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Abstract: Infrared Thermography (IRT) is a non-contact, non-intrusive, and non-ionizing radiation
tool used for detecting breast lesions. This paper analyzes the surface temperature distribution (STD)
on an optimal Region of Interest (RoI) for extraction of suitable internal heat source parameters. The
physiological parameters are estimated through the inverse solution of the bio-heat equation and
the STD of suspicious areas related to the hottest spots of the RoI. To reach these values, the STD is
analyzed by means: the Depth-Intensity-Radius (D-I-R) measurement model and the fitting method
of Lorentz curve. A highly discriminative pattern vector composed of the extracted physiological
parameters is proposed to classify normal and abnormal breast thermograms. A well-defined RoI
is delimited at a radial distance, determined by the Support Vector Machines (SVM). Nevertheless,
this distance is less than or equal to 1.8 cm due to the maximum temperature location close to the
boundary image. The methodology is applied to 87 breast thermograms that belong to the Database
for Mastology Research with Infrared Image (DMR-IR). This methodology does not apply any
image enhancements or normalization of input data. At an optimal position, the three-dimensional
scattergrams show a correct separation between normal and abnormal thermograms. In other cases,
the feature vectors are highly correlated. According to our experimental results, the proposed pattern
vector extracted at optimal position a = 1.6 cm reaches the highest sensitivity, specificity, and accuracy.
Even more, the proposed technique utilizes a reduced number of physiological parameters to obtain
a Correct Rate Classification (CRC) of 100%. The precision assessment confirms the performance
superiority of the proposed method compared with other techniques for the breast thermogram
classification of the DMR-IR.

Keywords: breast thermography; heat source parameters; feature extraction; infrared imaging;
D-I-R model

1. Introduction

It is well known that body temperature is a standard indicator of health status in
humans. IRT records radiant energy that is emitted by the human body at wavelengths
between 2 µm and 14 µm. Infrared energy is a function of skin temperature with an
average emissivity of 0.97–0.99 [1], then an IR image gives the temperature distribution of
the human body. In 1963, Lawson and Chughtai [2] reported the use of surface temper-
ature measurements as a possible tool for breast cancer diagnosis. They found that the
diseases make the thermal gradient vary in this area, and subtle thermal abnormalities
can be related to a particular disorder. Thenceforth, research on medical applications of
infrared technology has been published, and different databases have been created, such
as the public DMR-IR [3,4]. The first one on the quantitative relationship describing the
temperature distribution in human tissue and considering blood flow effects based on the
continuum theory was presented by Harry H. Pennes [5]. Even more, a hot spot in the
surface temperature distribution, related to tumor tissue, has been modeled as a point
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heat source [6]. A model of the internal heat source is illustrated in Figure 1. Several
papers [6–12] point out that an inverse solution of the bio-heat equation can be used for the
estimation of a point heat source parameters: intensity q, depth d, position a, and radius
R, from the STD of the thermal input data. Table 1 describes the thermal and biological
parameters used in this paper.

Figure 1. Scheme of the theoretical model of an internal heat source with depth d, intensity q, and
radius R.

Table 1. Thermal and physical parameters of tumor.

T (◦C) Surface temperature distribution.

ρ (Kg/m3) Biological tissue’s density.

c (J/Kg·◦C) Thermal capacity of biological tissue.

k (W/m/◦C) Heat conduction coefficient.

wb (Kg/m3·s) Blood perfusion rate.

ρb (Kg/m3) Blood density.

cb (J/Kg·◦C) Blood thermal capacity.

Ta (◦C) Arterial blood temperature.

Qm (W/m3) Metabolic heat rate.

q (W) Heat source intensity.

d (cm) Heat source depth.

R (m) Radius of spherical heat source.

a (m) Distance from point O′ to an arbitrary point on the body surface.

r (m) Distance from point O to an arbitrary point on the body surface.

O Point heat source position.

