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For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious
disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet
preventable by vaccination. This large unmet medical need demands further research and the development of
novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were
made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified
antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to over-
come the latter is to design antigennanoparticles: assemblies of polypeptides that presentmultiple copies of sub-
unit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness,
geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective
strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity.
Several exciting advances have emerged lately, including preclinical evidence that this strategymay be applicable
for the development of innovative new vaccines, for example, protecting against influenza, human immunodefi-
ciency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that
demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanopar-
ticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in
the rational design of vaccine antigens.

© 2015 The Authors Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Vaccines are among the most outstanding achievements in human
medical history. Through their power to prevent or reduce the burden
of infectious diseases theymake an enormous global impact by improv-
ing the life quality of both humans and animals. Vaccinesmay save up to
three million children’s lives and up to six million total lives each year
[1,2]. In addition to their contribution to an increased survival rate, vac-
cines are also an essential medical tool to protect against cancers and
devastating sequelae derived from viral and bacterial infections, such
as human papillomavirus (HPV) or meningitis, allergies, autoimmune
diseases, or even drug dependencies.

However, there are many important pathogens against which vac-
cines do not yet exist, and some current vaccines could be improved.
For example, some vaccines do not protect against all circulating strains
of a pathogen because many microbes have developed sophisticated
mechanisms to escape the host immune system.Mutations on the anti-
gens of microbes such as influenza (flu), human immunodeficiency
virus (HIV), or meningococcus constitute a rapidly changing ‘disguise’
to avoid recognition by trained immune cells that might otherwise
ópez-Sagaseta).
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prevent infection or disease. Further, some vaccine antigens do not elicit
sufficiently durable or potent immunity. In addition to this, the rise of
drug-resistant pathogenic entities such as those causing shigellosis de-
mands our attention in the search for proficient vaccines [3]. Therefore,
a major research focus is to seek ways to boost vaccine-induced host
protection against pathogens, by developing novel antigens that evoke
a more robust and protective immune response.

Many effective vaccines developed in the past used live-attenuated
strains of a pathogen, or inactivated killed pathogens [4]. Live-
attenuated vaccine strains are typically highly immunogenic, but carry
inherent safety concerns, given the potential of these weakened viral
particles to revert into disease-causing viruses. Additionally, mutagenic
events within the host organism may generate more virulent strains.
Conversely, while inactivated or killed vaccine pathogens cannot repli-
cate nor revert into more virulent forms, they tend to stimulate a weak-
er immune reaction, and thus may require the administration of
multiple dosages, an important practical limitation. An effective way
to address these limitations has gradually emerged through studies of
self-assembling proteins, which can be used as nanoparticles mediating
multi-copy antigen display.

One of the earliest examples of a self-associating protein particle was
reported in the 1950s: a protein extracted from the tobacco mosaic virus
(TMV) was found to form rod-shaped particles, which morphologically
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resembled the original TMV but which did not contain genetic material
[5]. Later, in the 1970s, the hepatitis B virus (HBV) surface antigen
(HBsAg)was purified from infected human serum [6]. Electronmicrosco-
py (EM) and ultraviolet absorption studies revealed that HBsAg formed
spherical particles with an average diameter of ~22 nm and which, im-
portantly, like the TMV protein particle, lacked nucleic acid and hence
were non-infectious. Preparations of such virus-derived ‘nanoparticles’
formed the first efficacious HBV vaccine, licensed in 1981 [7], and repre-
sented a milestone that created a new focus in the field of vaccinology.
Indeed, antigen nanoparticles, first exemplified by HBsAg, have now
emerged as a leading strategy in the development of safe and potent
vaccines.

What are the advantages of nanoparticle antigens? Key parameters
governing the elicitation of an efficient immune response to a microbe
Fig. 1.Multivalent nanoparticles favor the generation of potent, long-lived immunoprotection
signed thoroughly to presentmultiple copies of a pathogen epitope in a highly orderedmanner o
that provide brief half-life 1:1 interactions with the BCRs (A), the polydentate nature, i.e. avidity
sociation of one antigen molecule can be compensated by the binding of a new antigen molec
multiple and simultaneous engagementwith the antigen epitopes. Thus, the B-cell traps the ant
lates into B-cell intracellular signaling, internalization and processing of the antigen for presen
germinal centers. This new recognition evokes the secretion of regulatory cytokines by the Tfh c
neutralizing Abs.
include both antigen density and distribution on the pathogen surface
[8]. B- and T-cell stimulation and activation, and the subsequent secre-
tion of antigen-specific antibodies by plasma cells, rely on effective
cross-linking between B-cell surface immunoglobulins (the B-cell re-
ceptor, BCR) and the recognition pattern presented by the pathogen.
The high density and structurally ordered antigenic array presented
by a nanoparticle provides amolecular scenario wheremultiple binding
events occur simultaneously between the nanoparticle and the host cell
BCRs (Fig. 1). This multivalent molecular and cellular setting favors the
fruitful network of stimulatory interactions, as opposed to the weaker
effect ofmonovalent binding afforded by single soluble recombinant an-
tigens. Indeed, the high avidity for the nanoparticle provided by the
multivalent interaction constitutes a critical step in the induction of a
potent immune reaction (Fig. 1). Because of these advantageous
in germinal centers. Recombinant nanoparticles loaded with the desired antigen are de-
n the surface of a self-assembling nanoparticle. As opposed to single recombinant antigens
, of the interaction with the nanoparticle enables tighter and prolonged bindings: the dis-
ule or re-association with a new BCR (B). This scenario enables the clustering of BCRs for
igen-loaded nanoparticle to establish a durable, localized and strong recognition that trans-
tation, via molecules of the MHC complex, to the T follicular helper cells (Tfh) within the
ell and ultimately the evolution of B cells into plasma cells that can secrete antigen-specific
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immunological and physicochemical properties, and their suitability for
large-scale manufacturing via Escherichia coli (E. coli) or eukaryotic sys-
tems, nanoparticles are at the frontline of new vaccine therapeutics.

