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1  |  INTRODUC TION

Whether curative or palliative, half of all patients with cancer will 
undergo radiation therapy during their treatment course. Collateral 
toxicity to normal tissue is oftentimes the dose-limiting factor and 

an unfortunately pervasive consequence of cancer treatment.1-5 
Great advancements have been made in radiotherapy techniques 
such as directing radiation to tumour sites and fine-tuning dos-
ing regimens; however, modern radiation treatments continue to 
cause substantial collateral injury.6,7  These enhanced techniques 
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Abstract
The iron chelator, deferoxamine (DFO), has been shown to potentially improve dermal 
radiation-induced fibrosis (RIF) in mice through increased angiogenesis and reduced 
oxidative damage. This preclinical study evaluated the efficacy of two DFO admin-
istration modalities, transdermal delivery and direct injection, as well as temporal 
treatment strategies in relation to radiation therapy to address collateral soft tissue 
fibrosis. The dorsum of CD-1 nude mice received 30 Gy radiation, and DFO (3 mg) was 
administered daily via patch or injection. Treatment regimens were prophylactic, dur-
ing acute recovery, post-recovery, or continuously throughout the experiment (n = 5 
per condition). Measures included ROS-detection, histology, biomechanics and vas-
cularity changes. Compared with irradiated control skin, DFO treatment decreased 
oxidative damage, dermal thickness and collagen content, and increased skin elastic-
ity and vascularity. Metrics of improvement in irradiated skin were most pronounced 
with continuous transdermal delivery of DFO. In summary, DFO administration re-
duces dermal fibrosis induced by radiation. Although both treatment modalities were 
efficacious, the transdermal delivery showed greater effect than injection for each 
temporal treatment strategy. Interestingly, the continuous patch group was more 
similar to normal skin than to irradiated control skin by most measures, highlighting a 
promising approach to address detrimental collateral soft tissue injury following ra-
diation therapy.
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are currently the only truly effective prophylaxis against radiation-
induced fibrosis (RIF) of the skin or subcutaneous tissue. RIF can 
cause a multitude of detrimental outcomes, from cosmetic changes 
to life-threatening conditions. Lymphedema, joint contracture, ne-
crosis, and nonhealing wounds are just some of the many complica-
tions.8 Among these radiation side effects, one of the most common 
is radiation dermatitis, as overlying skin is invariably irradiated along 
with the tumour. Healthcare providers grade the severity of radi-
ation dermatitis by its clinical presentation and potential for harm. 
The Common Terminology Criteria for Adverse Events Version 5.0 
(CTCAE 5.0) provides a 1–5 grading scale, and dermatitis treatment 
is most often based on its CTCAE grade.9 Damage to overlying skin 
is twofold. Early effects, occurring during or soon after treatment, 
result from immediate DNA and cellular damage by ionizing radia-
tion. Late effects arising from dysregulated tissue repair, however, 
may progress to become the more injurious of the two, culminating 
in the pathophysiologic state of RIF. Microvascular injury, activation 
of inflammatory cytokine cascades, and reactive oxygen species 
(ROS) production accentuate and perpetuate one another long after 
radiation exposure has ceased.6,10  These pathologic sequelae are 
commonly separated temporally and grouped into ‘acute’ or ‘chronic’ 
changes, before and after 90  days respectively.2,11 Ultimately, a 
long-term imbalance in favour of profibrotic and pro-inflammatory 
cytokines drives chronic dermatitis and RIF progression.8

The iron-chelating agent, deferoxamine (DFO), has emerged as 
a potential therapeutic for improving RIF of the skin in murine sub-
jects.12,13 DFO addresses multiple pathogenic mechanisms of the 
fibrotic reaction within the dermis following irradiation (IR). First, 
iron chelation stabilizes the transcription factor, HIF-1α, by limit-
ing iron-dependent degradation, in turn, upregulating downstream 
pro-angiogenic growth factor production.14-18  This promotes de 
novo blood vessel growth in a background of endothelial destruc-
tion, while augmenting oxygen and nutrient delivery to injured skin. 
Second, chelation of free iron decreases oxidative damage by limiting 
Fenton-based ROS generation, which is dependent on ferric iron as 
a catalyst.19-21 As inflammatory reactions self-perpetuate in radiation 
toxicity, the multi-pronged benefits of DFO administration have been 
shown in preclinical studies to not only reverse RIF, but also minimize 
the damage that would have occurred when given prior to the onset 
of fibrosis.13 Aside from symptomatic treatment, there are very few 
approved therapies for RIF treatment and prevention. DFO has prom-
ise as a safe, effective treatment with the potential to fill this void, 
but uncertainty remains regarding the best delivery route. Recently, 
topical administration of DFO has been studied in wound-healing ex-
periments.22-25 The reverse micelle transdermal drug delivery system 
employed in these studies allows DFO, a large, hydrophilic molecule, 
to better permeate through the hydrophobic stratum corneum of the 
epidermis before dispersing in the more aqueous environment of the 
dermis.22 In contrast, a direct injection of solubilized DFO may be 
more efficient in mitigating radiation-mediated dermal fibrosis since 
it circumvents the hurdle of epidermal penetration. In this preclinical 
study, we evaluated the effectiveness of these delivery modalities 
with a focus on the timing of DFO administration, which may provide 