O′ The hottest spot of the RoI.

Tmax (◦C) Maximum temperature.

h0 (W/m2·◦C) Heat exchange coefficient.

Te (◦C) Ambient temperature.

θ, ψ (degrees) Spherical coordinates.

µprom Mean temperature.

tmin Minimum temperature.
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Guilian Shi et al. [8,9] make use of the biological heat transfer model and the fit-
ting method of Lorentz curve for the extraction of the above-mentioned physiological
parameters. The distribution and tendency of the q − r curve are related to the typifi-
cation of breast lesions. They established a criterion based on the angle of inclination
θ of the q− r curves to solve this problem. Nevertheless, the q− r curve shows ripples
or oscillations that make it difficult to establish a single angle value. Hossain et al. [6]
developed a methodology for the heat source parameters calculation, and it is based on the
D-I-R measurement model. This model has been implemented numerically to calculate
the parameters. Rastgar-Jazi et al. [10] establish a range for intensity q depending on the a
position when the D-I-R model is applied. In this context, mostly numerical and simulated
analyses have been done [6,7,10–12]. In general, most of the authors establish a range
of values for q [10–12]. It leads to ambiguous risk decisions when a single value for q is
defined. Even more, a unique value of q in a well-defined a position is needed to classify
normal and abnormal breast thermograms. Some works [8,9] make use of the angle of the
mentioned above q− r curve for the diagnosis of breast diseases. Then again, the trend
of the curve also causes uncertainty when a unique angle must be defined. Additionally,
the breast thermogram categorization can use other thermal characteristics as the temper-
ature increases for the tissue [13], but it is not a determining feature since the maximum
temperature in the thermal breast data can be greater than 3 ◦C and be labeled as healthy.

Therefore, based on the solution of the inverse heat conduction problem, we propose
a highly discriminative pattern vector composed of physiological parameters to classify
normal and abnormal thermograms. In addition, a well-defined RoI from the input STD
is analyzed to extract the internal heat source parameters. Through SVM, the optimal
radial distance a of the RoI is determined [14]. The proposed methodology was applied to
87 breast thermograms that belong to the DMR-IR [3,4]. The proposed pattern vector is
composed of the physiological parameters vn

a ={Tmax, d, q, R, θ} and is used for the classifi-
cation by means of SVM. The three-dimensional feature space proofs the discrimination
power of the proposed pattern vector, allowing the correct separation of both classes. At an
optimal radial distance a of the RoI and through (1) the fitting method of Lorentz curve and
(2) the D-I-R model, a CRC of 90.80% and 100%, respectively, are obtained using the physi-
ological descriptors. The applied methodology allows reducing the rate of false-positives
or false-negatives. Figure 2 shows the research methodology flowchart.
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Figure 2. Flowchart of the proposed method. (a) Thermal data were obtained from the DMR-IR.
(b) A well-defined RoI is delimited at an optimal radial distance a. As we can see, the RoI encircle
the temperature area to be analyzed. (c) Surface temperature distribution related to the hottest spot
of the RoI. (d) A proposed highly discriminative pattern vector is composed by the physiological
parameters from the point heat source. (e) Classification step using SVM.

In this manuscript, the sections are organized as follows: The raw thermal data and
the semi-automated segmentation algorithm are reported in Section 2. Moreover, a review
of the methods for estimating physiological parameters based on an inverse solution of the
bio-heat equation from the input surface temperature matrix is given. The classification
process of a set of ε = 87 breast thermograms belonging to the DMR-IR in normal and
abnormal classes using SVM is also described. In Section 3, the experimental results
obtained by extracting the physiological parameters of a well-defined RoI from the breast
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thermograms are presented. Furthermore, the three-dimensional feature space of the
above-mentioned parameters and the classification percentages are given. Section 4 is
dedicated to discussing the results. Finally, the conclusions are summarized in Section 5.