A variety of naturally occurring proteins can self-assemble into
nanoparticles that are highly symmetric, stable, and structurally orga-
nized, with diameters of 10–150 nm [9,10], a highly suitable size
range for optimal interactions with various cells of the immune system
[8,11]. These nanoparticles normally play diverse physiological roles,
but are of particular interest in the context of vaccine design because
they can be used as self-assembling platforms for the display of an ar-
ranged and well-ordered matrix of a particular immunogen, thereby
mimicking the repetitive surface architecture of a natural microbe, e.g.
a spherical virus capsid [12].

While many natural proteins have acquired self-assembling proper-
ties during evolution [13], the de novo engineering of protein assemblies
is challenging. Early proposals to rationally perform atomic and
molecular manipulations to generate interesting new materials were
mentioned by Richard Feynman in 1960 [14,15]. Later, the idea of com-
bining proteins as building blocks into higher-order structures via self-
assemblywas advanced [15,16]. More recently, the feasibility of design-
ing self-assembling proteins has improved via new computational
approaches [17]. Consequently, using natural or engineered protein
nanoparticle scaffolds, vaccinologists can now aim to add heterologous
epitopes or antigens onto the ‘plain’ nanoparticle, thus representing a
limitless source of possible ‘chimeric’ nanoparticle antigens. Such chi-
meric nanoparticles can be obtained by self-assembly, or by covalent
chemical attachment of an antigen to a nanoparticle.

Since the emergence of nanoparticle vaccine antigens in the 1970s,
numerous attempts to generate plain or chimeric nanoparticles with
scaffolds from many origins have been described. Some of these are
virus-like particles (VLPs) composed of single ormultiple viral antigens,
in some cases anchored in a lipid bilayer. Structural proteins fromdiffer-
entmicroorganisms have served as templates for the production of such
nanoparticles and for the presentation of immunogenic epitopes: the
protein pIII of the filamentous phage f1 [18], the Ty component from
Saccharomyces cerevisiae [19], the surface and core antigens of the
hepatitis B virus [20,21], surface or coat proteins of bluetongue virus
[22], human parvovirus B19 [23], tobacco mosaic virus [24], the
Picornaviridae virus [25], Sindbis virus [26], and papillomavirus [27,
28] are just some examples. This mini-review will focus on a subset of
such studies. We also aim to draw the reader’s attention to howwe be-
lieve the design of future candidate antigens can be optimized by com-
bining structural vaccinology and nanoparticle research. Structural
vaccinology is an emerging discipline that uses insights from structural
and computational biology studies with neighboring fields such as for-
mulation science, immunology, animal studies, and serology in order
to design, evaluate, optimize, and deliver leading candidate vaccine
antigens [29,30]. As a minor note, synthetic nanoparticles made from
non-polypeptide polymers, metals, or other solid supports, and the
use of encapsulating particles as vaccine delivery systems are beyond
the scope of the current review, and the reader is directed to alternative
sources [31–33].

2. Biochemistry and applications of bionanoparticle antigens

2.1. Viral proteins and virus-like particles (VLPs)

Many viruses encode proteins that form stable nanoparticle struc-
tures, which self-assemble in infected host cells in order to package
the viral genomes as a pre-requisite for propagation. However, if scaf-
fold proteins are assembled in the absence of genetic material, then
non-infectious non-replicating virus-like particles (VLPs) that closely
resemble intact virions can be obtained. Consequently, viral nanoparti-
cles or VLPs composed of one, or a few, recombinant self-assembling
proteins were among the first antigen-nanoparticle candidates, some
of which have indeed been developed into successfully marketed
vaccines [4]. Indeed, the earliest VLPs were relatively simply obtained
by self-assembly of single recombinant HBV or HPV capsid proteins.
After excellent results obtainedwith these first ‘plain’ VLPs, several ‘chi-
meric’ VLPs were explored as platforms for the display of heterologous
epitopes or antigens. Here, notable examples from both categories are
discussed. We will also briefly discuss the more complex VLPs
representing enveloped viruses. In contrast to VLPs made from highly
purified protein capsids, enveloped VLPs (virosomes) are assembled
by budding from the host cell membrane. More extensive reviews of
viral or VLP vaccines, with a focus on the challenges of their industrial
development and manufacturing, can be found elsewhere [34,35].

In the second half of the 20th century, the first genetically
engineered vaccine was developed by cloning the VP3 capsid protein
of the foot-and-mouth disease virus (FMDV), which was demonstrated
to be a safe, stable and effective polypeptide vaccine for cattle and swine
[36]. The breakthrough of the genetic FMDV animal vaccine, coupled
with the discovery of the HBsAg vaccine antigen purified from human
serum, stimulated the search for a safe, genetic in vitro-produced vac-
cine to protect humans against HBV. In 1986, licensure was obtained
for the first human vaccine based on a recombinant protein subunit
antigen (HBsAg), which self-assembles into nanoparticles [37,38].
Although these assemblies form nanoparticles, they do not very closely
resemble the intact HBV virion and thus are not fully considered VLPs.
Nevertheless, recombinant HBsAg nanoparticles are included in
two safe and efficacious vaccines (marketed as Engerix-B [39] and
Recombivax-HB), now globally implemented to protect against HBV.

Perhaps the first real VLP human vaccine is the successful story of
two similar vaccines protecting against HPV infection, a major cause of
anogenital disease and, especially, cervical cancer [40]. Both vaccines
were launched in the first decade of the 21st century (marketed as
Cervarix and Gardasil) and contain recombinant HPV L1 major capsid
protein VLPs [27,28]. The development of these vaccines followed
work in the 1980s, when the first reports emerged describing the self-
assembly of recombinant forms of the major capsid proteins of several
viruses, including hepatitis B [37], polyoma [41], and parvovirus [42].
Studies in the early 1990s then revealed that recombinant L1 from bo-
vine and human papillomaviruses could self-assemble into empty
capsid-like nanoparticles of ~50 nm diameter and, importantly, L1
nanoparticles could raise high-titer neutralizing antibodies in animals,
with an immunogenicity profile similar to that of infectious HPV virions
[43,44]. Notably, the denatured non-assembled form of L1 did not in-
duce neutralizing antibodies [40], highlighting the importance of the
correct nanoparticulate structure of the protective epitopes in the L1
VLPs.

