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Abstract: The present paper aims to investigate the influence of perforated membrane geometry on
the performance of biosensors. For this purpose, a 2-D axisymmetric model of an amperometric
biosensor is analyzed. The governing equations describing the reaction-diffusion equations containing
a nonlinear term related to the Michaelis–Menten kinetics of the enzymatic reaction are introduced.
The partial differential governing equations, along with the boundary conditions, are first non-
dimensionalized by using appropriate dimensionless variables and then solved in a non-uniform
unstructured grid by employing the Galerkin Finite Element Method. To examine the impact of
the hole-geometry of the perforated membrane, seven different geometries—including cylindrical,
upward circular cone, downward circular cone, upward paraboloid, downward paraboloid, upward
concave paraboloid, and downward concave paraboloid—are studied. Moreover, the effects of
the perforation level of the perforated membrane, the filling level of the enzyme on the transient
and steady-state current of the biosensor, and the half-time response are presented. The results of
the simulations show that the transient and steady-state current of the biosensor are affected by
the geometry dramatically. Thus, the sensitivity of the biosensor can be influenced by different
hole-geometries. The minimum and maximum output current can be obtained from the cylindrical
and upward concave paraboloid holes. On the other hand, the least half-time response of the biosensor
can be obtained in the cylindrical geometry.

Keywords: amperometric biosensor; biosensor current; finite element method; half-time response;
mathematical model

1. Introduction

The detection of bio-particles (like nucleic acids, proteins, bacteria, and viruses) plays a crucial
role in the early diagnosis and prevention of various diseases, such as breast and prostate cancers.
Nowadays, the start of diseases and their progress can be rapidly assessed using biosensors [1,2].
A quick and precise detection can lead to the administration of appropriate medicine and reduces the
possibility of reaching a critical stage of the disease [3]. Therefore, the study of such biosensors has

Sensors 2020, 20, 2910; doi:10.3390/s20102910 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1554-1083
https://orcid.org/0000-0003-0965-2358
https://orcid.org/0000-0002-5976-2697
http://www.mdpi.com/1424-8220/20/10/2910?type=check_update&version=1
http://dx.doi.org/10.3390/s20102910
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 2910 2 of 16

drawn the attention of the investigators to examine the effects of bioparticle detection by carrying out
analytical, numerical, and experimental research.

Typically, biosensors are made up of two elements. First, the specific biological element, usually an
enzyme, is responsible for detecting a sample solution. The second element that translates biorecognition
is called a transducer event into an electrical signal [4]. Amperometric biosensors work by measuring
electrical current. Stability is a crucial characteristic of biosensors. The operational stability of a
biosensor mainly depends on the geometry of the sensor and the applied transducer. Amperometric
biosensors are reliable and relatively cheap with high sensitivity, making them practical for industrial,
medical, and environmental applications [5,6]; they have been a main focus of attention mostly because
of the wide range of oxidase substrates they can measure, like alcohol and cholesterol [7–9].

Numerous studies can be found regarding the mathematical modeling of amperometric biosensors.
Early works were mainly devoted to simple geometries and one-dimensional-in-space models.
The mathematical models are based on time-dependent diffusion equations with a non-linear term
associated with the Michaelis-Menten kinetics of the enzymatic reaction. For instance, Baronas et al. [10]
studied the impact of enzyme membrane thickness on the response of an amperometric biosensor in a
simple enzyme-catalyzed reaction. They employed the Finite Difference Method (FDM) for solving a set
of non-linear 1-D equations and showed that the maximum current of the biosensor is a non-monotonic
function of the membrane thickness. Meena and Rajendran [6] developed the 1-D mathematical
modeling of amperometric and potentiometric biosensors. They used the Homotopy perturbation
method to solve the non-linear differential equations and discussed the biosensor steady-state current
concerning the Damköhler number (σ). Djaalab et al. [11] surveyed the mathematical modeling of
highly sensitive enzyme biosensor kinetics. They employed the Laplace transform method and the
Heaviside expansion theorem for solving the set of time-dependent reaction-diffusion equations in
a one-dimensional-in-space model of the biosensor. Djaalab et al. [11] also showed that in highly
sensitive biosensors, reducing the Damköhler number leads to an increase in the substrate concentration
degradation. Loghambal and Rajendran [12] developed a theoretical model for the simulation of
a mediated enzyme electrode in the presence of oxygen. The homotopy perturbation method was
employed to solve the system of coupled, steady-state, non-linear reaction-diffusion equations. Their
results showed that the thickness of the enzyme electrode caused a significant change in both the
magnitude of the current response and the general behavior of the system. Croce et al. [13] surveyed
the mathematical modeling of an amperometric glucose biosensor coated with layer-by-layer outer
membranes and compared the diffusion profiles of various participating species and their impact on
the performance of the biosensors. They utilized the FDM scheme for their numerical simulation.
Croce et al. [13] compared a humic acids/ferric cations (HAs/Fe3+) membrane (with a high permeability
to glucose) with a poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDDA)
membrane (as a low permeable membrane to glucose) and showed that the biosensor response for
the low glucose permeable membrane (PSS/PDDA) was about 30% higher than the one with a high
permeability to glucose.

