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Abstract

Background: The genetic control of floral organ specification is currently being investigated by various
approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or
related methods, and so far a quantitative, continuous-time approach has not been explored.

Results: We propose an ordinary differential equation (ODE) model that describes the gene expression dynamics
of a gene regulatory network that controls floral organ formation in the model plant Arabidopsis thaliana. In this
model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are
estimated from (known) experimental expression data. The model is validated by simulation studies of known
mutant plants.

Conclusions: The proposed model gives realistic predictions with respect to independent mutation data. A
simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in
Arabidopsis, but that could be used as a severe test of the validity of the model. According to our predictions, the
role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more
phenotypic alterations.

Background
For various plant species, floral organ specification has
been successfully linked to spatial gene expression pat-
terns according to the well-known ABC model [1]. This
model has recently been extended to five gene classes
(ABCDE) to explain novel floral mutants and to accom-
modate functions that specify ovule development and
the establishment of floral context [2-7]. Despite these
modifications, however, the ABCDE-model remains a
static, qualitative model that does not describe the
detailed molecular interactions involved, nor the tem-
poral and spatial gene expression patterns that these
interactions induce.
To model the molecular interactions involved in floral

organ formation, various approaches have been used,
mostly in terms of boolean networks. A boolean net-
work approach was successfully applied to recover
known stable states and to predict the existence of
unknown interactions, [8-10]. Also, a stochastic type of

boolean network, and a differential equations model,
that can be considered as a first approximation of
kinetic-reaction equations, have been proposed [11].
These types of models are especially suited for qualita-
tive analysis of large model structures. The validity of a
candidate model can be tested by comparing the steady
states of the model with those measured experimentally.
In [12], a general review is given on the various model-
ing approaches applied to gene regulatory networks,
ranging from basic logical models to very extensive sto-
chastic simulation algorithms, and a review specifically
on stochastic methods is given in [13]. In [14], a sto-
chastic model of the autoregulatory loop of the B-type
genes PISTILLATA (PI) and APETALA (AP3) in Arabi-
dopsis and Antirrhinum is described.
Ordinary differential equations (ODE) have been used

extensively to model gene regulatory networks, including
the Notch signaling pathway [15], the Zebrafish Somito-
genesis Clock [16], the carbon starvation response in
E. coli [17], and the toggle-switch gene network [18].
This type of model allows a quantitative, continuous-
time analysis. However, for quantitative reliability,
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detailed parameter information is essential. This infor-
mation is often not available, and instead the parameters
are estimated indirectly by an identification procedure.
In [19] an overview is presented of ODE networks that
have been identified or are suitable as benchmark test.
Recently, gene expression data sets have become avail-

able for the genes involved in specification of floral organ
identity. In [20,21], time series of gene expression are
presented for each class of genes in the ABCDE group.
For most ABCDE genes, the majority of which are mem-
bers of the MADS-box transcription factor family, the
way in which they are activated is known from experi-
ments [22,23]. Furthermore, it has been shown that
MADS box transcription factors regulate their own and
each other’s expression via various autoregulatory loops
(reviewed in [24,25]). These two information sources
open the door for ODE model development. There is
also considerable evidence that MADS proteins play a
crucial role in the autoregulatory repression or activation
of specific sets of target genes [25-28].
The consensus MADS domain protein target site

(CArG-box) is a palindromic sequence and structural
analysis of the SRF MADS domain region bound to
DNA has revealed its binding in a dimeric form [29].
Based on the identification of higher-order complexes
and the fact that more than two different MADS
domain proteins are essential for specifying organ iden-
tity, it has been hypothesized that plant MADS tran-
scriptional complexes consist of quartets assembled
from two active dimers [30-33]. The structure of this
paper is as follows. First, we develop an ODE model for
MADS box gene expression. The role of dimers is expli-
citly incorporated in this model. Second, we show that
this model is able to simulate the dynamics of experi-
mental time series data. Third, after the model has been
fitted to experimental data, the predictive power of the
model is assessed by comparing model predictions of
ABCDE gene mutants with independent mutant experi-
ments. Finally, we use the model to predict the effects
of changes in the topology of the underlying protein-
interaction network. We conclude that the model has a
good predictive power with respect to mutations. A
simulation study of a new mutant type in which the for-
mation of specific dimers is disrupted, shows that each
dimer function is essential for proper organ formation.