2. Materials and Methods
2.1. Image Database

The public DMR-IR has been used to evaluate the performance of statistical methods
to classify breast thermograms into normal and abnormal [3,4,15,16]. This database contains
thermal images with their corresponding clinical data. It consists of 287 volunteers, of
which 244 are reported as healthy, 39 sick, and 4 with an unknown diagnosis [4]. The
diagnosis in people was made by mammography and/or biopsy. Frontal images are
considered for this analysis. Table 2 shows the FLIR thermal camera specifications used by
Silva et al. [4] to capture breast thermograms. The FLIR camera has a 24◦ standard lens
with focal length f = 75 mm [17]. The standard distance between the thermal camera and
the patient is 1 m [4]. The object height is given by lo = 2.16 cm

7.5 cm (100 cm) = 28.8 cm [18].
Therefore, the pixel size in the object plane is Sp = lo

N = 0.06 cm.

Table 2. Technical specifications of the FLIR SC− 620 sensor [4,17].

Image resolution M× N 640× 480 pixels

Pixel size 45 µm

Sensor size 2.88 cm × 2.16 cm

Standard temperature range −40 ◦C to +500 ◦C

Sensitivity <0.04 ◦C

2.2. Segmentation of Breast Thermograms

A semi-automated segmentation algorithm is implemented employing a cubic degree
polynomial curve fitting [19,20]. A binary image mask of size M × N pixels is created
to eliminate the area under the inframammary curves detected by the polynomial curve
fitting [21]. Neither image enhancements nor normalization of input data is done. Once
the breast image is segmented, the temperature changes are clustered using the thermal
gradient, thus facilitating the location of the RoI, which is shown in Figure 3b. The hottest
region of thermal images is defined as the RoI with a radial distance a, and it is shown in
Figure 3c.

Figure 3. RoI delimitation process. (a) Segmentation procedure based on the detection of the
inframammary line by a polynomial curve fitting. (b) Visualization of a clustered thermal pattern
through thermal gradients. (c) Centered RoI around the hottest point with radial distance a.
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2.3. Heat Source Model: A Mathematical Review

The Pennes bio-heat equation is used to analyze the interior temperature distribution
of biological tissue. It is given as [5],

ρc
∂T
∂t

= 5(k · 5T) + wbρbcb(Ta − T) + Qm. (1)

Table 1 describes each variable in Equation (1). The terms wbρbcb(Ta − T) + Qm are
merged to be the internal heat source. A solution of Equation (1) is given by [6,7,12],

T = Te +
q

4πh0r2 . (2)

The maximum temperature Tmax is obtained when r = d, which is the temperature at
the point O′ in Figure 1. Suppose a is the distance from point O′ to an arbitrary point on
body surface, then r2 = d2 + a2. Therefore,

T(a) = Te +
q

4πh0(d2 + a2)
. (3)

Abnormal tissue can be modeled as a spherical heat source with intensity q, radius R,
and depth d [6,10]. Then,

T(a) = Te +
q

4πh0[(d + R)2 + a2]
, (4)

where T(a) is the temperature at any arbitrary point a on the STD of the thermal input
data. The temperature distribution T(a) is obtained from the thermal input data at each
side of the maximum temperature point Tmax. Thermal vectors are acquired in all four
directions and are represented as straight lines of radial distance a as shown in Figure 4a.
In this work, the four thermal vectors are averaged. Figure 4b shows the mean surface
temperature distribution.
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Figure 4. (a) The extraction process of the STD using thermal input data. (b) Mean temperature
distribution around the hottest point with radial distance a.

