AA against CCs in body. This indicates that ECs are controlled
by AA, although CCs make ECs to branch out. As AA vanishes
in body (Figure 2e), the third behaviour of ECs appear. As a
result, ECs start growing. Hence, the ECs' proliferation at this
stage is not caused by CCs, because CCs have a constant
amount at this time (Figure 2b).

Even though, ECs variation is a little bit different for
SDRE controller. The third behaviour in steepest descent
method is not visible here (Figure 2c). After the system is
controlled, ECs remain zero until the end of the treatment,
which is caused by the different amount of AA in body in the

F I GURE 1 Illustration of the system diagram
and the proposed controllers: (a) Calculus of
variation method, (b) state‐dependent Riccati
equation (SDRE)

F I GURE 2 State variation in cancer treatment for state‐dependent Riccati Equation (SDRE) (dashed‐line) and steepest descent method (thick‐line)
approaches with initial conditions x1(0)¼ 0.6, x2(0) ¼ 0.6, x3(0)¼ y(0) ¼ w(0)¼ 0: (a) normal cells, (b) cancer cells, (c) endothelial cells, (d) chemotherapy agent,
(e) anti‐angiogenic agent
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two controlled methods (Figure 2e). Since the amount of AA
in body is greater for SDRE, its corresponding ECs has a lower
value, and eventually reaches zero. As mentioned in Section 2,
AA is the only drug effective on ECs. Therefore, the increment
in the amount of AA results in decreasing the value of ECs
quickly. The reason for the differences of AA for both control
methods are due to the difference in their amounts of control
signals.

As shown in Figure 2d, CA has a similar behaviour in both
control methods. The increment of CA in the first part is the
main reason of CCs decrement. The descending part of the
curves is due to the steady state of the system, which is mainly
focused on CCs values (Figure 2b). As stated in Section 2, CA
is the key drug which destroys tumour in body and is an aid to
patient's immune system, and, this is completely clear in all
curves in Figure 2 and explanations above.

As mentioned earlier, the system is controlled by two
control signals, injection rate of CA (δ) and AA (ϕ) at a specific
time. Both are calculated by means of optimal controllers, as
stated in Section 3. It is shown that in the beginning of
treatment, both controllers produce a nonzero value in order
to eliminate CCs from body. And eventually reach zero, since
CCs behaviour are steady.

By considering the points stated in Section 2 about the
amounts of injected drugs, it could be realized that the amount
of CA in body must be greater than AA because of the main
responsibility it has. This is also proved by experimental data in
[34]. Thus, by comparing curves on Figures 3a and 3b for each
method, it can be concluded that steepest descent method has
a better performance. It should be mentioned that the matrices
Qand Rare ways to minimize the peak of their corresponding
state or signals.

Another consideration is to check whether continuous
signals in treatment are valid or not. It may be a bit far from
reality that these two control signals have been considered
continuous throughout this time. This assumption has been
widely used in many other articles to examine and compare

control methods and different models. According to [35], the
first theoretical research that assumed continuous drug delivery
in cancer chemotherapy is [36], which found it reliable.

It's worth‐noting that the saturation for control signals
mentioned in Remark 4, is just used in SDRE controller. The
signals obtained from steepest descent method are in the range
of zero to one, which is due to proper initial guesses (Figure 3).

The optimal solution (states and control signals) in both
methods are biologically justified. In steepest descent method
another assessment must be considered in order to realize
whether the solution calculated is mathematically converged or
not. As mentioned in Section 3.2, it was noted that a stopping
condition must be considered. The value that can be used as
the evaluation of the answer is ∂Η= ∂ ui, where ui is a control
signal. Thus, two values of ∂Η= ∂ δ and ∂Η= ∂ ϕ are also
calculated and plotted in Figures 4a and 4b, respectively. As
shown in this figure, these two values reach zero at the initial

F I GURE 3 Control signal variation in cancer
treatment for state‐dependent Riccati equation
(SDRE) (dashed‐line) and steepest descent method
(thick‐line): (a) Injection rate of chemotherapy agent
(CA), (b) Injection rate of anti‐angiogenic agent
(AA)

F I GURE 4 Verification of stopping condition based on step number
of calculations in steepest descent method: (a) ∂Η= ∂ δ, (b) ∂Η= ∂ ϕ
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time steps (until 50 iterations are plotted), which indicates the
rapid convergence of the answer to this problem. Therefore,
the total solution of steepest descent method is mathematically
converged and biologically acceptable.