The ABC model for Arabidopsis
The ABC model links spatial gene expression patterns to
phenotypes. Figure 1 shows the expression domains of the
five gene classes corresponding to the four types of floral
organs: sepals, petals, stamens and carpels (including
ovules). For clarity, the carpels and ovules will here be
regarded as one organ type. The figure illustrates that, for
example, sepal identity is determined by (high) expression

of A and E type genes, and this normally occurs in whorl
1, the most outer whorl of the floral meristem. In Arabi-
dopsis, the five gene classes in the ABCDE model comprise
several redundant genes. The A type genes are represented
by APETALA1 (AP1) and APETALA2 (AP2), the B type by
AP3 and PI, the C type by AGAMOUS (AG), the D type by
SHATTERPROOF1 and SHATTERPROOF2 (SHP1, SHP2)
and SEEDSTICK (STK), and the E type by SEPALLATA1-
SEPALLATA4 (SEP1, SEP2, SEP3 and SEP4). SEP1-3 are
expressed in whorl 2-4, and SEP4 is expressed in all
whorls. The A class gene AP2 is exceptional in that it is
the only floral organ identity gene that does not belong to
the MADS domain transcription factor family. Although
many of the ABCDE genes have been studied extensively,
the detailed genetic and molecular interactions among the
various redundant genes are still not known comprehen-
sively, and for a number of genes sufficiently detailed
expression data are lacking. Therefore, as a first model
simplification, we only take MADS box genes into account
and we assume that (partially) redundant genes have simi-
lar dynamic expression patterns and similar interactions,
and can therefore be represented by a single gene from
each clade. This is a common approach in literature in
dealing with redundancy [8,9,11,14]. The following repre-
sentative genes are selected to represent the five ABCDE
functions: AP1 (A), AP3 (B), PI (B), AG (C), SHP1 (D) and
SEP (E). Here, SEP denotes SEP3 in whorl 2-4, and SEP1-
SEP4 in whorl 1-4.

Methods
Network properties
Dimers are known to play an important role in the
dynamics of the MADS protein network and represent
the minimal structural unit essential for DNA binding
[27,29]. We therefore explicitly include dimers in our
model and consider their regulatory functions as known
or suggested by indirect genetic evidence (Table 1)

Figure 1 The ABCDE model for flower organ determination in
Arabidopsis. The figure has to be read column-wise. E.g., in the
sepal-whorl 1, genes A and E are dominantly expressed.
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[25,34,26]. Figure 2 shows the network interactions gra-
phically. Table 2 gives the expected protein expression
patterns in the different whorls from day 2 to 5 of mer-
istem development. Before day 2, no initiation of floral
organ primordia and differentiation of the different
floral organs takes place, and the genes are expressed
uniformly over the floral meristem.

Dynamical model
To model the dynamical behavior of the MADS box
genes, we write down the governing differential equa-
tions, which are based on the following set of assump-
tions: (a) Intercellular diffusion of MADS box proteins is,
on average, small. With diffusion ignored, ODE’s instead
of partial differential equations (PDE’s) can be used. The
different whorls are modeled with whorl-specific trigger-
ing mechanisms, representing the timed initial activation
of the MADS domain proteins by non-MADS factors,
such as LEAFY (LFY), and WUSCHEL (WUS) [22,23]. (b)
After activation, MADS box gene transcription is regu-
lated by auto-regulatory mechanisms in which protein
dimers play an essential role. (c) Transcription only
occurs when one or more activation sites on the DNA
are occupied, and simultaneously all repression sites are
empty. This assumption is commonly made in modeling
of gene regulatory networks [35]. (d) The delay effect of
translation is neglected, i.e. transcription immediately
leads to protein formation. (e) Dimer decay into non-
functional components is small compared to decay into
functional monomers [36,37] and is therefore ignored. (f)
During the first five days of meristem development, the
average cell size remains approximately the same [38].
The dynamics of the dimer concentrations consists of

the association rate of monomers into dimers, minus
the dissociation rate of dimers into monomers. Denoting
by xi the concentration of monomer i and by [xixj] the
concentration of the dimer of proteins i and j, we have
the following balance equation

d xix j
dt

K x x K x xon k i j off k i j

[ ]
[ ]., ,= − (1)