2.3.1. Fitting Method of Lorentz Curve

As is shown in Figure 5a, the experimental surface temperature distribution fits the
Lorentz curve y = A/(a2 + w2) + y0 to obtain information of an internal heat source [8].
We have implemented a plugin in Matlab to obtain the STD fitted by the Lorentz curve
method [22]. In this way, the estimated depth and intensity are acquired as d = w and
q = 4πh0 A, for advisability, set 4πh0 = 1. As is shown in Figure 5c, the angle of the q− a
curve can be obtained by θ(a) = arctan[q(a)/a].
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Figure 5. Comparison of the efficiency of two methods for extracting physiological parameters: fitting
method of Lorentz curve (blue line) and the D-I-R model (red line). (a) STD fitted using the Lorentz
curve method. We use the coefficient of determination (R-squared) to quantify the fitting between the
surface temperature curve and the Lorentz curve. Estimation of physiological parameters (b) Depth
d and (c) Intensity q.

2.3.2. D-I-R Model

The heat source parameters are obtained through the D-I-R model as [6],

d(a) =
a
√
(T(a)− Te)√

Tmax − T(a)
, (5)

q(a) = 4πh0
(T(a)− Te)(Tmax − Te)

Tmax − T(a)
a2, (6)

and

R = 3

√
q

Qm At
, (7)

for Qm = 418.6 W/m3, h0 = 8.77 W/m2·◦C, and volume of cell is At = 1 µm [6]. The
d− a and q− a curves are obtained using Equations (5) and (6) and shown in Figure 5b,c,
respectively.

Then, a set of physiological parameters is estimated at different positions a = −0.018:
0.0006:0.018 m and through the fitting method of Lorentz curve (n = 1) and the D-I-R
model (n = 2). In this way, two pattern vectors are defined as vn

a ={Tmax, d, q, R, θ} for
n = 1, 2 by using the extracted physiological parameters. The classification step make use
of the physiological pattern vectors.

2.4. Thermal Pattern Classification Using SVM

Cortes and Vapnik in 1995 developed the Support Vector Machines [23]. SVM has
multiple applications and can be used to solve classification problems. This section de-
scribes the classification process of a set of ε = 87 breast thermograms from the DMR-IR
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into normal and abnormal classes. Generally, this stage involves two datasets: training and
testing. We use a K-fold cross-validation with K = 10. Each one is a composite of data in-
stances. The training set {xi(a), yi} for i = 1. . .ε contains the several features or “attributes”
accompanied of target class values or “labels”. The proposed pattern vectors or attributes
xi(a) = vn

a (i) ={Tmax, d, q, R, θ} for n = 1, 2 are composed of the physiological parameters
at a given position a with |x(a)| = χ = 5. There are 49 thermograms labeled as healthy
and 38 labeled as unhealthy. The principal objective of SVM is to find a computationally
efficient way to produce a model to predict target class values given a testing dataset with
attributes only. As is shown in Figure 6, a separating hyperplane into a χ-dimensional
feature space must be implemented.

Figure 6. Three-dimensional space using the proposed physiological parameters vn
a (i) = {θ, d, q}

obtained through the D-I-R model, corresponding to n = 2 at a given position a. The support vectors
define the margin’s greatest separation between the normal and abnormal classes.

For the classification task, we use the model formulation C-classification given as [24],

min
α

1
2

αT Bα− eTα

s.t. 0 ≤ αi ≤ C, i = 1, . . ., l,

yTα = 0.

(8)

To reduce some error measure above the training data, αi are the weights from the i-th
hidden unit to the output unit, b is the bias, e is the unity vector, C is the upper bound,
Bi,j ≡ yi, yjP(xi(a), xj(a)), P(xi(a), xj(a)) ≡ ϕ(xi(a))T ϕ(xj(a)), and ϕ is the mapping
function [25].