As stated earlier, the SDRE advantage is that the
control inputs calculated are closed‐loop. In other words,
the controller will find the next optimal solution based on
states' variations on previous time step. This is not true
for Steepest Descent method. Since control signals are
calculated from the co‐states’ values (see (25) and (26))
and co‐states are varied with time, this method is open‐
loop. In order to verify this point for the proposed
SDRE in this paper, the following disturbances assumed
for the CCs:

dðx2; tÞ ¼

8
>><

>>:

0 0 ≤ t ≤ 100
0:001 100 ≤ t ≤ 150
0:009 150 ≤ t ≤ 200
0 200 ≤ t ≤ 400

ð27Þ

The disturbance is assumed to be on the critical state
(CCs), in case the tumour resists against therapies, and has an
ascending trend from the day 100 to 200. The controller
calculates the optimum signals from the same matrices for
undisturbed system and the states behaviour is illustrated in
Figure 5.

As the disturbance is applied, ECs have ascending trend
(Figure 5c) which cause CCs to increase (Figure 5b), that shows
the condition of patient is worse. As a result, NCs decrease
(Figure 5a), which puts the life of patient in risk. The
descending behaviour of NCs is due to the increment of CCs
and CA in body. CA is injected to destroy CCs, but as it does
not distinguish between CCs and NCs. CA must be injected to
control the tumour growth (Figure 5d). The amounts of AA in
body increase in order to destroy ECs that are reproduced
(Figure 5e). The total response of the system appears before
day 250th. After this day, CCs decrease and other states, except
NCs, converge to the desired value.

The variation of control signals obtained by SDRE
method are illustrated in Figure 6. The behaviour is similar to
Figure 3 in initial days. However, the disturbed part is visible,
since the signals' values are non‐zero within this time. The
result of these signals is satisfactory since the aim is completely
achieved.

Remark 5 It should be noted that SDRE controller can
only eliminate small disturbances, and if the amount of
disturbances increases suddenly and the tumour
becomes very large, SDRE cannot provide an adequate
optimal rate of drug injection for the treatment of the
disease. In such condition, other therapies are sug-
gested to enhance the performance of chemotherapy
and anti‐angiogenic.

F I GURE 5 State variation for disturbed cancer system using disturbance distribution with time in Reference (27) utilising SDRE approach with initial
conditions: x1(0) ¼ 0.6, x2(0) ¼ 0.6, x3(0) ¼ y(0) ¼ w(0) ¼ 0: (a) Normal cells, (b) Cancer cells, (c) Endothelial cells, (d) Chemotherapy agent, (e) Anti‐angiogenic
agent
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4.1 | Comparison with previous works

There are numerous works in literature that study cancer
mathematical models in order to investigate the behaviour of
their states with optimal approach. The aim is unanimous:
Diagnosing the optimal treatment protocols such that the
body's immune system with the aid of injected drugs would be
capable of reducing CCs into the safe amount and also mini-
mising the usage of drugs at the end of the therapy sessions.
There are several constraints that must be satisfied during the
therapy: NCs which is indicative of the patient's health must be
kept at a reasonable level the whole time. All the state variables
and control signals must be positive during the treatment, since
the negative state would be meaningless. These points along
with the complexities of the mathematical models, challenges
identifying the optimal protocol with satisfying the mentioned
goals and constraints. In this section, we review similar works
in this field.

A state space model (a four‐population model: tumour
cells, host (normal) cells, immune cells, and drug interaction)
was presented and analysed in References [13,37] by De Pillis
and co‐workers, and the optimal control therapy behaviour of
the system was compared with the traditional pulsed periodic
treatment. The effect of using the SDRE controller on the De
Pillis's mathematical model and using different weight matrices
was investigated in Reference [38], and the same controller
was used in a Model Reference Adaptive Controller (MRAC)
to adapt the system to the desired path in order to overcome
the uncertainties [39]. The effect of obesity was then
considered in Reference [10] which is mostly based on De

Pillis's model, and then an optimal approach was applied to
the system by defining a cost function and constructing
Hamiltonian in calculus of variation method, in order to
investigate the effects of low and high caloric diet on
chemotherapy treatment protocols [14]. This optimum tra-
jectory was then used in Reference [15] in order to build a
desired sliding surface.

De Pillis's state space model had one control signal with
four or five (fat cells) states to control. It' is obvious with
complexity of the dynamic system and the mentioned con-
straints, and it' is a very difficult task. Therefore, the Pinho's
model (a five‐population model: tumour cells, NCs, ECs,
chemotherapy and anti‐angiogenic agents) which was pre-
sented in [29] with two control signals (the rate of
chemotherapy and anti‐angiogenic injection) is considered.
This model was considered in Reference [30] in order to
find the adaptive control signals with the existence of un-
certainties, which guide the system towards the optimal
trajectory.

To sum up, identifying the optimal control approach which
leads to find the optimal treatment protocol is a very important
task not only in presenting a reliable rule‐based chemotherapy
protocol but also in constructing the foundation in MRAC or
for estimating system dynamic parameters based on an optimal
desired path, which has its own benefits. That is why the two
optimal approaches were considered and compared in this
paper to validate the pros and cons of each. The aim is to
highlight the points which can be very useful in choosing the
suitable optimal controller not only in cancer dynamics but
also in every system dynamic.