The proteins represented by the variable xi are listed
in Table 3.
The dynamics of monomer concentrations is more com-

plex. It depends not only on the dimer association/disso-
ciation rates, but also on transcriptional regulation and
decay into nonfunctional elements. Transcriptional regula-
tion is modeled by Michaelis-Menten functions, in which
b represents the maximum transcription rate, Km the half-
maximal activation or repression, and dc the decay rate.
As additional elements to the model we include two trig-
gers, p2(t, w) and p4(t, w), which govern the expression of
genes AP3 and AG, respectively, at time t in whorl w. The
expression of AP3 is regulated by the genes LFY and
UNUSUAL FLORAL ORGANS (UFO) [39], and the
expression of AG is regulated by the genes WUS and LFY
[40,41]. Since these terms are the only time-and whorl-
dependent components in the model, they are responsible
for cell differentiation. The triggers are essential to drive
the network into four different steady states, where each
one corresponds to a different organ identity. The biologi-
cal mechanism that is responsible for the trigger is not
modeled here. Quantitative information on the amount of
protein generated by the triggers is not available, but their
timing is known. Because autoregulatory loops can main-
tain the expression of the MADS box genes after induc-
tion, the duration of the triggers is set to one day. The
triggers p are thus assumed to take on a nonzero constant
value between day 1 and 2 only, and otherwise are set to
zero. Altogether, this gives the following model for the
monomer dynamics:
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Table 1 Dimers that are supposed to be repressing (right
column) or activating (middle column) the transcription
of the individual MADS domain proteins (left column)

Protein Activator Repressor

AP1 [AP1 SEP] [AG AG]

AP3 [AP1 SEP], [AG SEP], [AP3 PI]

PI [AP1 SEP], [AG SEP], [AP3 PI]

AG [AG SEP], [AG AG] [AP1 AP1]

SHP [AG SEP] [PI AP3]

SEP [AG SEP], [AP1 SEP], [SEP SEP]
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Here, the first fractions on the right hand sides denote
activation or repression by Michaelis-Menten kinetics,
followed by a decay term. The last terms denote the
rates of dimerization, which, when positive, act to
decrease monomer concentrations. Per whorl, the net-
work dynamics is governed by equation sets (1)-(2),
which involves 13 equations, 13 variables, and 51 para-
meters. To enable parameter estimation, we reformulate
the model entirely in terms of monomer concentrations.
Another advantage to this is that elimination of the
dimer variables and dynamics considerably simplifies the
analysis, since it reduces the number of equations and
variables to 6. This makes the search algorithm easier to
implement and faster. Reformulation is done, first, by
applying a time scale decomposition to (1). For a com-
prehensive background to this technique, see e.g. [42],
p.168. The time constant is K off

− −≈1 310 days, which

implies that on a scale of days, the dynamics of dimer
formation is very fast. This justifies the use of a quasi-
steady state approach, in which the dimer concentra-
tions are fully determined by the instantaneous mono-
mer concentrations. This effectively comes down to
setting the time derivatives in (1) to zero. By doing so,
the dimer equations (1) take the form

[ ] ,x x
Kon
Koff

x xi j i j= (3)

and these are inserted into (2), using the chain rule:

d xix j
dt

Kon
Koff

dxi
dt

x x
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dtj i
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⎠
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Figure 2 Graphical representation of the interactions in Table 1.