Extensive studies have been devoted to the mathematical modeling of the so-called sandwich-type
amperometric biosensors with multiple layers. In these devices, the enzyme layer is trapped between
two membranes. These membranes control the diffusion transport of the species and also diminish the
potential interferences [14]. Aziz [15] developed a 1-D mathematical model to investigate the influence
of membrane permeability and also selectivity on peroxide-based glucose biosensors. Their studied
biosensor layout consists of three layers of selective membrane (as interferant retardant), an enzyme
layer, and also the outer layer (diffusion layer). They used FDM for the numerical simulation and
revealed that the selectivity of the selective membrane plays a major role in reducing interference.
Romero et al. [14] investigated the mathematical modeling of sandwich-type amperometric biosensors.
They studied the reaction-diffusion mechanism within the enzymatic membrane by considering oxygen
as the mediator. Romero et al. [14] employed the FDM and Fortran programming language for numerical
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simulation and revealed that the permeability to the analyte of the external membrane and its thickness
are the most influential parameters for enhancing the response time of sandwich-type biosensors.

An outer porous or perforated membrane is mainly utilized in practical biosensors for
increasing their stability and also prolonging their calibration curves [16–18]. Schulmeister and
Pfeiffer [19] developed the mathematical modeling of a biosensor in the presence of a perforated
membrane. However, the geometry of the membrane was not considered in their 1-D model.
The two-dimensional-in-space mathematical modeling of biosensors was proposed by Baronas et al. [20,21].
In [21], Baronas et al. investigated the influence of the presence of a cylindrical perforated membrane
on the performance of the biosensor. They assumed that the perforated membrane was completely
filled with enzymes and showed that the perforation level of the membrane could strongly affect
the steady-state and also half-time response of the biosensor. In the other study, Baronas et al. [20]
surveyed the influence of the filling level of enzymes in the perforated membrane and revealed that
the impact of the filling level on the biosensor response diminished as the radius of the hole decreased.

It is worth noting that in comparison to 1-D cases, the 2-D modeling of biosensors is highly
computationally demanding and may not be efficient in some situations. As such, in another study,
Baronas et al. [22] evaluated the conditions in which 1-D models are accurate enough to be employed
for the mathematical modeling of biosensors. They found that 1-D models cannot be used when the
hole of the perforated membrane is very small; thus, in such cases, 2-D models should be utilized to
obtain accurate outcomes. In addition to this, the geometry of the perforated membrane governs the
mass transport by the diffusion process and thus can affect the overall performance of amperometric
biosensors. Previous surveys have significantly increased knowledge about the impact of influential
parameters on the performance of biosensors. However, in all of the studies to date, only cylindrical
perforated membranes have been analyzed and, to the best of the authors’ knowledge, the impact of
the shape of the mentioned membrane on the steady-state current and time response of biosensors has
not been addressed yet.

With the above literature review, it is now clear that this study aims to numerically survey the
influence of the geometry of the perforated membrane on the performance of biosensors. For this
purpose, a 2-D axisymmetric amperometric biosensor with selective and perforated membranes was
analyzed. Seven different geometries were designed and modeled. The governing equations were
solved using the Galerkin Finite Element Method. The results were first compared and validated
with four different works. Then, the influence of the geometry of the perforated membranes on the
steady-state current and also the time response of the biosensor was discussed.

2. Structure of the Biosensor

The schematic view of the biosensor is provided in Figure 1. It is assumed that the thickness of the
perforated and selective membranes is much lower than the length and width of the biosensor. The holes
in the perforated membrane can be modeled to form the same unit cells with hexagonal patterns.
Only half of the cross-section of the mentioned unit cell is studied because of its symmetry [20,21].

Scheme 1 illustrates various regions of the biosensor. While in the bulk solution region both
convection and diffusion mechanisms (without reaction) can be found, the diffusion mode governs the
other layers [14,23]. The enzyme-catalyzed reaction takes place in the enzyme region. In the selective
membrane, the production detection process is performed. Finally, in the electrode, the biochemical
energy from the enzyme reaction is converted by the transducer to the output current.
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3. Formulation of the Problem

The biosensor can be mathematically modeled in a 2-D domain consisting of the discussed regions.
The Michaelis–Menten model is utilized for the study of the kinetics of enzymes [24]. According to
the Michaelis–Menten model, the substrate (S) binds to the enzyme (E) with the reaction rate of k1

and converts to the ES. The formed complex (ES) then dissociates during the second reaction with the
reaction rate of k2 and produces the product (P), regenerating the enzyme [20]. It is worth noting that

the rate of forward reaction rate (k2) for ES
k2
→ E + P is much higher than the reverse one, and thus

the reverse reaction can be neglected. Following Baronas et al. [25], the reaction model can be shown
as follows:

E + S
k1
�
k−1

ES
k2
→ E + P (1)

Since the concentration of the substrate is much more than the ES, it is reasonable to consider a
constant concentration for the ES. Thus, the concentration of the enzyme production can be calculated
using the following equation [26]:

∂ES
∂t

= k1ES− (k2 + k−1)ES (2)

where S, E, and ES represent the concentrations of the substrate, enzyme, and the enzyme–substrate
complex, respectively. E0 is the initial concentration of the enzyme. By replacing the expression
E = E0 − ES in Equation (2), the production rate (v) can be written as follows [25,27]:
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∂P
∂t

= v = k2ES =
k2E0S

k2+k−1
k1

+ S
=

VmS
Km + S

(3)

In Equation (3), P represents the concentration of the product. Moreover, the reaction rate
approaches the saturated reaction rate when the E0 = ES. For this case, Vm = k2E0 represents the
maximum reaction rate and Km = (k2 + k−1)/k1 is the Michaelis-Menten constant, showing the
concentration of the substrate when the reaction velocity is equal to one half of the maximal velocity of
the reaction. The mass diffusion in the layers can be expressed over time with Fick’s law of diffusion in
two or three dimensions, as follows:

∂c
∂t

= D∆c (4)

where t is the time, ∆ is the Laplace operator, c is the concentration of a component, and D is the
corresponding diffusion coefficient. The value of the diffusion coefficient indicates the quality of the
transfer, which means that the larger the diffusion coefficient, the better the diffusion mass transfer.

Shown in Figure 2 are the seven studied unit cells with different geometrical designs. Except
for the cylindrical one (Figure 2a), the perforated membranes were designed to be in upward or
downward pairs of a circular cone, paraboloid, and concave paraboloid. As such, the minimum
and maximum radii of the perforated membranes are set to be a∗2 and a∗3, respectively. Moreover,
a∗1 corresponds to the hole radius. The thickness of the selective membrane is b∗1. b∗4 − b∗2 and b∗5 − b∗4 are
the perforated membrane thickness and the diffusion layer thickness, respectively. The filling level
of enzymes is shown with b3. Region Ω1 indicates the selective membrane, Ω2 specifies the layer
occupied with the enzymes, Ω3 is the external diffusion layer, and Ω4 is the impermeable carrier of the
perforated membrane.
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Figure 2. The geometries of the biosensor unit cell: (a) cylindrical, (b) upward circular cone,
(c) downward circular cone, (d) upward paraboloid, (e) downward paraboloid, (f) upward concave
paraboloid, and (g) downward concave paraboloid. Figures are not to scale.
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It is assumed that the selected layer has a uniform thickness, and the thicknesses of both the
perforated membrane and the selective membrane in the biosensor are much less than its length
and width. The volume of the bulk solution is considered to be extremely high, while the substrate
concentration can be assumed to be constant [28,29]. The concentration of the ES form can be assumed
to be constant because the biosensor reached the steady-state condition in a short time. By using
Equation (2), the maximum rate of enzymatic reaction can be obtained. Therefore, according to Figure 2,
the biosensor described from the process starts (t* > 0) with the system of reaction-diffusion equations
as follows:

∂P∗1
∂t∗

= D∗1∆P∗1 (r∗, z∗) ∈ Ω1, (5a)

∂P∗2
∂t∗

= D∗2∆P∗2 +
VmaxS∗2
Km + S∗2

(r∗, z∗) ∈ Ω2, (5b)

∂S∗2
∂t∗

= D∗2∆S∗2 −
VmaxS∗2
Km + S∗2

(r∗, z∗) ∈ Ω2, (5c)

∂S∗3
∂t∗

= D∗3∆S∗3 (r∗, z∗) ∈ Ω3, (5d)

∂P∗3
∂t∗

= D∗3∆P∗3 (r∗, z∗) ∈ Ω3, (5e)

where P∗i = P∗i (r
∗, z∗, t∗) and S∗i = S∗i (r

∗, z∗, t∗), i = 1, 2, 3 are the product and substrate concentrations,
respectively. The symbols r* and z* indicate the radial and axial distances, respectively, and t* denotes
elapsed time. P∗1 is the product concentration on the surface of the electrode; this concentration and its
variation are important for measuring the change in the current of the biosensor (see Equation (26)).
Here, P∗2 and P∗3 represent the product concentrations of the enzyme and external diffusion layers,
respectively. Since the reaction product oxidizes at the electrode surface rapidly, it can be assumed that
its concentration at the electrode surface (z∗ = 0) is zero [21].