F I GURE 6 Control signals for disturbed cancer system: (a) Injection rate of CA, (b) Injection rate of AA
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5 | CONCLUSIONS AND FUTURE
WORKS

In this study, a new cancer dynamic in the presence of
chemotherapy and anti‐angiogenic effects is considered for
cancerous tumour growth control. For the first time, the
effects of two mentioned treatments are seen, and then, two
optimal approaches are designed for the considered mathe-
matical model in order to reduce the amount of CCs as the
main control aim of this study. The selected optimal control
methods are basic optimal control method based on calculus of
variation along with steepest descent method as an open‐loop
control strategy and SDRE as a closed‐loop one. The basis of
each method is described based on the needs, and each optimal
control signal is designed based on a proper cost function for
cancer dynamics. Afterwards, behaviour of states and system's
response analysis were explained in details for each control
method in simulation section.

The validation of the solutions of the optimal controllers'
results was assessed biologically and mathematically and found
acceptable for both. It was observed that although the basic
optimal controller is a powerful method and has a mathe-
matical background, however since it is an open‐loop
controller, if disturbances happen, the system cannot respond
properly. On the other hand, although the background of
SDRE is not as strong as calculus of variation in finding the
optimal solution, but it is capable of handling the disturbances
and uncertainties to the system. It is worth‐noting that in
SDRE approach on the point‐wise controllability and stability
of the closed‐loop system is a very complicated issue to verify
because the matrices of the system are varying with time and
with control inputs every step time. Another point which
makes this method hard to apply is that because the dynamic
system is nonlinear, the matrices are not unique and can be
chosen differently with too many possibilities, each of them
would definitely affects the controllability, stability of the
closed‐loop system, and of course, the amount of control
signals. Thus, it is a long journey to find the system matrices
which satisfy the controllability and stability of the close‐loop
system in every time step. Whereas, calculus of variation
approach is independent of the system linearity or nonlinearity,
and its implementation is rather easy and straightforward.

As pointed in Remark 4, the control signals must have a
saturation function to make sure that the control signals are in
an acceptable range. Figure 2 shows that SDRE has used the
saturation function which undoubtedly would have effects on
the controllability and stability of the system. Although it is
clear in Figure 3 that the open‐loop controller did not use the
saturation function, it is worth‐noting that if the control signals
are not in the defined range, we will use the constrained
problem in calculus of variations [32], which has its own story.

Thus, in one hand, calculus of variation has a strong
mathematical background with a straightforward method,
which is flexible in constrained problems and easy to apply, yet
it is open‐loop. On the other hand, SDRE approach is closed‐
loop and able to overcome possible uncertainties, whereas
applying it is rather difficult, since it is challenging to specify

the system matrices, checking the controllability and stability of
the system in every times step, and not flexible enough in
constrained problems.

Therefore, from above comments and the necessity of
choosing the right optimal approach (mentioned in Sec-
tion 4.1), it can be concluded that if an optimal controller could
be designed in order to mix the advantage of both methods,
the solution can be widely used in finding the optimum in-
jection drug rates and predict the behaviour of system dy-
namics in the field of cancer treatment. For example, if the
calculus of variation approach is applied in every time step, in
order to make sure the possible uncertainties are taking into
account at the moment, the final response will be more reliable.
However, if the final response exceeds the limits, constrained
calculus of variation must be used instead.

In future works, an observer can be added to the system in
order to estimate the states that are unmeasurable. As
mentioned above, laboratory data can be added in order to
classify the patient's conditions and investigate the efficiency
and performance of the results of the closed‐loop control
system for various situations.

5.1 | Limitations of the study

It should be noted that this work can be the beginning of a wide
work for personalizing the treatment protocol in chemotherapy
which is optimum for each patient. The optimal controller must
be flexible enough to handle the probable disturbances (which is
very common in cancerous patients) during chemotherapy
sessions. In order to achieve this goal, enough laboratory data
on mice and then humans are needed to improve the proposed
protocol. This paper could be the start of this idea with the hope
of helping these patients more quickly with a specific optimum
goal than the current protocol. It is worth noting that since the
conventional learning algorithms do not have any mathematical
model‐based background, it would not give us any variation of
states with respect to time. The advantage of considering the
mathematic model and utilising it to drive the optimum control
signal is the availability of calculating the variations of ther
unmeasurable states (ECs e.g.) during treatment sessions, which
could be counted as a validation of the final answer. As
mentioned above, the unmeasurable states could be estimated
by means of an observer and laboratory data in order to get
closer to reality, which is in the schedule of the upcoming study.
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