Table 2 Expressed MADS box genes for each floral whorl
from day 2 to 5 of meristem development. Day 2 means
the end of the second day. SEP (E) is abundant
everywhere at all times

Whorl day 2 3 4 5

1 (sepals) AP1 AP1 AP1 AP1

2 (petals) AP1,AP3,PI AP1,AP3,PI AP1,AP3,PI AP1,AP3,PI

3 (stamens) AP3,PI,AG AP3,PI,AG AP3,PI,AG AP3,PI,AG

4 (carpels) AG AG AG,SHP AG,SHP

Table 3 Notation for the variables that represent the
MADS proteins

variable MADS

x1 AP1

x2 AP3

x3 PI

x4 AG

x5 SHP

x6 SEP
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If these expressions are substituted in (2), we obtain a
system of 6 equations with 6 variables:
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Here,  j
Kon j
Koff j

j= =,

,
, .. .1 7 The ordering of gj is dis-

cussed below. We are aware that these equations now
attain a form that is quite unusual for ODE’s, since the
derivatives are also present in the right hand sides. We
explain in the following section why this form is still
useful in the context of parameter estimation.

Parameter estimation
The 37 parameters in (5) need to be estimated from
measured time series. This estimation is done in three
steps. First, the allowed parameter ranges are defined.
Second, a data set is presented and converted into the

desired whorl-specific form. Third, the network and
data set are decoupled to allow a successful identifica-
tion procedure.
Parameter values
Because the number of parameters is relatively large
compared to the number of data points, straightforward
estimation might be problematic. Hence, we choose to
treat different parameters on a somewhat different foot-
ing, depending on available biological knowledge about
allowed parameter ranges.
In [43] values are given for b in the range of [3, 41]

nMmin-1 (a, Table 3). We therefore take [1, 50]
nMmin-1 as a reasonable range for b. In the same table
in [43], Km (there named THR) is given in the range of
[102, 103] nM, and in [44] values used for Km (there
named K M )) are in the range of [10, 102] nM. There-
fore, a reasonable range for b is [1, 50] nMmin-1. A
range for decay of dc Î [10-3, 10-1] min-1 is given in
[45]. Ranges for association and dissociation constants
are Kon Î [10-3, 1] nM-1min-1 and Koff Î [10-3, 10] min-1

[45]. The relative interaction strengths between dimeris-
ing proteins are based on expert knowledge:

{ } { } { } { }

{ } { } { },

x x x x x x x x

x x x x x x
4 4 4 6 5 6 1 6

2 3 1 1 6 6

> ≈ > ≈
> ≈

(6)

where {xixj} denotes the value of Kon/Koff correspond-
ing to the dimer [xixj]. Based on this information, we fix
the values of these parameters at Koff = 1, g1 = 1, g2 =
10-1, g3 = 10-1, g4 = 10-2, g5 = 10-2, g6 = 5.10-3, and g7 =
5.10-3nM-1.

Data manipulation
Data from [21] contain the mRNA signal intensities of
the six genes included in our model, at the first five
consecutive days of floral meristem development. AP1,
which is normally activated by LFY and FLOWERING
LOCUS T (FT) [39,46], is induced here artificially at
time point 0. The measured SEP3 concentrations are
expected to be representative for the concentrations of
SEP1-SEP4 in whorl 2-4, and for SEP4 in whorl 1. The
intensities are averages over the whole meristem. Since
we need whorl-specific data, the data set is transformed
from average intensities to whorl specific protein con-
centrations in five steps.

1. The data set is scaled uniformly from mRNA
intensity to protein concentration, such that the
average concentration is 103nM (in [45] a range of
102-104 nM is mentioned for transcription factors in
eukaryotic cells). Here we implicitly assume that the
microarray signal intensities have a linear correspon-
dence to the protein concentrations. This is based
on the observation that spatial mRNA expression
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levels and protein levels correspond well to each
other for some of the ABC class MADS transcrip-
tion factors [47].
2. If in a whorl a gene is not expressed, the protein
concentration is set to 1% of the value of a protein
that is expressed. This is based on visual interpreta-
tion of confocal images from [47].
3. The gene expressions per time point and whorl
are based on [20] and are given in Table 2.
4. The relative whorl sizes are obtained from confo-
cal images from [47]. From day 2 to day 5, organ
identity comes into play. The shapes and relative
sizes stay approximately the same between day 2
and 5. At the end of day 2, the sepals have a volume
of 1.1·104μm3, the petals of 2.7·104μm3, the stamens
of 2.9·104μm3, and the carpels of 1.1·104μm3.
5. The mass balance for the concentration of protein
i is

x t V t x t V ti
w

w

w
i

w

w= =
∑ ∑=

1

4

1

4

( ) ( ) ( ) ( ). (7)