Several high-resolution crystal structures of different HPV L1 pro-
teins have been determined, revealing themolecular basis for their olig-
omerization into the pentameric assembly unit of the viral shell [45].
Further, cryoEM studies have enabled reconstructions of the entire
HPV type 16 capsid alone or bound to neutralizing Fab fragments
[46–48]. Together, these structural studies have provided a deep under-
standing of the HPV L1 structure, antigenic specificity, and assembly
into nanoparticles. Such L1 VLPs derived from HPV types 16 and 18
(in the bivalent Cervarix) and additionally types 6, 11 (in the first quad-
rivalent Gardasil), 31, 33, 45, 52, and 58 (in the nonavalent Gardasil
9) form the basis of safe and highly efficacious vaccines [49] (Table 1).
Both HPV vaccines currently have relatively high production costs and
their strain coverage efficacy is specific only for these L1 types included
in the formulation, thus leaving room for improvement of potential
second-generation vaccines. Nevertheless, the HPV L1 VLPs represent
a shining example that encouraged the development and implementa-
tion of additional nanoparticle vaccines.

In addition to the research and clinical development of the HPV
nanoparticle vaccines, numerous other viruses (for example, rotavirus
[50], poliovirus [51], herpesvirus [52], and parvovirus [53]) have been
used to generate non-infectious VLPs as vaccine candidates, although
currently mostly without successful clinical development. However,



Table 1
A table listing nanoparticle platforms of viral nature, with their composition, production method and stage of (pre)clinical development.

Platform Antigen Target Expression system Stage Ref.

HBsAg HBsAg Hepatitis B virus Yeast Several licenses [36,37]
HBsAg P. falciparum CSP 207–395 Malaria Yeast Phase III [53]
HBcAg P. falciparum CSP T and B-cell epitopes Malaria Bacteria Phase I [58]
HBcAg Glycoprotein F (fragment) RSV Bacteria + chemical conjugation Preclinical [67]
HBcAg Influenza matrix protein 2 Influenza Bacteria Phase I [78]
HEV HEV capsid polypeptide Hepatitis E virus Bacteria Phase IV [79]
HPV L1 HPV L1 major capsid protein HPV Yeast Several licenses [26,27]
Hemagglutinin HA Influenza Insect cells Licensed [82]
Full length HA/NA/M1 HA, NA, M1 Influenza Insect cells Phase II [78]
Bacteriophage Qβ Nicotine hapten Nicotine Bacteria + chemical conjugation Phase II [63]
Bacteriophage Qβ Aβ1–6 epitope Alzheimer Bacteria + chemical conjugation Phase II [64]
Bacteriophage Qβ IL-1β Type II diabetes mellitus Bacteria + chemical conjugation Phase I [123]
Bacteriophage Qβ Angiotensin II Hypertension Bacteria + chemical conjugation Phase II [124]
Bacteriophage Qβ Peptide16–35 of MelanA/MART-1 Malignant melanoma Bacteria + chemical conjugation Phase II [125]
Alfalfa mosaic virus Peptides from rabies proteins G and N Rabies Plant Phase I [126]
NoV capsid protein NoV capsid protein Human norovirus Insect cells Phase I [127]
NoV capsid protein NoV capsid protein Human norovirus Plant Phase I [128]
Parvovirus B19 capsid proteins Proteins VP1, VP2 Human parvovirus Insect cells Phase I [129]

Abbreviations: HBsAg, hepatitis B surface antigen; HBcAg, hepatitis B core antigen; CSP, circumsporozoite; RSV, respiratory syncytial virus; HPV, human papillomavirus; HA, hemaggluti-
nin; NA, neuraminidase; M1, matrix protein 1; NoV, norovirus.
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the increased understanding of the self-assembly of these nanoparticles
and VLP production technology led to new opportunities inmaking chi-
meric VLPs that display heterologous epitopes or antigens attached to
the VLP either by covalent modification (chemical cross-linking) or
through genetic engineering, discussed further below.

The first viral nanoparticles to be discovered, efficiently produced
recombinantly and characterized were those from HBV, composed
either of the surface antigen (HBsAg) [37], as described above, or the
core antigen (HBcAg) [54]. The HBcAg was first shown to self-
assemble into particles of 24–31 nm diameter, which resembled the
viral cores obtained from HBV-infected human liver, and which were
highly immunogenic in animals. Later cryoEM studies revealed that
HBcAg produced in E. coli self-assembles into two classes of differently
sized nanoparticles of 300 Å and 360 Å diameter, corresponding to
180 or 240 protomers [55,56]. A landmark study by Brown and co-
workers showed that a chimeric recombinant formof HBcAg genetically
fused to the foreign FMDV peptide epitope could be produced in a viral
expression system and self-assembled into nanoparticles displaying the
FMDV epitope. This chimerawas significantlymore potent than the free
FMDV peptide or the same peptide coupled to a beta-galactosidase car-
rier protein, and was highly potent in raising neutralizing antibodies
against both FMDV and HBV [20]. Many analogous studies were subse-
quently performed, for example, showing that a human rhinovirus
peptide presented on the HBcAg particle was 100-fold more immuno-
genic than uncoupled peptide [57]. Overall, many such studies revealed
a number of sites on HBV nanoparticles suitable for insertion and dis-
play of foreign epitopes, in order to ensure optimal presentation to the
immune system. It also emerged that carrier-specific immunosuppres-
sion and pre-existing immunity to HBcAg did not significantly alter
the immunogenicity of the chimeric particles, thus potentially allowing
repeated immunizations with the same nanoparticle platform [58].
Collectively, these findings supported the use of HBcAg nanoparticles
or similar VLPs as efficient scaffolds for the presentation of heterologous
(‘foreign’) epitopes as vaccine antigens.