Assuming that the nonlinear separation limit can be linearized in a larger-dimensional
feature space using a mapping method: ϕ : Rχ � H : Rχ+s ⇒ x � ϕ (x), where v is the
increased dimension of H space [25]. The nonlinear SVM classifier is given as [25,26],

f (x) = sgn

[
ε

∑
i=1

αiyiP(xi(a), xj(a)) + b

]
, αi > 0. (9)

The Radial Basis Function (RBF) is the kernel, defined as P(xi(a), xj(a)) = exp(−γ‖
xi(a)− xj(a)‖2), where γ is gamma function, xi(a) are the training vectors, and xj(a) are
called support vectors.
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3. Results

The STD for a set of 87 thermograms, 49 normal and 38 abnormal of the DMR-
IR, is analyzed [3]. Abnormal thermal patterns that may be linked to breast lesions are
highlighted by an increase in the temperature of the affected tissue [13]. An increase
∆T = Tmax − Tmean in surface temperature is calculated for each thermogram. The Figure 7
shows that all the abnormal thermograms presenting temperature increases ∆T ≥ 2 ◦C.
Hence, the maximum temperature Tmax point of the RoI will be part of the pattern vector
for the thermogram categorization.
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Figure 7. The temperature at the vicinity of affected tissue is about 2 ◦C higher than normal tissue.

Extraction of the Input Heat Source Parameters

The surface temperature distribution T(x), environment temperature Te = 22 ◦C [4],
and maximum temperature Tmax at the RoI are needed to extract the internal heat source
parameters. For extraction of parameters, we applied the methodology mentioned in
Section 2. Firstly, to measure the correlation between the STD from the RoI and the STD
fitted by the Lorentz curve, we use the coefficient of determination R-squared [27]. In
the same way, the correlation between the STD estimated using the Equation (4) of the
D-I-R model and the STD of the RoI is measured. Therefore, the mean R-squared values
corresponding to the 87 thermograms are 0.87 and 0.99, respectively. Figure 8 shows the
estimated STD employing the two methods.
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Figure 8. Surface temperature distribution from (a) normal and (b) abnormal breast thermograms.

Thus, the internal heat source parameters d, q, and R are extracted from the obtained
STD at different a positions. Figures 9–11 show the three-dimensional feature spaces
using the physiological parameters Tmax, d, q, and θ extracted at different a positions. The
heat source parameters were obtained (a) by fitting the temperature distribution with the
Lorentz curve (n = 1) and (b) the D-I-R model (n = 2) from Equations (5)–(7). Scattergrams
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proof the correct separation between normal and abnormal thermograms at the optimal
position a = 0.0168 m that was determined using SVM. At different a positions, the
physiological parameters are scattered from their respective cluster.

Figure 9. Three-dimensional scattergrams using the physiological parameters obtained by means of
the fitting method of Lorentz curve at different positions a = 0.0102 m, a = 0.0168 m, and a = 0.018 m.
Column (a) corresponds to the pattern vector v1

a(i) ={Tmax, d, q} and column (b) corresponds to the
pattern vector v1

a(i) ={θ, d, q}. As can be seen, at the optimal position a = 0.0168 m, the scattergrams
show a correct separation between normal and abnormal thermograms. In other cases, the feature
vectors are highly correlated.
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Figure 10. Three-dimensional scattergrams using the physiological parameters obtained by means
of the D-I-R model at different positions a = 0.0102 m, a = 0.0168 m, and a = 0.018 m. Column
(a) corresponds to the pattern vector v2

a(i) ={Tmax, d, q} and column (b) corresponds to the pattern
vector v2

a(i) ={θ, d, q}. As can be observed, at the optimal position a = 0.0168 m, the scattergram
shows a correct separation between normal and abnormal thermograms. In other cases, the feature
vectors are highly correlated.

For the classification task, physiological pattern vectors composed of v1,2
a (i) = {Tmax,

d, q, R, θ} are used. Using SVM as a classifier, we obtain the CRC of Table 3. As can be
observed, the higher classification percentages are obtained using the estimated pattern
vector v2

a=0.0168 m (i) based on the D-I-R model. In this case, the STD from the RoI indicates
a good fitting with the estimated STD. The results are achieved using the proposed pattern
vector extracted at an optimal a = 0.0168 m position and through the SVM algorithm. In
addition, we analyze the performance of the proposed methodology using the AUC of the
Receiver Operating Characteristic (ROC) curve for the two methods employed.
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Figure 11. Three-dimensional scattergrams using the physiological parameters extracted from (a) the
fitting method of Lorentz curve and (b) the D-I-R model. As can be seen, at the same optimal
position a = 0.0168 m, the scattergrams show a correct separation between normal and abnormal
thermograms in both cases.