Here, w runs over the whorls, x ti( ) is the average
concentration of protein i from the data set, x ti

w( ) the
concentration of protein i in organ w, and Vw(t) the
organ volume. Further,

x t pc t ti
w

i
w

i( ) ( ) ( ),=  (8)

with pc ti
w( ) the percentage of expression (1% when

there is no expression, 100% when the gene is
expressed), and ai(t) a scaling factor. To determine ai(t),
equation (8) is inserted into (7), which yields the expres-
sion

 i t
xi t V w

w t

V w
w t pci

w t
( )

( ) ( )

( ) ( )
.= =∑

=∑
1

4

1
4

(9)

Network decoupling
With the gi values given, the system of ODE’s (5) still
contains 37 parameters that need to be estimated. This
puts a high computational demand on the search algo-
rithm, which we propose to alleviate by using a decou-
pling procedure [48-51]. This approach is based on a
simple, highly effective idea. Let us explain this for the
decoupling of equation 5(a), which has the form:

dx
dt

f x x
dx
dt

dx
dt

par1 1 6
1 6= ( ,.., , ,.. , ) (10)

with par the set of parameters in this equation. For
concentrations x2, .., x6 and dx

dt
dx
dt

2 6,.., we take the

data and interpolate them with a forward Euler method.
This basic interpolation scheme is straightforward and
does not introduce substantial interpolation errors. In
the end the decoupled network of monomers has the
same quality of data fit as the coupled dimer network,
Figures 3 and 4.
The resulting functions x2(t), ..., x6(t) and

dx
dt

dx
dt

2 6,.., are
substituted in (10) so that in the resulting equation x1 is the
only variable. This equation is integrated and by fitting the
calculated values of x1 to the data for x1, the parameters
par are found. This procedure thus leads to estimates for
the subset of parameters in (10). Similarly, the other para-
meters in 5(b)-5(f) are estimated by decoupling the equa-
tion under consideration from the others. Note that this
reduction method is applicable thanks to the fact that no
parameter appears in more than one equation.
The measured concentrations are those of the total

amount of xj , both in monomer and dimer form, which
are denoted by x j

T . To calculate the monomer concen-
trations from the data, we use mass balances. From the
dimers listed in section Network properties, we find that

x x x x x x

x x x x

x x x x

x x x x

T

T

T

T

1 1 1 1 1 6

2 2 2 3

3 3 2 3

4 4 4

2= + +

= +

= +

= +

[ ] [ ]

[ ]

[ ]

[ 66 4 4

5 5 5 6

6 6 4 6 5 6 6 6 1 6

2

2

] [ ]

[ ]

[ ] [ ] [ ] [

+

= +

= + + + +

x x

x x x x

x x x x x x x x x x

T

T ]].

(11)

The quasi-steady state equations (3) are inserted into
(11), which yields a set of nonlinear equations in the
monomer variables. Finally, the monomer concentra-
tions are estimated by a nonlinear search algorithm for
each time point and whorl in the data set.
Parameter identification
The identification criterion is to minimize the least
squares error

∈= −
===
∑∑∑ ( ( , ) ( )), ,

ijw

j w i j w ix t a x t
1

5

1

6

1

4
2 (12)

by optimization over the parameter vector a, that con-
sists of the unknown parameters in (5). Here x tj w i, ( ) are
the data points in whorl w for protein j at time ti (in
days), and xj,w(ti, a) the concentrations that are predicted
by our model for some choice of parameter vector a. The
optimization of a is carried out by the Matlab routine
“lsqnonlin”, which is a gradient-based search method
[52,53]. The initial concentrations (at i = 0) are taken
equal to the data points. For the integration we used the
Matlab ode23 Dormand-Prince algorithm [54].
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Figure 3 Simulated dynamics of the decoupled model (5) (solid lines) of the monomers, together with the data points for the four
organs.