insight as to which downstream effects of iron chelation are import-
ant for the mitigation of fibrosis.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

Seventy female CD-1 nude immunodeficient mice (Crl:CD1-Foxn1nu, 
Charles River) were separated into two experimental groups. Mice 
used for ROS-related assays (20 mice total) were treated daily with 
patch or injection DFO, prior to and during IR. They were sacrificed 
24 h after the final IR session. Mice used for histology, biomechanical 
testing, and vascularity measures (50 mice total) were treated with 
DFO as noted below. All procedures were performed in concord-
ance with animal welfare and safety regulations outlined by APLAC 
(Protocol #31212).

2.2  |  Irradiation regimen

A lead shield with 1.5 ×2 cm rectangular cutouts was used to protect 
all tissue except for each mouse's dorsal skin. The skin was irradiated 
with 30 Gy and fractionated into six sessions of 5 Gy every other day 
using a Kimtron Polaris SC-500 x-ray machine (Kimtron Inc.). This 
dosing regimen would be considered a hypofractionated approach 
in modern clinical practice, which is associated with more severe late 
skin reactions than newer, altered fractionation schedules.8

2.3  |  Deferoxamine administration

Deferoxamine was given as a direct injection or transdermal patch. 
3 mg was given daily during each mouse's treatment period. Injections 
were comprised of DFO mesylate powder dissolved in sterile PBS to 
a concentration of 1 mg/100 μl; 300 μl was administered over the en-
tire 1.5 × 2 cm irradiated area using a 28-gauge syringe. DFO reverse 
micelle transdermal delivery patches (TauTona Group) were dosed 
at 1 mg/1 cm2; a 1.5 × 2 cm rectangle patch (3 mg total) was placed 
directly over the irradiated area, with a Tegaderm Film (3M) dressing 
surrounding the patch to fasten it in place. Mice received DFO either 
prophylactically prior to IR, during the acute injury phase (2 weeks 
IR regimen plus the following 4 weeks of recovery), during the post-
recovery chronic injury phase, or continuously throughout the entire 
experiment (n = 5 per treatment administration route and period). 
Treatment timelines for these mice are represented in Figure 1.

2.4  |  Tissue harvest

Irradiated skin was excised in full, immediately following euthanasia, 
one mouse at a time. The 1.5 × 2 cm rectangle was divided for tensile 
testing, with strips stored in cold PBS, histology, and with specimens 
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preserved in 4% paraformaldehyde prior to paraffin embedding, and 
the remainder snap frozen in liquid nitrogen and stored at −80°C.

2.5  |  Reactive oxygen species detection

Dermal-free iron content was quantified by staining for ferric iron 
(Fe3+) using Perls Prussian blue method (ab150674; Abcam).26,27 Blue 
pixel area was obtained from 40× magnification images (n = 15 per 
condition) using the same ImageJ analysis described above but modi-
fied for blue hue detection. Oxidative stress was quantified in sev-
eral ways. First, immunofluorescent staining of 8-Isoprostane (8-Iso) 
was performed. Incubation was performed with anti-8-Isoprostane 
primary antibody (1:100, MBS621657; MyBioSource) followed by an 
Alexa Fluor 488-conjugated donkey anti-goat IgG secondary anti-
body (1:500, ab150129; Abcam). Green pixels were quantified with a 
similar ImageJ analysis of 20× magnification images (n = 15 per con-
dition) after manually cropping out the epidermis, which displayed 
high levels of 8-Iso fluorescence in all samples. Second, an ELISA 
(ab138881; Abcam) was performed to quantify oxidized and reduced 
glutathione. Snap frozen tissue from each condition (100 mg total, 
pooled 20 mg per mouse) was homogenized in 2 ml of cold mam-
malian cell lysis buffer (ab179835; Abcam) using a Dounce homog-
enizer. Samples were deproteinized (ab205708; Abcam) and placed 
in a 96-well, black, clear-glass bottom microplate in triplicate to be 
analysed using an Infinite M Nano  +  plate reader (Tecan). Finally, 
Bcl-2-assosciated X protein (BAX) level was quantified by ELISA 
(ab233624; Abcam) and was performed in quadruplicate. Snap fro-
zen tissue from each condition (100  mg total, pooled 20  mg per 
mouse) was homogenized in 2 ml of the cell extraction buffer, and 
the assay was performed per manufacturer's instructions.