At the interface between the bulk solution and the biosensor (z∗ = b∗5), the concentration of the
enzyme reaction is assumed to be zero because the reaction has not yet occurred. S∗2 and S∗3 are the
substrate concentration on the selective membrane and the perforated membrane. D∗1, D∗2, and D∗3
represent the diffusion coefficient in these regions.

The initial conditions are described as (t∗ > 0):

S∗2(r
∗, z∗, 0) = 0 (r∗, z∗) ∈ Ω2, (6a)

S∗3(r
∗, z∗, 0) = 0 (r∗, z∗) ∈ Ω2/Γ3, (6b)

S∗3(r
∗, z∗, 0) = S∗0 (r∗, z∗) ∈ Γ3, (6c)

P∗i (r
∗, z∗, 0) = 0 (r∗, z∗) ∈ Ωi i = 1, 2, 3, (6d)

where S∗0 is the substrate concentration in the solution, Ωi is the area of each layer, and Γi is the upper
surface of Ωi. Due to the oxidation of the reaction product at the electrode surface, its concentration at
the electrode surface is considered to be zero (t∗ > 0):

P∗1(r
∗, 0, t∗) = 0 r∗ ∈ [0, a∗1]. (7)

Since no reaction has occurred on the boundary, (z∗ = b∗5)Γ3, the concentration of the enzymatic
product, has to be constant and zero. During the biosensor operation, the substrate concentration,
as well as the product over the enzyme surface (bulk solution and membrane interface), remains
constant; therefore (t∗ > 0):

P∗3(r
∗, b∗5, t∗) = 0 r∗ ∈ [0, a∗1], (8)
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S∗3(r
∗, b∗5, t∗) = S∗3 r∗ ∈ [0, a∗1], (9)

∂P∗1
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂P∗1
∂r∗

∣∣∣∣∣∣
r∗=a∗1

= 0. (10)

The non-leakage condition for the symmetric boundaries of the unit cell is considered as follows:

∂P∗2
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂P∗2
∂r∗

∣∣∣∣∣∣
r∗=a∗1

=
∂S∗2
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂S∗2
∂r∗

∣∣∣∣∣∣
r∗=a∗1

= 0 z∗ ∈ [b∗1, b∗1], (11a)

∂P∗2
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂S∗2
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂P∗2
∂n

=
∂S∗2
∂n

= 0 z∗ ∈ [b∗2, b∗3], (11b)

∂P∗3
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂S∗3
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂P∗3
∂n

=
∂S∗3
∂n

= 0 z∗ ∈ [b∗3, b∗4], (11c)

∂P∗3
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂P∗3
∂r∗

∣∣∣∣∣∣
r∗=a∗1

=
∂S∗3
∂r∗

∣∣∣∣∣∣
r∗=0

=
∂S∗3
∂r∗

∣∣∣∣∣∣
r∗=a∗1

= 0 z∗ ∈ [b∗4, b∗5], (11d)

∂P∗2
∂z∗

∣∣∣∣∣∣
z∗=b∗2

=
∂S∗2
∂z∗

∣∣∣∣∣∣
z∗=b∗2

= 0 r∗ ∈ [a∗2, a∗1], (11e)

∂P∗3
∂z∗

∣∣∣∣∣∣
z∗=b∗4

=
∂S∗3
∂z∗

∣∣∣∣∣∣
z∗=b∗4

= 0 r∗ ∈ [a∗2, a∗1], (11f)

where n denotes the normal vector of the hole surface. At the boundary between the two regions,
it is necessary to apply matching conditions. According to the conservation of mass, the mass flux of
particles at the interfaces is equal on both sides. In addition to this, it can be assumed that the substrate
concentration and the enzyme product on the boundaries are equal for both sides:

S∗2 = S∗3 and D∗2
∂S∗2
∂z∗

∣∣∣∣∣∣
Γ2

= D∗3
∂S∗3
∂z∗

∣∣∣∣∣∣
Γ3

(r∗, z∗) ∈ Γ3, (12a)

P∗i = P∗i+1 and D∗i
∂P∗i
∂z∗

∣∣∣∣∣∣
Γi

= D∗i+1

∂P∗i+1

∂z∗

∣∣∣∣∣∣
Γi+1

(r∗, z∗) ∈ Γii = 1, 2. (12b)

In physical experiments, the anodic current generated at the electrode surface is considered as the
amperometric biosensor response, which is a linear function of the reaction product gradient at the
surface of the electrode. According to the Faraday and Fick laws, the current density on the electrode
surface can be obtained as:

i∗(t) = neFD∗1
2

a∗1
2

∫ a∗1

0

∂P∗1
∂z∗

∣∣∣∣∣∣
z∗=0

r∗dr∗, (13)

where ne is the number of electrons involved in a charge transfer at the electrode surface and F is
the Faraday constant [4]. The steady-state current I* can be obtained when the concentration of the
production remains constant at the sensor surface:

I∗ = lim
t∗→∞

i∗(t∗). (14)

Finally, in the present study, T0.5, half of the required time to reach the steady-state current, is
used to evaluate the dynamics of the biosensor operation [25]:

T0.5 =
{
t∗ : i∗(t∗) = 0.5I∗

}
. (15)
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4. Dimensionless Mathematical Model

The governing Equations (6) and the corresponding boundary and initial conditions (7)–(11) are
non-dimensionalized by introducing the following set of dimensionless variables:

Pi =
P∗i
Km

, Si =
S∗i
Km

, r =
r∗

a∗1
, z =

z∗

a∗1
, ai =

a∗i
a∗1

, bi =
b∗i
a∗1

, t =
t∗D∗1
a∗1

2 i = 1, 2, 3. (16)

Substituting Equation (16) into the governing Equation (5), the dimensionless nonlinear
reaction-diffusion equations can be summarized as follows:

∂P1

∂t
= ∆P1 (r, z) ∈ Ω1, (17a)

∂P2

∂t
= D2∆P2 + σ2 S2

1 + S2
(r, z) ∈ Ω2, (17b)

∂S2

∂t
= D2∆S2 − σ

2 S2

1 + S2
(r, z) ∈ Ω2 (17c)

∂S3

∂t
= D3∆S3 (r, z) ∈ Ω3, (17d)

∂P3

∂t
= D3∆P3 (r, z) ∈ Ω3, (17e)

where Di = D∗i /D1 is the dimensionless diffusion coefficient and σ2 = Vmaxa∗1
2/KmD1 is the diffusion

modulus (Damköhler number), which compares the rate of enzyme reaction (Vmax/Km) with the
mass transport through the enzyme layer (D1/a∗1

2) [25]. In fact, for high values of σ2, the diffusion
mechanism is considered to control the biosensor response, while, when it approaches zero, the enzyme
kinetics prevail in the response [6,21]. The non-dimensional initial conditions are as follows:

S2(r, z, 0) = 0 (r, z) ∈ Ω2, (18a)

S3(r, z, 0) = 0 (r, z) ∈ Ω2/Γ3, (18b)

S3(r, z, 0) = S0 = S∗0/Km (r, z) ∈ Γ3, (18c)

Pi(r, z, 0) = 0 (r, z) ∈ Ωii = 1, 2, 3, (18d)

and the dimensionless boundary conditions read:

P1(r, 0, t) = 0 r ∈ [0, 1], (19a)

P3(r, b5, t) = 0 r ∈ [0, 1], (19b)

S3(r, b5, t) = S0 = S∗0/Km r ∈ [0, 1], (19c)

∂P1

∂r

∣∣∣∣∣
r=0

=
∂P1

∂r

∣∣∣∣∣
r=1

= 0, (19d)

∂P2

∂r

∣∣∣∣∣
r=0

=
∂P2

∂r

∣∣∣∣∣
r=1

=
∂S2

∂r

∣∣∣∣∣
r=0

=
∂S2

∂r∗

∣∣∣∣∣
r=1

= 0 z ∈ [b1, b2], (19e)

∂P2

∂r

∣∣∣∣∣
r=0

=
∂S2

∂r

∣∣∣∣∣
r=0

=
∂P2

∂n
=
∂S2

∂n
= 0 z ∈ [b2, b3], (19f)

∂P3

∂r

∣∣∣∣∣
r=0

=
∂S3

∂r

∣∣∣∣∣
r=0

=
∂P3

∂n
=
∂S3

∂n
= 0 z ∈ [b3, b4], (19g)
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∂P3

∂r

∣∣∣∣∣
r=0

=
∂P3

∂r

∣∣∣∣∣
r=1

=
∂S3

∂r

∣∣∣∣∣
r=0

=
∂S3

∂r

∣∣∣∣∣
r=1

= 0 z ∈ [b4, b5], (19h)

∂P2

∂z

∣∣∣∣∣
z=b2

=
∂S2

∂z

∣∣∣∣∣
z=b2

= 0 r ∈ [a2, 1], (19i)

∂P3

∂z

∣∣∣∣∣
z=b4

=
∂S3

∂z

∣∣∣∣∣
z=b4

= 0 r ∈ [a2, 1]. (19j)

The non-dimensional matching conditions are:

S2 = S3 and D2
∂S2

∂z

∣∣∣∣∣
Γ2

= D3
∂S3

∂z

∣∣∣∣∣
Γ3

(r, z) ∈ Γ3, (20a)

Pi = Pi+1 and Di
∂Pi
∂z

∣∣∣∣∣
Γi

= Di+1
∂Pi+1

∂z

∣∣∣∣∣
Γi+1

(r, z) ∈ Γi i = 1, 2, (20b)

and the non-dimensional density of the current is given by:

i(t) =
i∗(t)a∗1

2neFD∗1Km
=

∫ 1

0

∂P1

∂z

∣∣∣∣∣
z=0

rdr, (21)

and the dimensionless output current reads as:

I = lim
t→∞

i(t). (22)

To compare the effects of hole-geometry and filling level on the i(t) and I in different geometries,
the following parameters are used [20–22]:

α = 1−
a∗2
a∗1

= 1− a2, (23)

γ =
b∗3 − b∗2
b∗4 − b∗2

=
b3 − b2

b4 − b2
, (24)

where γ is the level of the enzyme filling within the holes. For instance, γ = 0.5 represents a case where
half of the perforated membrane is filled with the enzyme. α represents the perforation level of the
perforated membrane. For the set of studied geometrical designs, the maximum radius of the holes
(a3) is considered to be constant, and thus α is a measure of the volume fraction of the holes in the
perforated membrane. In other words, increasing the perforation level (α) augments the surface area
of the impermeable part of the perforated membrane (Ω4).

5. Numerical Approach

The partial differential governing Equation (17) and the corresponding initial and boundary
conditions (18)–(20) are solved numerically utilizing the Galerkin method. Using the basis set {ξk}

N
k=1,

the product and the enzyme concentrations can be expanded as follows:

P j(r, z, t) ≈
N∑

k=1

P jk(t)ξk(r, z) and S j(r, z, t) ≈
N∑

k=1

S jk(t)ξk(r, z), j = 1, 2, 3. (25)

It should be noted that the function is the same for both variables. By substituting in Equation (17),
the following residual equations can be obtained at the internal domain nodes:

R(1)
i =

N∑
k=1

∂P1k
∂t

∫
Ω1

ξkξidΩ1 +
N∑

k=1

P1k


∫
Ω1

∂ξk
∂r

∂ξi
∂r

dΩ1 −

∫
Ω1

1
r
∂ξi
∂r

dΩ1 +

∫
Ω1

∂ξk
∂z

∂ξi
∂z

dΩ1

, (26a)
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R(2)
i =

N∑
k=1

∂P2k
∂t

∫
Ω2
ξkξidΩ2 + D2

N∑
k=1

P2k

 ∫
Ω2

∂ξk
∂r

∂ξi
∂r dΩ2 −

∫
Ω2

1
r
∂ξi
∂r dΩ2 +

∫
Ω2

∂ξk
∂z

∂ξi
∂z dΩ2


−σ2

 N∑
k=1

S2k
∫

Ω2

ξkdΩ2

/

1 +
N∑

k=1
S2k

∫
Ω2

ξkdΩ2


(26b)

R(3)
i =

N∑
k=1

∂S2k
∂t

∫
Ω2
ξkξidΩ2 + D2

N∑
k=1

S2k

 ∫
Ω2

∂ξk
∂r

∂ξi
∂r dΩ2 −

∫
Ω2

1
r
∂ξi
∂r dΩ2 +

∫
Ω2

∂ξk
∂z

∂ξi
∂z dΩ2


+σ2

 N∑
k=1

S2k
∫

Ω2

ξkdΩ2

/

1 +
N∑

k=1
S2k

∫
Ω2

ξkdΩ2


(26c)

R(4)
i =

N∑
k=1

∂P3k
∂t

∫
Ω3

ξkξidΩ3 + D3

N∑
k=1

P3k


∫
Ω3

∂ξk
∂r

∂ξi
∂r

dΩ3 −

∫
Ω3

1
r
∂ξi
∂r

dΩ3 +

∫
Ω3

∂ξk
∂z

∂ξi
∂z

dΩ3

 (26d)

R(5)
i =

N∑
k=1

∂S3k
∂t

∫
Ω3

ξkξidΩ3 + D3

N∑
k=1

S3k


∫
Ω3

∂ξk
∂r

∂ξi
∂r

dΩ3 −

∫
Ω3

1
r
∂ξi
∂r

dΩ3 +

∫
Ω3

∂ξk
∂z

∂ξi
∂z

dΩ3

 (26e)

In order to numerically evaluate the integral terms, the bi-quadratic function with three-point
Gaussian quadrature is employed. Then, the Newton-Raphson method is used to evaluate the
coefficients P jk( j = 1, 2, 3) and S jk( j = 1, 2) in the nonlinear residual Equation (26). More details about
the solution procedure can be found in the Reddy studies [30]. The iterative process is stopped when

the convergence criterion
√∑

(R j
i )

2
≤ 10−7 1 ≤ j ≤ 5 is reached. Moreover, a time step of 0.01 s is used

to evaluate the half-time response of the biosensor.