Table 3. Results of CRC and Area Under Curve (AUC) using the proposed pattern vector composed of physiological
parameters.

Method Breast Thermograms R-Squared CRC AUC Optimal Position of the RoI

D-I-R Model 87 0.9999 100% 1 a = 0.0168 m

Fitting method of Lorentz curve 87 0.87 90.80% 0.9046 a = 0.0168 m

Figure 12 shows the CRC percentages achieved at distinct a positions. As can be seen,
the highest percentages using the pattern vectors v1,2

a (i) extracted with the fitting method
of Lorentz curve and D-I-R model resulted in the same a = 0.0168 m position.
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Figure 12. Classification results using the pattern vector vn
a (i) ={Tmax, d, q, R, θ} obtained through the

fitting method of Lorentz curve and D-I-R model at different a positions using SVM as a classifier.

Table 4 shows the accuracy, sensitivity, and specificity of the two methods used for
the extraction of physiological parameters. These values indicate that the performance of
the pattern vector v1

a=0.0168 m (i) obtained employing the fitting method of Lorentz curve
was lower than the results given by the pattern vector v2

a=0.0168 m (i) calculated with the
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D-I-R model. These measures of diagnostic accuracy are obtained at optimal a = 0.0168 m
position using SVM.

Table 4. Measures of accuracy.

Method Accuracy Sensitivity Specificity

D-I-R model 100% 100% 100%

Fitting method of Lorentz curve 90.8% 87% 97%

The ROC curves from the two tested methods reached high performances, as shown
in Figure 13. On the other hand, the area under ROC confirms that the proposed pattern
vector va

2(i) has better performance since it has an area of 1, followed by the proposed
vector va

1(i) with an area of 0.9046. In this study, for the pattern vectors v1,2
a=0.0168 m (i)

obtained with the fitting method of Lorentz curve and the D-I-R model, we achieve higher
performance CRC rates of 90.80% and 100%, respectively, and an area under the ROC curve
of 0.9046 and 1 for the two methods employed.
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Figure 13. ROC curves.

4. Discussion

An analytical-based solution for the thermal inverse problem was used, considering
a point heat source embedded in tissue. From this solution and using the D-I-R model,
the physiological parameters, q, d, and R of an internal heat source are estimated. Dur-
ing thermal analysis of breast thermograms from the DMR-IR, we observe that several
factors can affect the accuracy of the extracted parameters, such as imaging acquisition
conditions, localization of the hottest spots, and the radial extension a of the RoI. Despite
these drawbacks, our experimental results show that the proposed method can classify
breast thermograms without intensity preprocessing or normalization of the raw thermal
data. The three-dimensional feature space in Figures 9–11 supports the discrimination
power of the proposed pattern vectors v1,2

a=0.0168 m (i) ={Tmax, d, q, R, θ}, allowing the correct
separation of both classes according to the optimal a position. Each normal and abnor-
mal class forms a cluster, and they are well separated. The proposed pattern vectors
v1,2

a (i) = {Tmax, d, q, R, θ} are obtained using the fitting method of Lorentz curve and the
D-I-R model. We can see that at position a = 0.0102 m and a = 0.018 m, descriptors values
are widely correlated. Because of that, we determine the optimal position as a = 0.0168 m
through the SVM algorithm. The physiological parameters extracted at this position are
suitable for breast thermogram classification, despite some descriptors in the 3D scatter-
grams that have been sparse from their respective class due to the human body complex
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and the inherent nature of the acquisition data. Figure 11 shows that the highest classifi-
cation percentages are obtained when the physiological pattern vectors are extracted at
the position a = 0.0168 m. We find that the optimal position is a = 0.0168 m for both the
fitting method of Lorentz curve and the D-I-R model, with a CRC of 90.80% and 100%,
respectively, by using the proposed pattern vector.