2.6  |  Skin biomechanics

Both longitudinal in vivo and post-harvest ex vivo mechanical testing 
were performed. A Cutometer Dual MPA 580 (Courage + Khazaka 
electronic) provided weekly measures of skin elasticity of each 
mouse throughout the experiment via suction and release meas-
urement with a 2-mm probe aperture, set to 300 m bar of negative 

pressure (n = 20 per condition: four reads per mouse weekly). After 
10 weeks, final tensile testing of skin samples was performed on full-
thickness strips from each mouse. Samples were kept in PBS, on ice, 
until tested several hours after harvest. A Bionix 200 (MTS Systems 
Corporation) tensile testing machine was used, and the Young's 
Modulus (stress/strain) was calculated on MATLAB (MathWorks) 
based on the Bionix 200 software output and calliper measurements 
of the exact width, length and thickness of each sample. Histological 
preparations included haematoxylin and eosin (H  +  E), Masson's 
Trichrome (TC) and Picrosirius Red (Picro). All imaging was performed 
on a Leica DMI4000 B inverted microscope (Leica Microsystems). 
Dermal thickness, from base of epidermis to intradermal adipose, 
was measured directly on the imaging software (Leica Application 
Suite X) using 20× magnification (n = 25 per condition) of the H + E 
specimens. Collagen content was quantified from 20× magnifica-
tion images (n = 20 per condition) of the TC slides using a binarizing 
RGB filter in MATLAB. Picro 40× images taken under a polarizing 
light source (n = 100 per condition) and were analysed in MATLAB 
with a previously described proprietary machine-learning algorithm 
to determine differences in collagen ultrastructure. This algorithm 
compared 294 parameters including fibre dimensions, directionality, 
branching and maturity among many other learned variables.28

2.7  |  Dermal microvasculature measurements

Biweekly laser Doppler perfusion imaging on a PeriScan PIM 3 
(Perimed) provided in vivo measurements of dermal blood flow to 
the dorsum of each mouse.29,30 Scans were performed under inhaled 
anaesthesia with a heating pad below the induction chamber, while 
ensuring constant ambient room temperature at 73°F. Mean perfu-
sion of the 1.5 ×2 cm treatment field was recorded twice for each 
mouse with back-to-back scans. Additionally, CD31 immunofluo-
rescent staining was performed on histologic sections of each skin 
sample. Incubation was performed with anti-CD31 primary antibody 
(1:100, ab28364; Abcam) followed by an Alexa Fluor 647-conjugated 
donkey anti-rabbit IgG secondary antibody (1:500, ab150075; 
Abcam). Red pixel area was obtained from 20× magnification images 
(n = 15 per condition) via ImageJ (NIH) analysis that recognized red 
hues, binarized the images and counted selected pixels.31

F I G U R E  1  Treatment regimen 
schematic. Treated mice received DFO 
via patch or injection; both administration 
routes were tested within each treatment 
period (PPx, Acute, Chron, Contin). 
Abbreviations: Chron, chronic; Contin, 
continuous; DFO, deferoxamine; IR, 
irradiation; PPx, prophylactic
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2.8  |  Statistical analysis

Analyses were performed in GraphPad Prism 9.0.0 (GraphPad 
Software), and statistical significance was determined based on a 
*p-value <0.05. Error bars on box and whisker plots represent 95% 
confidence intervals. A one-way analysis of variance (ANOVA) was 
performed to determine statistical significance for each measure. 
Tukey's multiple comparisons tests were used when examining 
means between two groups within an ANOVA.