Figure 4 Simulated dynamics of the coupled network (1)-(2) (solid lines) of the concentrations of proteins that are part of dimer
complexes, together with the data points for the four organs.
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As for the choice of initial values, we investigated sev-
eral strategies and found that the following choice led to
the fastest convergence of the search algorithm. The
initial parameter values Km were chosen such that for
typical concentration values the Michaelis-Menten func-
tions attain their maximal slopes and therefore are
highly sensitive for parameter variations.
The search space for a is confined as much as possible

to the parameter ranges that are listed in section Para-
meter values. In Additional file 1 a robustness analysis is
presented which aimed to assess whether the optimal
parameter values that are retrieved are sensitive to the
choice of the g’s. It turned out that the local minima are
robust against variation in any g by at least a factor two.

Results
Parameter estimation
The estimated parameter values are listed in Table 4.
According to section Parameter values, the maximal

transcription rate, which is the sum of the b’s in each
equation, should lie in the range of [1.4·103, 7·104] nM/
day. All the (sums of the) b’s are within this range,
except for b5,1, which is a factor 3.5 lower. The values
of K are all within the range of [10, 103] nM-1, with the
exception of Km2,2 and Km4,3, which are only slightly
higher. All decay rates are within the range of [1,
1.5·102] day-1, except dc4, which is somewhat higher.
Figure 3 shows the simulated decoupled dynamics of

the monomer proteins in the identified model (5),
together with the data points.
For convenience, highly expressed genes will be called

“on” and lowly expressed genes will be called “off”. AP1
has a good fit in the sepals and petals, where the gene is
on. In stamens and carpels, AP1 is a factor 10 too high

from day 2-5, but still a factor 5 lower than the on-level.
The contributions of the triggers of AP3 (petals and sta-
mens) and AG (stamens and carpels) between day 1 and
2 are clearly distinguishable. PI shows an overshoot
between day 1 and 2 in the sepals and carpels. It has to
be mentioned that the log-scale visually magnifies errors
in the low concentration regime. Since the assumption
that the off-genes have 1% of the concentration of the
on-genes is an estimation that induces unavoidable
errors in the low regimes, these are considered less
important. A parameter set is found that fits the mono-
meric concentration data quite reasonably. It is well
known [30] that cell identity is determined by com-
plexes of the ABCDE genes, instead of only by the
monomers. Therefore, the monomer concentrations of
the model (1)-(2) are converted into dimer concentra-
tions (i.e. concentrations of proteins that are part of a
dimer), using (3) and the mass balance (11). The data
set is converted similarly. Figure 4 shows the profiles of
the concentrations of proteins that are part of dimer
complexes in the resulting coupled network. Since AP3
and PI only form the dimer [AP3 PI], their concentra-
tions are equal. Therefore AP3 is omitted in the dimer
concentration plots from now on. The simulated con-
centrations remain more or less consistent after day 5,
which one would expect. It could be expected that the
fit of the coupled network in Figure 4 is less accurate
than the fit of the decoupled equations in Figure 3. Con-
version into dimer concentrations could result in further
inaccuracies, since the parameters are fitted on mono-
meric data. However, comparison with Figure 3 shows
that there are not many substantial differences between
the coupled and decoupled network. Figure 5 shows for
each whorl and each gene the mean relative error Î ,
which is defined as follows

= −

=
∑1

5
1

5
x ti xd ti

xd tii

( ) ( )
( )

, (13)

where x is the simulated and xd the measured gene
expression. In (13) we take on purpose not the squares
of the differences, since epsilon should measure whether
xd is systematically over-or underestimated over five
days. Moreover, the differences x-xd have been normal-
ized by xd in order to make a comparison between con-
centrations of different orders of magnitude possible.
Based on Figures 4 and 5 we make the following
observations:
From a qualitative point of view, the fitted model

reproduces the expression data very reasonably. This
implies that the topology of the model apparently
includes the most relevant interactions. AP1 has a rea-
sonable fit in the sepals and petals, where it is on. In

Table 4 Identified parameters for model (5). bi,j is the
maximal transcription rate in nM day-1 for the j th
Michaelis-Menten function of gene i, Kmi,j the
corresponding half-maximal activation in nM, di the
decay in day-1, and Pi the trigger in nM day-1.