6. Validation of Computations

To ensure about the validity of the solution, the results of the present study have been compared
against the different numerical and experimental results of previously published surveys. Shown in
Figure 3 are the comparisons of the results of the present study with those provided by Baronas et al. [10]
for a 1-D case without perforated and selective membranes (Ds = Dp = 3.010−6 cm3/s, Km = 10−7 cm3/s).
Baronas et al. [10] employed FDM for solving the set of non-linear equations. Further, to compare
the accuracy of concentration profiles, we have compared our numerical code with the concentration
and current profiles of a Glucose sensor [13]. Figure 4a shows glucose and H2O2 concentration
profiles in the multi-layer sensor system consisting of GOx/PPD and HAs/Fe3+ as the first and second
layers. Additionally, Figure 4b, depicts the dependency of the current density of the biosensor on
the concentration of the glucose. All of the simulation parameters for comparison can be found in
Table 2 of [13]. In addition, to ensure the outcomes in the presence of a perforated membrane and also
the perforation level (α) and the level of the enzyme filling (γ) for a cylindrical geometry (Figure 2a),
the results of the present study have been validated with the work of Baronas [20] in Figure 5. Finally,
to compare the presented model with an experimental study, we have developed our FEM code to take
into account the influence of the mediator layer and compared our modeling with the experimental
data provided by Šimelevičius et al. [31] for mediator oxidization in an amperometric glucose biosensor.
The maximum value of the residual sum of squares (RSS) for Figures 3–5 (comparisons with numerical
approaches) are below 0.01, and for Figure 6 (comparison with the experimental data) it is around
0.35. In addition to this, the minimum value of R-square representing the similarity between the
obtained results of the present study and those mentioned above is 99.8% for the numerical validations
and 86.5% for the experimental comparison. This indicates an admissible agreement and very low
discrepancies between the present model and all of the analyzed literature.
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Figure 3. Comparison between the results of the present study with [10]: (a) variation in the
dynamic current of the biosensor with the time and thickness of the enzyme membrane (d) for
Vmax = 10−7 mol/cm3s; (b) dependency of the maximal current of the biosensor on the maximal
enzymatic rate (Vmax) and the thickness of the enzyme membrane.
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Figure 4. Comparison between the results of the present study with [13]: (a) concentration profiles
of glucose and H2O2 in a multi-layer sensor system consisting of GOx/PPD (20 nm) and HAs/Fe3+

(100 nm); (b) dependency of the maximal current of the biosensor on the glucose concentration with
20 nm of GOx/PPD and 100 nm of HAs/Fe3+.
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Figure 5. Comparison between the results of the present study and Baronas [20] in cylindrical geometry
for different values of the enzyme filling level (γ) and the perforation level (α): Vmax = 100 µM.
(1) a1 = 1 µm, S0 = 1 µM; (2) a1 = 0.8 µm, S0 = 100 µM; (3) a1 = 0.4 µm, S0 = 100 µM.
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Figure 6. Comparison between the results of the present study with the experimental data of [31];
variation in the dynamic current of the biosensor with time and for two substrate concentrations:
S0 = 0.49 and 0.99 mol/m3.

7. Results and Discussion

To study the impact of geometry on the biosensor performance, seven geometries—including
cylindrical, upward circular cone, downward circular cone, upward paraboloid, downward paraboloid,
upward concave paraboloid, and downward concave paraboloid—are considered. The effects of the
enzyme filling level and the perforation level in these holes on the transient and steady-state current and
the half-time response of the biosensor have been investigated for a range of geometrical parameters.
The values of parameters are considered as a1 = 10a3 = S0 = 1, D3 = 2D2 = 6, b5 = 4b2 = 16,
b4 = 7b1 = 14 and σ2 = 3.33× 104.

The effects of the perforation level on the transient current are shown in Figure 7a,b for various
geometries. It is clear that the geometry has a significant influence on the output current of the
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biosensor, and the transient current is higher for the upward geometries than the downward ones.
In addition to this, increasing the perforation level boosts the output current strongly. However,
the difference between the current in the upward and downward geometries decreased by increasing
the level of perforation for the concave paraboloid and circular cone geometries. The maximum current
can be obtained from the upward concave paraboloid holes. Figure 7c,d compares the effect of the
enzyme filling level on the transient current of the biosensors with different geometries. It is clear
that the γ affects both the biosensor response time and current. The current of the biosensor for high
values of γ is up to three times higher than that obtained when the enzyme filling level approaches
zero. Moreover, the difference between the upward and downward geometries vanishes for a low
level of enzyme. Finally, the minimum current is produced in the cylindrical geometry.
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Figure 7. Dependency of the output current on the perforation level (γ = 0.5): (a) α = 0.2, (b) α = 0.8.
The enzyme filling level (α = 0.5); (c) γ = 0.05; (d) γ = 0.95.