3  |  RESULTS

3.1  |  Oxidative stress

To compare ability for transdermal patch delivery of DFO via re-
verse micelles to chelate free iron relative to direct injection, mice 
were treated prior to and during radiation therapy with either ap-
proach. Perls Prussian Blue staining revealed DFO was effective at 
removing ferric iron from the dermis, with levels significantly less 
than irradiated skin. However, the patch chelated more iron than 
injection (Figure 2A). 8-Iso levels, a marker for reactive oxygen spe-
cies, rose in response to radiation injury. Immunofluorescent stain-
ing revealed DFO administration lowered quantities of 8-iso in the 
dermis of treatment groups compared to IR control skin, with the 
patch decreasing 8-Iso levels more than injection (Figure 2B). As a 
second measure of ROS, oxidized:reduced glutathione (GSSG:GSH) 
ratios were significantly increased following IR. Both DFO treatment 
groups displayed lower GSSG:GSH ratios, though again patch DFO 
resulted in greater active GSH relative to oxidized GSSG than injec-
tion DFO (Figure 2C). Finally, both DFO treatment groups reduced 
levels of p53-regulated BAX protein compared with untreated irradi-
ated skin (Figure 2C).

3.2  |  Dermal fibrosis

With the ability for both transdermal patch delivery and direct injec-
tion of DFO to reduce free iron levels and reactive oxygen species 
in irradiated skin, we subsequently evaluated temporally directed 
DFO treatment relative to radiation therapy (Figure 1). As expected, 
dermal thickening was appreciated on H+E specimens ten weeks 
after IR. DFO administration, whether through patch or injection, 
decreased dermal thickness compared with IR control skin when 
administered prophylactically, during acute recovery, in the post-
recovery chronic phase, or continuously (Figure  3A). Interestingly, 
continuous patch treatment (Contin P) was similar to normal skin in 
measured dermal thickness. Dermal collagen content, as shown by 
TC staining, was noted to increase following IR (Figure 3B). DFO ad-
ministration decreased collagen content, and again, collagen content 
with Contin P was similar to normal skin (Figure 3B). Picro analysis 
was performed to assess RIF changes to collagen fibre assembly and 
ultrastructure (Figure 3C and Figure S1). We found that DFO treated 

groups clustered more similarly to normal skin than to IR control skin 
when analysed using a supervised computer learning algorithm, es-
pecially the Contin P group (Figure 3C).

Paralleling histologic findings, weekly suction Cutometer mea-
surements revealed significantly decreased dermal elasticity follow-
ing radiation therapy compared with unirradiated skin. Treatment 
with DFO via patch delivery or injection showed a comparatively 
smaller decrease in elasticity than IR control skin (Figure  4A,B). 
However, while all DFO treatment regimens were associated with 
improved elasticity, the greatest benefit was appreciated with 
Contin P treatment. Finally, tensile testing of skin samples at week 
10 matched Cutometer readings (Figure 4C). DFO treatment whether 
through patch or injection resulted in reduced stiffness when ad-
ministered prophylactically, during acute recovery, or continuously. 
Nonetheless, continuous patch treatment yielded the greatest ef-
fect, with a Young's modulus similar to normal non-irradiated skin 
(Figure 4C).

3.3  |  Skin perfusion

Comparable to previous reports, longitudinal laser Doppler perfusion 
measurements revealed a significant decrease in perfusion in irradi-
ated skin by week 8, the chronic injury phase, 4  weeks after com-
pletion of radiation. Initially, however, short-term perfusion rose in 
response to IR, demonstrated by increased measurements compared 
with normal non-radiated skin at week 4 (Figure  5A,B). Perfusion 
decreased in the following weeks for all irradiated groups, but DFO 
treated skin decreased less compared with IR control (Figure  5B). 
While all DFO treatment regimens were associated with increased 
laser Doppler perfusion readings at week 10 compared with IR control 
skin, Contin P treatment perfusion was most similar to normal skin.

CD31 immunofluorescent staining confirmed decreased vascu-
larity in irradiated skin samples, and increased vascularity was ap-
preciated in most DFO treated groups (Figure 5C). Delivery of DFO 
via patch or injection during acute recovery, in the post-recovery 
chronic phase, or continuously, increased CD31 staining at week 10. 
However, the greatest vascularity was appreciated with continuous 
patch delivery, which again was the closest to normal skin histologi-
cally of all treatment groups.