On the other hand, the DMR-IR database has been used to evaluate the efficiency of the
most common extracted features such as texture [19,28–31], shape [32], and morphology [33]
descriptors to classify thermal patterns. However, the discriminative power of the phys-
iological descriptors has not been evaluated on the above-mentioned database. Table 5
summarizes research that aims to classify breast tumors into two categories: benign and
malignant. As can be seen, the classification percentages below 97.18% are reached using
the DMR-IR database with a maximum of 80 thermograms. In this work, we proposed
highly discriminative physiological pattern vectors v1,2

a=0.0168 m (i) for breast thermogram
categorization. Furthermore, our proposed method uses a minimal number of descriptors
to obtain a CRC of 100% when 87 thermograms are used.

Table 5. Summary of research works that make use of the DMR-IR.

Authors Segmentation Features Extracted CRC Thermograms
Number

Sathish et al. [19] The breast is segmented.
Histogram and Gray Level
Cooccurrence Matrix (GLCM)
-based texture features.

90% 80

R. Devi et al. [28] The left and right breast are separated. GLCM features and first-order histogram. 95% 60

V. Mishra [30] The breast is segmented. Gray Level Run Length
Matrix (GLRLM) and GLCM. 95.45% 56

U. R. Gogoi [31] The breast is segmented. First-order statistical features. — 60

S. S. Suganthi et al. [32] The breast is segmented. Anisotropy and orientation measures. — 20

R. Resmini et al. [34]
The breast is segmented with different
approaches (with and without armpits)
to compose four experiments.

GLCM, Local Ternary Pattern,
Daubechies Wavelet, Higuchi,
Petrosian Fractal, Dimensions,
and Hurst Coefficient.

97.18% 80

Proposed approach The breast is segmented with a
well-defined RoI using SVM.

Physiological pattern vectors
v1,2

a=0.0168m (i) = { Tmax , q, d, R, θ}.
100% 87

5. Conclusions

Based on an inverse solution of the bio-heat equation and using the surface temper-
ature distribution of the RoI, the physiological parameters of an input heat source are
estimated using the fitting method of Lorentz curve and the D-I-R model. In this research,
we analyze i = 1, . . ., 87 breast thermograms from DMR-IR with clinically confirmed cases
as sick or healthy. Highly discriminative proposed pattern vectors were extracted, and
they are composed of physiological parameters v1,2

a=0.0168 m (i) = {Tmax, d, q, R, θ} for breast
thermogram classification. The pattern vector employing the D-I-R model is able to classify
when the parameters are extracted at an optimal a position. As can be seen in Table 3, we
obtain a CRC of 100% using SVM as a classifier. According to the achieved results, we found
that the optimal position a = 0.0168 m is suitable for the thermal analysis using both the
fitting method of Lorentz curve and the D-I-R model. Furthermore, the proposed technique
utilizes a reduced number of physiological parameters |vn

a | = 5, and it does not apply any
image normalization or contrast improvement. Our proposed method allows delimitation
of the RoI using SVM for analysis and raw thermal pattern classification. Nevertheless, the
experimental radial distance a of the RoI is less than or equal to 1.8 cm due to maximum
the temperature location close to the boundary image. In a future work, we will use lateral
view breast thermograms to overcome this limitation and analyze the whole breast region,
including the armpit and lymph nodes. Thus, this method will be greatly valuable for
determining the size and description of the RoI when it shows a pathological change not
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only in infrared imaging of the breast but also in the legs thermograms, abdomen, arms,
and head.
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