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Subjective cognitive decline (SCD) is considered to be the preclinical stage of Alzheimer’s

disease (AD) and has the potential for the early diagnosis and intervention of AD. It

was implicated that CSF-tau, which increases very early in the disease process in AD,

has a high sensitivity and specificity to differentiate AD from normal aging, and the

highly connected brain regions behaved more tau burden in patients with AD. Thus,

a highly connected state measured by dynamic functional connectivity may serve as the

early changes of AD. In this study, forty-five normal controls (NC), thirty-six individuals

with SCD, and thirty-five patients with AD were enrolled to obtain the resting-state

functional magnetic resonance imaging scanning. Sliding windows, Pearson correlation,

and clustering analysis were combined to investigate the different levels of information

transformation states. Three states, namely, the low state, the middle state, and the

high state, were characterized based on the strength of functional connectivity between

each pair of brain regions. For the global dynamic functional connectivity analysis,

statistically significant differences were found among groups in the three states, and the

functional connectivity in the middle state was positively correlated with cognitive scales.

Furthermore, the whole brain was parcellated into four networks, namely, default mode

network (DMN), cognitive control network (CCN), sensorimotor network (SMN), and

occipital-cerebellum network (OCN). For the local network analysis, statistically significant

differences in CCN for low state and SMN for middle state and high state were found

in normal controls and patients with AD. Meanwhile, the differences were also found in

normal controls and individuals with SCD. In addition, the functional connectivity in SMN

for high state was positively correlated with cognitive scales. Converging results showed

the changes in dynamic functional states in individuals with SCD and patients with AD. In

addition, the changes were mainly in the high strength of the functional connectivity state.

Keywords: resting-state fMRI, Alzheimer’s disease, subjective cognitive decline, dynamic functional connectivity,

sensorimotor network, clustering analysis
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INTRODUCTION

Alzheimer’s disease (AD) is a common neurodegenerative disease
and is characterized by β-amyloid deposition, pathological tau,
and neurodegeneration (Jack et al., 2018). The pathogenesis of the
above-related proteins may be influenced by the apolipoprotein E
epsilon 4-allele gene (Saeed et al., 2018), family history of AD (Yi
et al., 2018), sleep quality (Rasmussen et al., 2018), and dietary
habits (Elhaik Goldman et al., 2018). Clinically, patients with AD
suffer progressive cognitive impairment until daily life is affected
and the process is irreversible (Frisoni et al., 2017). Therefore,
more andmore researchers investigated drug treatment (Schwarz
et al., 2018) or mindfulness training (Smart et al., 2016) on
neurodegeneration and cognitive decline based on the preclinical
stages of AD. Subjective cognitive decline (SCD) refers to the self-
reported experience of memory loss and is regarded as the earliest
stage of AD (Taylor et al., 2018). Mild cognitive impairment
(MCI) is a clinical stage between normal aging and dementia,
the pre-stage of AD after SCD, with a 10–15 annual conversion
rate to dementia (Arvanitakis et al., 2019). Individuals have subtle
cognitive changes that do not interfere with everyday activities in
the MCI period. Previous studies indicate that the predementia
stage may last 15–20 years (Villemagne et al., 2013; Jansen
et al., 2015), and individuals with SCD have more chance of
progression to MCI and further AD dementia (Jessen et al., 2014;
Snitz et al., 2018). A previous study has revealed that mismatch
negativity neurofeedback may represent an effective treatment
for intervention in patients with SCD and the elderly with aging
memory decline (Pei et al., 2020). However, the pathology of
SCD is heterogeneous and can be associated with gender (Roberts
et al., 2012), sleep (Lauriola et al., 2017), gene (Moreno-Grau
et al., 2018), and psychological impactors (Wake et al., 2018).
A previous study has proved that the apolipoprotein E (APOE)
ε4 allele is a genetic risk factor for AD, whereas educational
attainments have protective effects against cognitive decline in
aging and patients with AD (Li et al., 2021). Thus, the progression
from SCD to MCI and AD may need multidimensional analyses,
such as clinical cognitive scales (Tabatabaei-Jafari et al., 2018),
education level (Xu et al., 2021), structural indexes (Moore et al.,
2018), functional indexes (Sun et al., 2016), cerebrospinal fluid
(Hays et al., 2018), and cortical glucose metabolism measured by
positron emission tomography (PET) (Eliassen et al., 2017).

Structural neuroimaging methods have been applied in
the study of neurodegenerative disease (Yue et al., 2018;
Liu et al., 2021). Studies on SCD revealed that the cortical
atrophy in medial temporal structures (Buckley et al., 2017)
and the temporal cortical thickness were associated with the
subsequent rate of memory loss (Verfaillie et al., 2018a).
Also, graph analysis showed that the random organization of
the structural gray matter network was related to cognitive
functions in individuals with SCD (Verfaillie et al., 2018b).
Compared with cortical changes in gray matter, individuals
with SCD also showed the abnormality in white matter
measured by diffusion tensor imaging (DTI). Previous studies
have proved the disrupted structural brain network pattern in
individuals with SCD (Yan et al., 2018). Specifically, the structural
damage measured by DTI was associated with the cerebrospinal

fluid neurofilament light, a protein biomarker in individuals
with MCI (Moore et al., 2018). In addition, a resting-state
magnetoencephalography (MEG) study revealed the functional
network disruption in individuals with SCD and MCI, compared
with NC (Lopez-Sanz et al., 2017a,b).