4  |  DISCUSSION

4.1  |  Deferoxamine reduces indirect radiation 
damage by decreasing reactive oxygen species 
production

Iron chelation removes the catalyst for Fenton-based ROS produc-
tion. A decrease in indirect radiation injury is achieved as inflamma-
tory cascades, secondary to the oxidative damage caused by these 
ROS, are inhibited from the outset. This can play a quite significant 
protective role, considering more tissue injury may occur via this 
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indirect mechanism of radiation than by the initial direct DNA dam-
age.32,33  We investigated how DFO would affect this process by 
testing several downstream effects of pathologic oxidation. 8-Iso, an 
arachidonic acid metabolite and isoform of naturally occurring pros-
taglandin F2alpha, is a product of lipid peroxidation. This is a more 
stable and reliable biomarker for oxidative damage compared with 
direct measurement of ROS themselves, which have fleeting half-
lives on the order of nanoseconds.34-36 In addition, the antioxidant 
enzyme, glutathione, exists in its oxidized by-product form, GSSG, 
and in its reduced active form, GSH. The GSSG:GSH ratio is thus an-
other indicator of oxidative stress level. Comparatively, more GSSG 
will be present in cases of greater ROS production since active GSH 
becomes oxidized while protecting cellular components.37 Finally, 
as ROS-mediated damage accumulates, p53 tumour suppressor-
activated apoptotic proteins are expressed. One of these, BAX, is a 
pore-forming protein responsible for mitochondrial cytochrome-C 

release and functions as an apoptotic activator.38-40 In our study, 
iron chelation decreased lipid peroxidation, increased active antioxi-
dant stores and decreased apoptotic cellular events in the dermis. 
Furthermore, while both patch delivery and injection of DFO were 
effective at reducing ROS, transdermal patch delivery showed a 
greater effect than direct injection for each of these oxidative dam-
age measures.

4.2  |  Deferoxamine ameliorates dermal fibrosis 
secondary to radiation injury

Biomechanical changes indicative of fibrosis were also reduced 
with DFO treatment. In particular, normal-appearing collagen 
content and extracellular matrix configurations were preserved 
with continuous patch DFO delivery. Longitudinal elasticity 

F I G U R E  2  ROS and oxidative stress 
markers. (A) Perls Prussian Blue staining 
for ferric iron: representative 40× images 
(left) and quantification (right chart). DFO 
treatment decreased mean free iron in 
the dermis compared with IR Control 
and Normal Skin (*p < 0.05, **p < 0.01, 
****p < 0.0001). (B) Representative 20× 
8-Iso images (left) and quantification (right 
chart). DFO treatments decreased ROS-
mediated lipid peroxidation compared 
with IR Control skin (****p < 0.0001). 
(C) ELISA of glutathione oxidation state 
(left chart) and BAX protein levels (right 
chart). DFO treatment decreased ratio 
of GSSG:GSH compared with IR Control 
skin (****p < 0.0001). DFO treatment 
also decreased BAX apoptotic protein 
level compared with IR Control skin 
(****p < 0.0001). Greater reduction in 
GSSG:GSH and BAX protein for DFO 
Patch relative to Injection were noted. 
Abbreviations: 8-Iso, 8-Isoprostane; 
BAX, Bcl-2-associated protein X; DFO, 
deferoxamine; ELISA, enzyme-linked 
immunosorbent assay; GSSG:GSH, ratio 
of oxidized to reduced glutathione; Inj, 
injection; ns, not significant; ROS, reactive 
oxygen species
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measurements and subsequent tensile testing were congruent 
with histological findings. DFO helped to maintain elasticity of 
skin, avoiding thickening and stiffening that would have occurred 
with expected RIF progression. For each biomechanical metric, 
the transdermal patch showed a greater effect than injection, 
and the greatest effects were appreciated with treatment during 

acute recovery or continuous therapy. Additionally, DFO treat-
ment prophylactically or during the post-recovery chronic phase 
still showed an effect, albeit to a lesser degree than the other two 
regimens. These findings may highlight the importance of timing 
for DFO-mediated ROS abatement. Prophylactic DFO adminis-
tration may have a lesser effect on subsequent radiation-induced 