Figure 8 depicts the effect of the perforation level and enzyme filling level on the non-dimensional
output current of the biosensor. Obviously, the current increases with the level of perforation
exponentially, and the current is highly sensitive to α when it approaches 1. Moreover, increasing the
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perforation level reduces the difference between the maximum and minimum steady-state currents of
the hole-geometries, indicating that the impact of the hole-geometry on the output current decreases as
α increases. In contrast with α, the output current increases with the increment of the enzyme filling
level almost linearly.Sensors 2020, 20, x 15 of 17 

 

  

(a) (b) 

  
(c) (d) 

Figure 8. Dependency of the steady-state biosensor current on the perforation level: (a) 0.05  , (b) 

0.95  . The enzyme filling level: (c) 0.35  , (d) 0.8  . 

Table 1 compares the effect of the perforation level and enzyme filling level on the half-time 

response of the biosensor. It is evident that the cylindrical and upward concave paraboloid holes 

require the lowest and highest time intervals to reach the steady-state condition. In addition to this, 

T0.5 is a monotonous function of the enzyme filling level and perforation level, and it increases with 

the increment of α and γ. 

Table 1. Influence of the α and γ on the time response (T0.5) for all of the geometries. 

α γ Cylindrical 

Upward 

Circular 

Cone 

Downward 

Circular 

Cone 

Upward 

Paraboloid 

Downward 

Parabolic 

Upward 

Concave 

Paraboloid 

Downward 

Concave 

Paraboloid 

0.5 0.05 0.87 1.04 0.91 0.99 0.86 1.08 0.98 

0.5 0.95 1.02 1.33 1.20 1.23 1.06 1.42 1.22 

0.5 0.5 0.92 1.11 1.18 1.05 0.97 1.19 1.14 

0.2 0.5 0.86 1.10 0.96 1.01 0.91 1.16 1.05 

0.8 0.5 1.07 1.21 1.19 1.23 1.12 1.33 1.37 



I

0 0.2 0.4 0.6 0.8 1
0

10

20

30
Cylindrical

Upward circular cone

Downward circular cone

Upward paraboloid

Downward paraboloid

Upward concave paraboloid

Downward concave paraboloid



I

0 0.2 0.4 0.6 0.8 1
5

15

25

35
Cylindrical

Upward circular cone

Downward circular cone

Upward paraboloid

Downward paraboloid

Upward concave paraboloid

Downward concave paraboloid



I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

4

6

8

10

12

14

16
Cylindrical

Upward Circular Cone

Downward Circular Cone

Upward Paraboloid

Downward Paraboloid

Upward Concave Paraboloid

Downward Concave Paraboloid



I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

15

20

25

30

35
Cylindrical

Upward Circular Cone

Downward Circular Cone

Upward Paraboloid

Downward Paraboloid

Upward Concave Paraboloid

Downward Concave Paraboloid

Figure 8. Dependency of the steady-state biosensor current on the perforation level: (a) γ = 0.05,
(b) γ = 0.95. The enzyme filling level: (c) α = 0.35, (d) α = 0.8.

Table 1 compares the effect of the perforation level and enzyme filling level on the half-time
response of the biosensor. It is evident that the cylindrical and upward concave paraboloid holes
require the lowest and highest time intervals to reach the steady-state condition. In addition to this,
T0.5 is a monotonous function of the enzyme filling level and perforation level, and it increases with
the increment of α and γ.
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Table 1. Influence of the α and γ on the time response (T0.5) for all of the geometries.

α γ Cylindrical
Upward
Circular

Cone

Downward
Circular

Cone

Upward
Paraboloid

Downward
Parabolic

Upward
Concave

Paraboloid

Downward
Concave

Paraboloid

0.5 0.05 0.87 1.04 0.91 0.99 0.86 1.08 0.98
0.5 0.95 1.02 1.33 1.20 1.23 1.06 1.42 1.22
0.5 0.5 0.92 1.11 1.18 1.05 0.97 1.19 1.14
0.2 0.5 0.86 1.10 0.96 1.01 0.91 1.16 1.05
0.8 0.5 1.07 1.21 1.19 1.23 1.12 1.33 1.37

8. Conclusions

The influence of the perforated membrane geometry on the performance of a biosensor is studied
in the case of a 2-D axisymmetric model of an amperometric biosensor. For this aim, seven practical
geometries—including cylindrical, upward circular cone, downward circular cone, upward paraboloid,
downward paraboloid, upward concave paraboloid, and downward concave paraboloid—are taken
into consideration. In addition to this, the effects of the perforation level of the perforated membrane
and the filling level of the enzyme level on the transient and steady-state current of the biosensor and the
half-time response are studied. The results show that the geometry of the biosensor strongly influences
the sensitivity and time response of the biosensor, specifying the potential of future experimental
studies. The outcomes reveal that the maximum and minimum current can be obtained from the
upward concave paraboloid and circular holes, respectively. Moreover, increasing the perforation level
and enzyme filling level boosts the output current strongly. On the other hand, the time response of
the studied biosensor for the cylindrical geometry is lower than that for other geometries.
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