Indeed, in the long search for a vaccine against malaria, successful
clinical trials have been performedusing chimeric nanoparticle antigens
containing epitopes from the circumsporozoite protein (CSP) of the
Plasmodium falciparum (P. falciparum) malaria parasite genetically
fused either to HBcAg [59] (in Malarivax) or to HBsAg (in Mosquirix)
[60]. This latter construct, presenting CSP residues 207–395 of
P. falciparum NF54, is the key component of the RTS,S (Mosquirix) vac-
cine forwhich inmid-2015 the EuropeanMedicines Agency expressed a
positive scientific opinion, following large-scale safety and efficacy data
from phase III clinical trials [61–63] (Table 1). Although the latter is
probably the most notable and clinically advanced new application,
the literature contains many other examples of other nanoparticles or
VLPs used as carriers for epitopes, some of which have entered clinical
trials. For example, the NicQβ vaccine, which presents hundreds of
copies of a nicotine hapten covalently attached to a self-assembling
nanoparticle made of the bacteriophage Qβ coat protein, was shown
to be safe and able to generate antibody responses potentially beneficial
for smoking cessation [64]. Similarly, Qβ entered clinical trials as a plat-
formonwhich a peptide representing theAβ1–6 epitopewas conjugated
for display as an immunotherapy against Alzheimer disease [65].

Interestingly, HBcAgwas recently used in successful preclinical stud-
ies as a nanoparticle scaffold presenting a structurally optimized antigen
against respiratory syncytial virus (RSV), a leading cause of severe respi-
ratory tract disease in childrenworldwide [66]. Many previous efforts to
design vaccine antigens to protect against RSV focused on the surface-
exposed fusion glycoprotein, F, a highly conserved target of neutralizing
antibodies [67]. Schief and co-workers performed a pioneering study by
using insights from the crystal structure of a neutralizing epitope of the
F antigen in order to computationally design and optimize its stabilized
conformation for conjugation and presentation onHBcAg nanoparticles.
The antigen alone was moderately immunogenic, but showed a much
higher ability to induce protective RSV-neutralizing antibodies in sever-
al animal models including rhesus macaques when it was presented in
multiple copies on the HBcAg scaffold [68]. For this formulation, the de-
signedRSV F epitopewas chemically conjugated to a formof HBcAg pro-
duced in E. coli and which exposes a reactive Lys genetically engineered
into the major immunodominant region of HBcAg [69]. This bipartite
approach of separately producing and purifying the optimized antigen
and carrier components, followed by their conjugation, avoids the po-
tential size limitation of antigens that can be incorporated into a nano-
particle via genetic fusion [70]. Although this production process was
thus rather complicated, the neutralizing activity elicited was compara-
ble to the titers induced by natural human infection, suggesting that this
proof of principle for epitope-focused structure-based antigen design
combined with self-assembling nanoparticle display holds great prom-
ise for future vaccines (Fig. 2).

Hepatitis E virus (HEV) constitutes another successful example of
the generation of recombinant VLPs with efficacy in preventing the
progress of the infection. While insect cells have been used to prepare
HEV particles of a truncated version of the HEV viral capsid protein
that yielded an antigenicity similar to that of original HEV viral particles
[71], a bacteria-derivedHEVparticlewith a shorter polypeptidic subunit
rendered up to 86.8% efficacy and is currently in phase IV clinical trials
(Hecolin) [72,73].



Fig. 2. A flow diagram illustrating how human immunology, B-cell cloning, epitope mapping, structural vaccinology, and nanoparticle design can be combined in order to generate next-
generation antigen-nanoparticle vaccines. Iterative cycles of structure-based antigen design (SBAD) can be performed to optimize the candidate antigens.
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The need for next-generation vaccines against influenza has been
one of the biggest drivers of research into novel VLP antigens. For sever-
al decades, influenza vaccines have been successfully produced using
embryonated chicken eggs [4]. Nevertheless, considerable efforts have
been invested to devise alternative production methods for recombi-
nant influenza antigens that might increase the vaccine manufacturing
speed, yields, volume, purity and safety, and overcome the potential
inability to provide sufficient vaccine doses in the event of future wide-
spread epidemics or pandemics. In particular, several groups have ex-
plored influenza virus-like particles (VLPs): self-assemblies of the
hemagglutinin (HA) and neuraminidase (NA) antigens on a lipid bilayer
supported by theM1matrix protein, generating non-infectious particles
of approximately 100–150 nm diameter, thus resembling influenza
virions [10,74]. Following progress in making recombinant self-
assembling VLPs from Sf9 insect cells [75], influenza VLPs were shown
to be promising immunogens [76]. This recombinant system enables
tailored antigen expression levels, overcoming the issues of low abun-
dance of NA or M1 in the traditional egg-based influenza vaccines.
Using this system, a recombinant VLP designed to protect against the
avian influenza A H7N9 strain was generated [77]. The latter induced
protective immunity in ferrets [78] and showed positive phase I clinical
results [79]. Moreover, several similar VLP vaccines have been tested in
preclinical studies; for example, H7N9 VLPs were produced inmamma-
lian 293T cells, and raised high titers of neutralizing antibodies in mice
[80]. Further, mice were broadly protected by a vaccine cocktail of
VLPs displaying H1, H3, H5 and H7 hemagglutinin antigens [81]. These
data suggest that the influenza VLP approach may be applicable as a
rapid response to potentially pandemic strains and, moreover, they
can also be used to prepare seasonal quadrivalent influenza vaccines
(QIV), for which clinical trials are ongoing.
Nevertheless, a novel approach for the prevention of influenza in in-
dividuals aged 18 and older has been achievedwith the development of
Flublok, the first recombinant influenza vaccine to have been licensed.
This trivalent vaccine contains recombinant HA proteins of three strains
of seasonal influenza virus [82] and its higher antigen load has been re-
ported to improve immunogenicity and efficacy [83]. Produced in insect
cells, these proteins adopt multimeric nanoparticulate structures of 20–
40 nm in diameter as characterized by dynamic light scattering and
electron microscopy.