F I G U R E  3  Histological RIF quantification. (A) Representative 20× H + E specimens (left) and quantification of dermal thickness (right 
chart). Mean dermal thickness was reduced with DFO treatment compared with IR control skin (****p < 0.0001). Greatest reduction in 
dermal thickness with continuous patch (Contin P) was noted, which was similar to normal skin. (B) Representative 20× TC samples (left) 
and quantification of collagen content (right chart). Mean collagen content was reduced with DFO treatment compared with IR Control skin 
(****p < 0.0001). Greatest reduction in collagen content with continuous patch (Contin P) was noted, which was similar to normal skin. (C) 
Representative 40× Picro images (left) and machine-learning algorithm-derived collagen ultrastructure UMAP representation of extracellular 
matrix characteristics for normal skin (light grey), IR Control (dark grey), and continuous DFO patch (pink). Normal Skin and Contin P DFO 
treatment overlapped more with each other than with IR Control skin, represented by cluster shape approximation underneath plot points. 
Abbreviations: Chron, chronic; Contin, continuous; DFO, deferoxamine; H+E, haematoxylin and eosin; Inj, injection; IR, irradiation; P, patch; 
Picro, Picrosirius Red; PPx, prophylactic; RIF, radiation-induced fibrosis; TC, Masson's Trichrome; UMAP, uniform manifold approximation 
and projection
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ROS generation, while post-recovery chronic phase delivery may 
occur well beyond the key period of ROS generation and initiation 
of tissue damage.

4.3  |  Dermal blood supply is augmented by 
deferoxamine treatment

Laser Doppler imaging indicated that DFO treatment minimized 
the drop in perfusion usually seen with the development of fibro-
sis.41 Examination of these results along with CD31 immunofluo-
rescent staining provided further insight into timing of delivery 

and administration route. Paralleling previously published work, 
injection of DFO in the post-recovery chronic phase increased 
laser Doppler measured perfusion and histologic vascularity.12 
Continuous patch treatment was also noted to yield the great-
est effect, as similarly shown by Shen et al.13 Since endothelial 
damage is both a product of radiation injury and a catalyst of fi-
brosis development, preservation of perfusion may contribute, at 
least in part, to the improved fibrosis measures observed.10 With 
DFO treatment in the post-recovery chronic phase, improvement 
in fibrosis may be more reliant on enhanced blood flow and the 
replenishment of a healthy microenvironment than on damage 
prevention. Of note, we observed an increase in perfusion early 

F I G U R E  4  Biomechanical properties. 
(A) Representative suction Cutometer 
curves at week 10. One curve displayed 
for each group. (B) Elasticity analysis 
at week 10. Mean maximum suction 
amplitude was significantly higher for 
DFO treated groups compared with 
IR Control skin (****p < 0.0001), with 
greatest amplitude appreciated for 
continuous DFO patch treatment (Contin 
P). (C) Post-harvest tensile testing 
revealed most DFO treatment groups 
were significantly less stiff than IR Control 
skin. Patch or injection treatment during 
post-recovery chronic phase (Chron P 
and Chron Inj) and DFO injection during 
acute recovery (Acute Inj) groups had 
lower mean Young's Moduli vs. IR Control, 
however, none of these three groups 
achieved statistical significance like the 
other groups (**p < 0.01, ****p < 0.0001). 
Abbreviations: Chron, chronic; Contin, 
continuous; DFO, deferoxamine; 
Inj, injection; IR, irradiation; ns, not 
significant; P, patch; PPx, prophylactic
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following radiation therapy. While this was not observed by Shen 
et al.,13 site-specific differences in skin, as well as standardized 
conditions for measurement, may have contributed to this dis-
crepancy. Furthermore, our findings in this present manuscript 
parallel histologic findings by others, showing acute radiation ex-
posure increasing vascular permeability and transient pathologic 
blooming of irregular capillaries.42,43

4.4  |  Transdermal delivery potentiates the anti-
fibrotic effects of deferoxamine treatment

This study revealed a greater benefit from transdermal DFO admin-
istration than from a solubilized injectable formulation. Although 
both were effective at reducing RIF, greater improvement was noted 
with the patch for each treatment regimen. Repetitive trauma alone, 

like in the case of these needlestick injuries, causes fibrosis. For 
example, lipodystrophy and similar fibroproliferative reactions are 
commonly seen in patients with diabetes who inject insulin without 
vigilant site rotation.44-46 Daily injections over the treatment dura-
tion (70 injections total in the case of the Contin Inj group) in the 
same area may cause significant injury and can be counterproduc-
tive to wound healing. In breaching the protective barrier of the 
skin, bacterial inoculation also becomes a possibility, and attendant 
inflammation could similarly promote fibrosis. Thus, even if the in-
jectable form were to deliver a higher local concentration of DFO, it 
may come at a cost.