b1,1 6.6e4 Km1,1 10 Km6,1 5.7e2

b2,1 3.3e4 Km1,2 3.7e2 Km6,2 20

b2,2 1.2e2 Km2,1 6.1e2 Km6,3 47

b2,3 1.2e2 Km2,2 1.1e3 dc1 71

b3,1 1.5e3 Km2,3 1.1e2 dc2 3

b3,2 38 Km3,1 3.1e2 dc3 48

b3,3 38 Km3,2 6.3e2 dc4 5e2

b4,1 8.8e3 Km3,3 63 dc5 4

b4,2 1.5e4 Km4,1 10 dc6 16

b5,1 4.1e2 Km4,2 1e2 P2 4.5e4

b6,1 2.3e3 Km4,3 1.1e3 P4 3.4e3

b6,2 44 Km5,1 1e3

b6,3 6e3 Km5,2 10
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the stamens and carpels it is too high after day 2, by a
factor 8. However, the AP1 values are still a factor 12
below the on-level. AG has a good fit for the on-levels
in stamens and carpels, and in the sepals and petals it
compromises between the high values at day 1, and the
low levels later on. SHP is on only in the carpels after
day 3, and here the fit is accurate. In the other organs
there is a compromise between the high levels during
day 0-3, and the low levels at days 4-5. SEP has an accu-
rate fit for all organs.

Model validation by mutants
A powerful method to test the validity of our model is
to compare the expression measurements in plants with
mutations in particular MADS transcription factors with
the MADS protein concentrations predicted by the
model. The mutations can be simulated by either setting
the initial concentration and production of protein from

a knocked out gene equal to zero, or by fixing the con-
centration to a high level if the gene is ectopically
expressed. We applied this test for five known mutants
in Arabidopsis. For four mutants, the model predicted
the correct phenotypes very well. One mutant was only
partly predicted correctly. This confirms the predictive
power with respect to genetic mutations.
In the first mutant, AP3 is missing. According to [55],

the second whorl grows sepals, and the third whorl
grows carpels. Figure 6 shows that our model predic-
tions are in agreement with these phenotypic alterations.
Indeed, we observe that the expressions in the second
whorl agree with the first, and therefore they develop
the same organs. The same applies to the third and
fourth whorl. The expression levels of the B-gene PI
become so small that they are not visible in Figure 6,
due to the logarithmic scale. In the stamens the B-genes
are off, and since in this model SHP is repressed by the

Figure 5 Mean relative error between simulation and experiment as defined in equation (13). The horizontal axis corresponds to the
variables [x1, .., x6].
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AP3-PI dimer, the third whorl develops the same SHP
levels as the fourth whorl. This repression assumption
has never been proven, but is now supported by the
outcomes of this simulation. The results of the remain-
ing mutants are mentioned in brief hereafter. A more
elaborate discussion of the simulation results is pre-
sented in Additional file 2.
In the second mutant, PI is missing. The same pheno-

type occurs as with AP3 missing [1], and this is in
agreement with the model predictions. In the third
mutant, AP3 is ectopically expressed. According to the
model prediction, the fourth whorl organs have stamen
expression, and the first whorl organs have petal identi-
ties. However, according to [36], the fourth whorl
organs develop as stamens, but there is no change in
the identities of the first whorl organs. The model pre-
diction is thus only partially correct. In the fourth
mutant, AG is ectopically expressed. According to the
model prediction, the first whorl grows carpels, and the
second whorl grows stamens. This is in agreement with
the findings in [56]. In the fifth mutant, AG is absent in
all whorls. According to [57], AG is involved in

terminating the meristem activity in the flower after the
formation of the fourth whorl carpels. Without AG,
only sepals and petals are formed and the inner part of
the meristem starts to develop new floral buds that
reiterate the formation of sepals and petals ad infinitum.
The AG stop mechanism is not modeled here, so in our
simulations only 4 whorls of floral organs develop.
Without the C gene, the A gene is not repressed in any
floral organ, and will therefore be expressed in the
whole floral meristem throughout flower development.
According to the ABC model in Figure 1, whorls 1-4
will have sepals-petals-petals-sepals identity, respectively,
and this is exactly what our model predicts.