While influenza is one of the most promising targets for recombi-
nant VLP technology, other viral targets have proved more challenging,
especiallywhen several viral proteins are required for VLP assembly [34,
35]. Although the currently licensed rotavirus (RV) vaccines are very ef-
ficacious, improved RV vaccines are needed to provide greater protec-
tion in developing countries and to improve protection against mild
gastroenteritis. To this end, several rotavirus VLPs have been tested in
preclinical models. For example, double-layered RV VLPs (~60 nm
diameter, obtained using insect cell expression) made of recombinant
VP2 and VP6 proteins, themost abundant RV antigens, conferred partial
protection in animals, but required adjuvant or priming with live-
attenuated RV vaccine [84]. More recently, progress has been made
using E. coli as a suitable low-cost scalable production system for VP2–
VP6 rotavirus VLPs that elicited a strong antibody response and protec-
tion against RV-induced diarrhea in mice [85]. These RV studies suggest
that such VLPs hold promise, but likely require additional optimization
of composition, immunization route, and effective adjuvants to be effi-
cacious in humans.

Attempts to make HIV vaccines have also included various different
VLPs, mostly involving lipid-enveloped assemblies where the internal
HIV Gag p24 provides support for exposure of trimers of Env, the crucial
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HIV target antigen for neutralizing antibodies. A number of preclinical
studies have shown the potential of this approach to efficiently induce
humoral and cellular immune responses [86]. The initiation of future
human clinical trials using emerging HIV VLP vaccine candidates should
be facilitated by the clinical development experience (manufacturing,
safety, etc.) accrued in the generation of influenza and rotavirus vac-
cines described above.

Human norovirus (NoV) causes endemic viral diarrheal disease and
may cause up to half of all gastroenteritis outbreaks worldwide, and
therefore is gaining increasing attention as another pathogen causing
a globally significant healthcare burden [87,88]. Candidate NoVVLP vac-
cines have been developed using the recombinant VP1 protein (the
major NoV antigen) which self-assembles into nanoparticles (diameter
~30 nm) closely resembling the native virion [89]. A number of clinical
trials have been performed (Table 1) and showed that NoVVLP vaccines
are well tolerated and can induce rapid, robust immune response in
adults [88]. However, in the clinical trials reported to date, results dem-
onstrate modest protection from infection and disease and some pre-
vention of severe gastroenteritis in healthy subjects, while efficacy
data for the key ‘at risk’ groups have not yet emerged [87]. While the
VLP platform appears promising, a key question for NoV vaccine devel-
opment is the breadth of protection against multiple variant genotype
strains, potentially resolvable using multivalent NoV VLP cocktails.

The viral examples described above clearly demonstrate the success,
and future promise, of using highly purified non-enveloped viral
capsid proteins as plain or chimeric antigen nanoparticles. However,
enveloped VLPs, due to the inclusion of a lipid bilayer in addition to
the structural protein antigens, represent a more complex challenge
that is now being partly overcome via breakthroughs in mammalian
and insect cell expression technologies. Unlike the simpler non-
enveloped viral protein nanoparticles, enveloped VLPs have more
inherent safety issues due to potential contaminations from the expres-
sion system used, andmay bemore challenging to formulate with long-
term stability profiles. Nevertheless, several enveloped VLP candidates
are now in clinical trials.
Fig. 3.Generation of chimeric nanoparticles with surface-exposed arrays of immunogenic epito
polypeptides fused with the desired immunogenic epitope for subsequent production in a cho
with an ordered pattern of surface exposed epitopes. Here, we depict amodel of ferritin shown a
of trimeric ferritin. On the left panel, one of the trimers can be visualized within one of the nan
propensity of ferritin to self-assemble into a highly symmetric and ordered quaternary architec
panel in orange, green, and cyan in cartoon-tube format (PDB: 3sm5)) incorporated and project
as described recently [93,94]. The figure was prepared using Pymol software (The PyMOL Mole
2.2. Bacterial protein platforms

In addition to viral nanoparticles or VLPs, there are many other nat-
urally occurring self-assembling protein nanoparticles that have been
identified from awide variety of sources [9]. For example, almost all liv-
ing organisms produce ferritin, a protein whose main function is intra-
cellular iron storage. Ferritin is made of 24 subunits, each composed of
a four-alpha-helix bundle, that self-assemble in a quaternary structure
with octahedral symmetry (Fig. 3). Several high-resolution structures
of ferritin have been determined, confirming thatHelicobacter pylori fer-
ritin is made of 24 identical protomers [90], whereas in animals, there
are ferritin light and heavy chains that can assemble alone or combine
with different ratios into particles of 24 subunits [91,92].