Additionally, the patch provided a more consistent release of 
DFO compared with injections. DFO's half-life is quite short, on 
the order of hours, so an effective local concentration may not be 
maintained long after the cessation of treatment.47  The patches 
remained in place continuously, eluting DFO into the dermis in 

F I G U R E  5  Dermal microvasculature 
analysis. (A) Laser Doppler perfusion 
imaging representative heat maps 
of dorsal skin at week 10 (left) and 
longitudinal perfusion tracking measured 
biweekly throughout experiment (right 
chart). (B) Mean perfusion analysis at 
week 4 (left chart) and week 10 (right 
chart). At week 4, immediate radiation 
injury elevated mean perfusion for all 
groups compared with Normal Skin 
(****p < 0.0001). By week 10, DFO 
treatment groups' mean perfusion 
levels decreased less than IR Control 
skin (***p < 0.001, ****p < 0.0001). 
The highest perfusion measured with 
continuous DFO patch treatment 
(Contin P) was noted, which was similar 
to normal skin. (C) Representative 20× 
CD31 immunofluorescent images (left) 
and quantification (right). Most DFO 
treatments increased immunofluorescent 
staining for CD31 compared with IR 
Control skin (**p < 0.01, ***p < 0.001, 
****p < 0.0001). Note that, prophylactic 
DFO patch (PPx P) and prophylactic 
DFO injection (PPx Inj) groups' mean red 
pixel area was greater than IR Control; 
however, neither achieved significance. 
Abbreviations: Chron, chronic; Contin, 
continuous; DFO, deferoxamine; 
Inj, injection; IR, irradiation; ns, not 
significant; P, patch; PPx, prophylactic
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sustained fashion until the next day's patch was applied. In contrast, 
daily solubilized injectable DFO was given all at once. This made 
for an episodic dosing regimen, so although the same total amount 
of DFO was delivered, the dermal exposure to the drug may have 
been shorter lived. This may have, therefore, caused fluctuations in 
iron concentration between treatments which may have influenced 
downstream effects.

4.5  |  Future directions and limitations

There is great demand for an effective treatment for RIF. Treatments 
such as early rehabilitative care, laser therapy and hyperbaric oxy-
gen therapy, as well as pharmacological treatments including pen-
toxifylline and superoxide dismutase may hold potential, however, 
studies examining the efficacy of these remain lackluster.8 Although 
our results in a murine model are promising, topical deferoxamine 
treatment needs further experimentation before it can be translated 
into clinical practice. Investigating the intracellular effects of DFO 
may provide further insight into the discrepancy in ROS measures 
we found between patch and injection groups. In addition to low 
penetrance of the stratum corneum, DFO cannot easily cross cel-
lular/organelle lipid bilayers. Therefore, DFO introduced to the 
extracellular compartment should theoretically only chelate extra-
cellular iron.48 The reverse micelle formulation may also be providing 
a means for DFO to enter the cell, where it can act upon intracellular 
iron. Mitochondria are responsible for the majority of intracellular 
ROS production, and reducing labile mitochondrial iron has been 
shown to alleviate cellular damage in ischaemia/reperfusion injury, 
another ROS-mediated pathway of cytotoxicity.19,49,50  Moreover, 
several studies have implicated intracellular lysosomal iron in ROS-
mediated injury.51,52

Importantly, mouse skin is different from human skin, and mu-
rine metabolism and healing/fibrosis occur more rapidly than with 
humans. Periods of recovery and the development of chronic fibro-
sis were, therefore, defined based on previously published stud-
ies.53,54 Mouse skin layers also have different relative thicknesses 
compared with human skin. Additionally, a layer of subdermal 
muscle present in mouse skin, the panniculus carnosus, is absent 
in human skin.55 Therefore, similar studies in a large animal model 
such as pigs, where the skin is much more structurally similar to 
human skin, would be important for greater translational value of 
our findings.

5  |  CONCLUSION

Deferoxamine delivered directly to radiation-damaged skin aug-
ments healing and decreases fibrosis. The transdermal patch for-
mulation was more efficacious than the injectable form within each 
treatment regimen. A prophylactic effect was also observed, limiting 
self-perpetuating ROS-mediated inflammatory processes involved in 
fibrosis development.
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