Model predictions
Recently we developed a bioinformatics method to pre-
dict specific sites in protein sequences where mutagen-
esis changes protein interaction specificity [58]. For
various MADS proteins, interaction specificity was chan-
ged experimentally, and validated using yeast-two-hybrid
experiments. This is essentially a new type of mutation
experiment, for which the phenotypic effects have not

Figure 6 Simulated dynamics for the AP3 = 0 mutant: the second whorls grow sepals, and the third whorl grows carpels. The data
points denote the wild-type expression levels, and they are shown to compare the mutant dynamics with.
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yet been investigated in planta. This kind of experi-
ments can however easily be mimicked with the present
model. We present results of this type of simulations to
allow for the possibility of comparing them with future
experiments. As a model prediction, the interaction
strength of each dimer gi is set to zero, one at a time.
This comes down to removing one specific dimer from
the network. Table 5 shows the predicted phenotypic
alterations.
It turns out that all dimer mutations show very clear

organ conversions. It is interesting to see that all dimers
play an important role in organ specification, even the
dimers with very low association rates. Experimental
verification of these predictions can provide a valuable
tool for a more accurate determination of parameter
values, as well as model structure, without the need for
costly time series of expression data.

Discussion
The mutant simulation experiments show realistic
results, and only one mutant (out of five) could not fully
be reproduced. This indicates that we developed a very
useful model, despite that it was based on only a limited
amount of quantitative data. All seven dimer mutants
are predicted to have phenotypic effects. In five out of
seven mutations, double organ conversions occur, and
for one mutation no floral organs formed at all, as
expected in view of the known importance of the SEP
proteins for determining floral organ identity.
These predictions, however, have to be interpreted

with caution. The simulated dynamics depends on para-
meter values that have an uncertainty intrinsic to the
sparse and uncertain data set used. Hence, accurate
quantitative predictions are yet out of reach. Neverthe-
less, on a qualitative scale the mutant predictions sug-
gest that the functional loss of each dimer leads to
phenotypic alteration, and that therefore each dimer
plays an essential role in the regulatory network. At this
moment, our group is performing confocal image analy-
sis of MADS protein expression patterns and levels to
obtain a high-quality and quantitative protein expression
data set. We are also investigating the existence of

additional genetic interactions. We expect that this will
result in a complete network with accurate parameter
values, that opens the door for testing other candidate
model structures. For example, an additional hypothesis
on the mode of action of the MADS proteins in the
gene regulatory network that controls floral organ speci-
fication is proposed in [31] and states that the MADS
proteins act in quaternary complexes, consisting of two
dimers. Over the last few years more and more evidence
has become available showing the formation [59,30,32]
and DNA binding capacity of such complexes [59,60].

Conclusions
We proposed an ODE model for the dynamics of six
genes that regulate floral organ identity in Arabidopsis.
The model describes transcription regulation, mass
balance, dimer formation, decay and cellfate determin-
ing trigger mechanisms. The parameters are estimated
by an identification method that comprised a network
decoupling method. The data set used consists of
microarray intensities from the literature. The resulting
model is validated by predicting the phenotypes of five
mutants known from literature. Also, some new model
predictions are made for an in vitro type of mutants,
in which the formation of specific dimers is artificially
repressed. Thanks to its well-defined mathematical and
biological foundation, the model can be easily extended
with additional biological knowledge. The model struc-
ture allows a decoupling procedure that seems to be a
promising identification technique. Its application is
apparently generic for ODE models of gene regulatory
networks.
Experimental verification of the dimer mutants could

provide a valuable tool for confirmation, falsification
and/or model refinement. In systems biology, the cyclic
interaction between ‘wet-lab’ experiments and ‘dry-lab’
modeling plays a defining role. In this light we have pre-
sented here several mutants for which our model pre-
dicts a phenotype, in the hope to inspire biologists to
test and study these special cases experimentally.

Additional material

Additional file 1: Sensitivity analysis of the optimal parameters with
respect to binding affinities.

Additional file 2: Discussion on the simulation results of the
mutants.
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