Ferritin self-assembles into nanoparticles with robust thermal and
chemical stability. Hence, the ferritin nanoparticle is potentially well-
suited to carry and expose immunogens. Moreover, since ferritin is
composed of eight units each with three-fold axis symmetry, it is a con-
venient scaffold for the presentation of trimeric antigens. Indeed, Nabel
and co-workers reported an elegant structure-based design strategy to
generate ferritin nanoparticles genetically engineered to present a
multivalent array of the flu virus hemagglutinin (HA) with its native
trimeric conformation intact. HA is the key antigenic component of flu
vaccines, and immunization of mice with these HA-ferritin nanoparti-
cles yielded a very promising outcome: compared to a current commer-
cial vaccine, the animals responded with a more potent immune
response, as illustrated by the notably higher number of neutralizing
antibodies, enhanced breadth of coverage against unmatched H1N1 vi-
ruses and increased generation of neutralizing Abs against two H1N1
highly conserved, yet independent, flu epitopes [93]. This work was
oneof thefirst clear examples of how the structurally optimizedpresen-
tation of ordered arrays of a well-folded immunogen can induce stron-
ger protection. In more recent work aiming towards a universal flu
vaccine by providing broad coverage of protection against different sub-
types of the flu virus, Yassine et al. reported a refined structure-based
generation of a ferritin-based nanoparticle that displayed only the
pes. Recombinant DNA technology can be used tomake genes that encode self-assembling
sen cell expression system. The chimeric polypeptide then self-assembles within the cell,
s a grey isosurface (PDB: 3bve) that self-assembles in eight identical units, each composed
oparticle units. The monomers are colored in orange, green, and cyan. Given the intrinsic
ture, the chimeric nanoparticle is generatedwith the HA epitope (here shown on the right
ed as amatrix of ordered and surface exposed epitopes ready for their recognition by BCRs,
cular Graphics System, Version 1.7.6.2, Schrödinger, LLC).
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stem region of the H1 HA glycoprotein, yet was capable of evoking
broadly cross-reactive antibodies that, in contrast to plain nanoparticles,
protected mice and ferrets against lethal doses of heterosubtypic H5N1
virus [94].

Another similar study was also reported by the Nabel team,
wherein the conserved receptor-binding domain (a site of vulnera-
bility) of the gp350 antigen from Epstein–Barr virus was presented
in a structurally optimized orientation on nanoparticles of ferritin
(24 subunits) or encapsulin (60 subunits). In preclinical studies,
the chimeric nanoparticle-gp350 antigens elicited 10- to 100-fold
more potent virus-neutralizing antibody titers than the soluble gp350
antigens alone [95]. Importantly, in addition to their immuno-focusing
ability to generate high-quality antibody responses, the recombinant
nature of these nanoparticle antigens has the benefit of high purity,
safety, and tolerability, further strengthening the appropriateness of
this vaccination strategy (Table 2).

Also, very recent is thework byHeet al., describing in silico studies to
optimizemolecular scaffolds for epitope presentation and leading to the
generation of recombinant ferritin nanoparticles displaying epitope-
scaffolds harboring E1 or E2 epitopes from hepatitis C virus, promising
candidates for preclinical studies in the quest for an HCV vaccine [96].
This recent example applied toHCV builds on the epitope-scaffold ratio-
nal design strategy that emerged in previous attempts to graft HIV epi-
topes onto heterologous protein scaffolds [97], and effectively combines
this approach with the multivalent nanoparticle format.

Ferritin has also been used as antigen support in the search for po-
tent and safe vaccine tools against HIV [98], which despite its identifica-
tion more than 30 years ago remains as one of the most devastating
pathogens afflicting the human population. In order to circumvent the
fact that Abs others than the so-called broadly neutralizing antibodies
(bNAbs) might occlude highly vulnerable HIV sites, Kwong and co-
workers grafted a series of these HIV target motifs into different protein
templates and the resultant chimeras were named ‘supersite trans-
plants’. Transplants bearing a glycopeptide from the variable region 3
on gp120 were recognized by neutralizing antibodies from three differ-
ent donors, and binding was enhanced by presentation of the trans-
plants on ferritin nanoparticles.

Lumazine synthase (LS) represents another example of the inclusion
of a bacterial particulate base for the optimization of vaccine candidates,
as reported recently by Jardine et al. in their attempts to enhance the
immunoreactivity of recombinant gp120 against HIV infection [99]. As
mentioned before, HIV represents a major health problem worldwide.
With 35 million people carrying the virus worldwide and a yearly mor-
bidity of 1.7 million people (AVERT, http://www.avert.org/worldwide-
hiv-aids-statistics.htm), the lack of a vaccine is an enormous unmet
medical need. A key challenge in designing an anti-HIV vaccine is the
high mutagenic capability of the virus and the unfeasibility of adminis-
tering attenuated or killed virus because of safety issues. An additional
hurdle is the negligible recognition potential of germline precursors of
bNAbs, such as VRC01, against thewild-type gp120, themajor immuno-
genic component of the HIV virus envelope. One way to overcome this
obstacle was recently reported by Schief and co-workers [99], who
boosted the affinity of the germline antibodies for the viral gp120 glyco-
protein by displayingmultiple copies of an engineered form of the anti-
gen on a lumazine synthase (LS) nanoparticle.
Table 2
A table listing nanoparticle platforms of bacterial nature, with their composition, production m

Platform Antigen Target

Ferritin GP350 CR2-binding domain Epstein–Bar
Ferritin E1/ E2 envelope proteins Hepatitis C v
Ferritin Variable region 3 on gp120 HIV
Ferritin HA Influenza
Encapsulin GP350 CR2-binding domain Epstein–Bar
Lumazine Synthase Engineered gp120 HIV

Abbreviations: HIV, human immunodeficiency virus; HA, hemagglutinin.
LS, which is responsible for the penultimate catalytic step in the bio-
synthesis of riboflavin, is an enzyme present in a broad variety of organ-
isms, including archaea, bacteria, fungi, plants, and eubacteria [100]. The
LS monomer is 150 amino acids long, and consists of beta-sheets along
with tandem alpha-helices flanking its sides. A number of different qua-
ternary structures have been reported for LS, illustrating its morpholog-
ical versatility: from homopentamers up to symmetrical assemblies of
12 pentamers forming capsids of 150 Å diameter. Even LS cages of
more than 100 subunits have been described [101].

Using LS from the thermophilic bacterium Aquifex aeolicus as a nano-
particle platform for epitope display, Jardine et al. succeeded in increas-
ing the potency of the immune response and breadth of coverage
against HIV. The envelope (Env) glycoprotein is the only HIV surface
protein targeted by neutralizing antibodies; it is made of three gp160
precursors that trimerize and are each then cleaved into gp120 and
gp41 subunits. Jardine et al. engineered LS to display an optimized
sub-component (termed, eOD-GT6) of the wild-type gp120 antigen
from the Env trimer [99]. This approach overcame the issue that
germline precursors of VRC01 bNAbs show undetectable affinity for
wild-type Env. With additional structural stabilization of the trimer
provided by an N-terminal coiled-coil GCN4 domain, the eOD-GT6
immunogen was fused to the C-terminus of the LS gene construct. The
resulting recombinant nanoparticle antigens were efficiently obtained
from mammalian cells, in stable and homogeneous self-assemblies of
60 LS monomers each presenting a glycosylated eOD-GT6. In contrast
with the monomeric eOD-GT6 that did not stimulate B-cell activation,
the LS-eOD-GT6 nanoparticles remarkably activated both germline
and mature B cells. In accordance with related studies discussed
above, Jardine et al. also hypothesize that the ability of the nanoparticles
to induce cross-linking with the B-cell receptors was important to pro-
mote a successful immune response.
2.3. Micellar nanoparticles

A method to obtain protein micelles from full-length amphiphilic
membrane proteins was developed and used to prepare viral surface
proteins as water-soluble particles with a hydrophobic interior and a
polar exterior, of relatively homogeneous size: approximately 20–
30 nm diameter, depending on the protein [102]. Therein, Simons
et al. predicted several possible applications of the approach, including
the opportunity to make virus glycoprotein micelle vaccines. Indeed, a
similar approach has been adapted for the preparation of protein nano-
particles comprised of amphiphilic antigens, where the proteinmicelles
are prepared by extraction with non-ionic detergents from Sf9 insect
cells expressing the recombinant antigen. In a compelling example,
a slightly genetically modified full-length form of the RSV fusion
(F) surface glycoprotein was extracted and purified from insect cell
membranes and used to create protein nanoparticle micelles of
~40 nm diameter, where the trimeric F protein assembled into rosettes
exposing conformational epitopes similar to those of the post-fusion F
conformation and able to raise neutralizing Abs [103]. In very recent
clinical trials, these RSV F antigen nanoparticles appeared safe, promot-
ed immunogenicity, and reduced RSV infections [104], raising high
expectations for a nanoparticle vaccine against RSV.
ethod, and stage of (pre)clinical development.

Expression system Stage Ref.

r virus Mammalian cells Preclinical [94]
irus Mammalian cells Preclinical [95]

Mammalian cells Preclinical [97]
Mammalian cells Preclinical [92]

r virus Mammalian cells Preclinical [94]
Mammalian cells Preclinical [98]

http://www.avert.org/worldwideivids-tatistics.htm
http://www.avert.org/worldwideivids-tatistics.htm
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The micellar nanoparticle approach has also been exploited in
the search for vaccines against the Coronaviridae virus (CoV) fam-
ily, which represents an important group of emerging human path-
ogens, as witnessed in the severe acute respiratory syndrome
SARS-CoV and Middle East respiratory syndrome MERS-CoV out-
breaks of 2003 and 2012, respectively. Recombinant full-length
forms of the major immunodominant CoV antigen—the amphiphilic
spike glycoproteins—both fromSARS-CoV andMERS-CoVwere success-
fully obtained via non-ionic detergent-extraction from Sf9 cells. The
purified spike proteins assembled into nanoparticles of ~25 nm diame-
ter that, in adjuvanted formulations tested inmice, were capable of rais-
ing high-titer neutralizing antibody responses against the homologous
virus [105]. These preclinical examples suggest that this protein nano-
particle approach may be suitable for rapid production of relatively
simple but effective vaccines in response to emerging pathogens
(Table 3).

2.4. New protein platforms

Proposals to perform molecular manipulations that, by exploiting
chemical forces in a repetitious fashion, could lead to the production
of interesting materials that date back at least to the 1960s [14,15]. In-
deed, in addition to the naturally occurring self-assembling proteins
described above, several groups have explored ways to design and pro-
duce nanoparticle materials based on non-native polypeptides. For ex-
ample, Burkhard and co-workers produced chimeric polypeptides
capable of self-assembling into regular polyhedral nanoparticles [106].
The polypeptide consisted of an N-terminal pentamer-forming subunit
derived from the cartilage oligomeric matrix protein (COMP), followed
by a de novo-designed trimeric subunit domain. Both subunits present
oligomeric coiled-coil conformations and importantly, the resultant
synthetic molecule was shown to refold and self-assemble into nano-
particles with polyhedral symmetry. Alternative oligomerization motifs
such as the trimeric foldon domain from fibritin have also been used in
such designs [107]. The assembly of such nanoparticles gives rise to a
multivalent molecular architecture that allows diverse immunogenic
epitopes to be repeatedly displayed on the surface of the nanoparticles
in a strictly arranged manner, a strategy that appears to be broadly
applicable.

Indeed, using the polypeptide approach, the Burkhard team fused
the C-terminal heptad repeat (HRC) region of the SARS-CoV spike pro-
tein in its pre-fusogenic state in frame with the nanoparticle scaffold
[108]. This strategy allowed conservation of the trimeric coiled-coil con-
formation of the spike epitope. Immunization of mice with these SARS-
nanoparticles successfully elicited neutralizing antibodies specific for
the trimeric coiled-coil epitope of the pre-fusogenic HRC. Additional ap-
plications of this system targeted an HIV vaccine, by using a nanoparti-
cle made of two covalently linked coiled-coil domains designed to
incorporate the membrane proximal external region (MPER) of HIV-1
gp41 [109]. However, while high MPER-specific titers were raised by
this nanoparticle, none of the sera displayed detectable neutralizing
Table 3
A table listing nanoparticle platforms of diverse nature, with their composition, production me

Platform Antigen

Micellar protein Glycoprotein F
Micellar protein Spike glycoprotein S
Virosome Her-2 peptides of Her-2/neu
Virosome Aspartyl proteinase-2
Virosome P1 and recombinant gp41
Virosome HA, NA
Ty p1 p17/p24
Synthetic polypeptide Heptad repeat of CoV spike protein (pre-fusogenic state)
Synthetic polypeptide Membrane proximal gp41
Synthetic polypeptide Plasmodium berghei CSP B-cell epitope

Abbreviations: CSP, circumsporozoite; RSV, respiratory syncytial virus; HA, hemagglutinin; NA
syndrome; HIV, human immunodeficiency virus.
activity against HIV-1. More promisingly, similarly designed polypep-
tide nanoparticles displaying multiple copies of a rodent malaria epi-
tope from the circumsporozoite protein of Plasmodium berghei elicited
a long-lasting immune response [110]. Collectively, this preclinical re-
search suggests that the self-assembling protein nanoparticle (SAPN)
approach can generate safe non-native polypeptide antigens approxi-
mating the size and multivalent scenario of a virus and thus facilitate
the recognition of the antigen by immune receptors.

Early in the 21st century, Yeates and co-workers developed the
nanohedra protein-design method, which was subsequently extended
by Noble and co-workers [111,112]. The Yeates team rationally de-
signed genetic fusions of the trimeric bromoperoxidase and the dimeric
M1 matrix protein of influenza virus, such that the combination of the
two naturally oligomeric proteins generated self-assembling nanostruc-
tures, including a 15-nm-wide molecular cage and a 4-nm-wide fila-
mentous superstructure [111,112]. Later, a well-ordered tetrahedral
cage with 12 subunits was designed and its crystal structure was deter-
mined and revealed to closely match the intended design, validating
this approach [113]. The Noble team used proteins with higher symme-
try, allowing design of fusions with two or more connections, generat-
ing regular molecular arrays that formed protein lattices, but not
closed nanohedral particles [114]. Several subsequent in silico and crys-
tallographic studies have further developed nanostructure design strat-
egies, including the generation of particles over 22 nm in diameter
[115]. Therefore, with the development of thesemore powerful compu-
tational approaches for the ab initio design of newprotein-protein inter-
faces with defined symmetry, geometry, and complementary packing
arrangements, and the increasing number of protein structures in the
PDB, it is speculated that additional achievements in the field of self-
assembling protein design will be possible [96,115–122]. It will be
interesting to see if such scaffolds can be fully exploited to display anti-
genic epitopes suitable for full development into clinically efficacious
vaccines.

3. Conclusions

Despite many successes in the field of vaccinology, new break-
throughs are still needed to protect humans from several important
life-threatening diseases. Here, we have reviewed how a variety of
non-infectious biological nanoparticles can offer solutions. For example,
some plain nanoparticles (e.g. HBsAg or the HPV L1 protein) are simple
molecular self-assemblies that are safe and efficacious vaccine antigens
licensed for human use. Or, more complex chimeric nanoparticles can
be platforms on which pathogen-derived immunogenic motifs can be
presented to the host immune system. These biological scaffolds range
from synthetic polypeptides to native macromolecules such as ferritin,
lumazine synthase or VLP-forming antigens or lipid-enveloped VLPs.
For some chimeric nanoparticles, there is evidence that the immunoge-
nicity of the platform carrier itself is negligible or low compared to that
of the mounted immunogen being presented [93]. Because these nano-
particles display an ordered matrix of immunogens, they enable more
thod, and stage of (pre)clinical development.

Target Expression system Stage Ref.

RSV Insect cells Phase II [103]
SARS and MERS coronavirus Insect cells Preclinical [104]
Breast cancer Cell free Phase I [130]
Candida albicans Cell free Phase I [131]
HIV Cell free Phase I [132]
Influenza Cell free One license [133]
HIV Yeast Phase II [134]
SARS Bacteria Preclinical [107]
HIV Bacteria Preclinical [108]
Malaria Bacteria Preclinical [109]

, neuraminidase; SARS, severe acute respiratory syndrome; MERS, Middle East respiratory



66 J. López-Sagaseta et al. / Computational and Structural Biotechnology Journal 14 (2016) 58–68
fruitful engagements with the B-cell receptors than single recombinant
immunogens can establish. Several animal models and clinical studies
have been reported that exemplify the high efficiency of these nano-
structures in eliciting potent and long-lasting immunity. Following suc-
cessful clinical studies, a recombinant nanoparticle-based vaccine
against malaria is emerging, and two vaccines are already available to
prevent HPV-related diseases.

Recent preclinical studies have demonstrated how computational
and structural biology can be combined for the rational design of well-
oriented arrays of themost protective epitopes of a pathogen, in a man-
ner suitable to raise the most desired immune responses. Further, the
computational ab initio design of self-assemblingmolecules is becoming
evermore possible, thus enriching ourmolecular repertoire of nanopar-
ticle scaffolds. Consequently, the design of plain or chimeric nanoparti-
cle antigens, and the ability to manufacture these recombinantly in
prokaryotic or eukaryotic systems, to make safe and effective immuno-
gens, is becoming a reality. We have shown that vaccination clinical tri-
als against a broad range of diseases are ongoing. While there are
established examples of successful vaccines against diseases of viral
and parasitic origin (hepatitis B, HPV, malaria), the next decade may
consolidate the use of multivalent nanoparticles as a therapeutic tool
for the future against infectious diseases of other origins (bacterial, fun-
gal) but also against cancers and other disorders such as hypertension,
asthma, or addictions (e.g. smoking). These amazingly versatile tools
may also get us closer to universal vaccines against highly variable path-
ogens such as HIV, influenza, or meningitis. Continued efforts are still
needed, but there is a well-founded optimism that further studies of
nanoparticles and VLPs together with the implementation of structural
vaccinology, facilitated by emerging B-cell cloning and antibody produc-
tion technologies, will be translated into new and second-generation
vaccines that will contribute to saving more lives worldwide.
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