The resting-state functional magnetic resonance imaging (rs-
fMRI) measures blood oxygen level-dependent (BOLD) signals.
It has the potential to measure the changes in preclinical AD
(Ten Kate et al., 2018). The BOLD signals are the intrinsic
property of the brain, and they keep the patterns even during
task paradigms. The amplitude of low-frequency fluctuation
(ALFF) and fractional ALFF (fALFF) may help detect the
underlying pathological mechanism in the AD continuum.
ALFF/fALFF measurements of spontaneous or intrinsic brain
activity may be useful to characterize the early gradient of
physiological alterations in AD (Yang et al., 2018, 2020).
Functional connectivity (FC) can measure the intrinsic patterns
by calculating the spatial correlations between different brain
regions (Fox and Raichle, 2007). An increased correlation was
observed between central frequency and cognitive performance
in posterior cortical regions in individuals with SCD compared
with NC (Xie et al., 2019). A study that combined structural MRI
and rs-fMRI showed that graph measures extracted by resting-
state FC had the better power for predicting the conversion
from MCI to AD compared with cortical thickness extracted by
structural MRI (Hojjati et al., 2018). Resting-state FC can be
used to reflect individual brain patterns of cognitive behaviors
(Finn et al., 2015). A previous study revealed the reduction
in metastability of the resting-state BOLD signals of patients
with AD from the network level (Alderson et al., 2018). A
previous study has revealed the abnormal interactions among
large-scale networks, such as the dorsal attention network,
the central-executive network, and the default mode network
(DMN), in individuals with MCI compared with NC (Chand
et al., 2018). Numerous studies constructed the resting-state FC
and showed the disruption of DMN in patients with AD, the
precuneus/posterior cingulate cortex (Grieder et al., 2018; Yokoi
et al., 2018). However, studies above only focus on the time-
stable property, not on the time-varying property of the brain
in resting state. The brain is complex and variable, and more
studies have proved that the changes in FC across time help reveal
dynamic changes in brain function. A growing number of fMRI
studies have found dynamic FC that captures the time-sensitive
information about dynamic brain network (Calhoun et al., 2014;
Pervaiz et al., 2020; Barber et al., 2021).

Over the years,MRI-based computer-aided diagnosis has been
shown to be helpful for the early prediction of cognitive decline.
An increasing number of studies have adopted machine learning
for the classification of AD, with promising results (Wong et al.,
2021). Resting-state dynamic functional networks are powerful
for the classification of MCI (Jie et al., 2018). Many studies
focused on the spatially abnormal brain regions or networks.
Recently, temporally abnormal states attracted more and more
attention. Clustering analysis is one of the important methods
for the functional parcellation of cerebrocortical areas (Garcia-
Garcia et al., 2018; Ogawa et al., 2018). A previous study used
clustering analysis to reveal the clusters of healthy subjects’
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resting-state networks from the spatial aspect. They clustered the
resting-state networks into “primary sensory/motor networks”
and “cognitive networks” (Bijsterbosch et al., 2017). Another
study clustered the edges into five classes (Kang et al., 2017).
The clustering analysis can also be applied to dynamic FC states
extraction. Dynamic FC states extraction allowed researchers
to find the repetitive patterns or analyze the contribution of
different networks at different time points (Preti et al., 2017).
A previous study revealed dynamic functional states in the
mouse brain and found the complex reorganization of functional
networks by sliding window analysis (Grandjean et al., 2017). It
has been proved that the dynamic brain network was associated
with behavioral state shifts and may be served as the biomarker
of related disorders (Kucyi et al., 2017; Shine and Poldrack,
2018). Specific patients may show specific abnormal dynamic
states at specific moments (Preti et al., 2017). One study on
schizophrenia showed the temporally abnormal state typified by
strong connectivity (Damaraju et al., 2014). A previous study
clustered the resting-state dynamic FC of patients with AD into
five states and showed obviously the low connective state and
high connective state (de Vos et al., 2018).

A recent study revealed the normative pathways in FC from
the perspective of space (Leming et al., 2019). In this study, we
tried to find the normative states from the perspective of time.
One study used the k-means clustering analysis and found two
states in patients with Parkinson’s disease and healthy controls.
One state is “more frequent and sparsely connected” (similar to
low correlation state), and the other state is “less frequent and
more strongly interconnected” (similar to high correlation state)
(Kim et al., 2017). Similarly, another study also identified two
states (strong and weak states) based on healthy subjects’ resting-
state networks (Choe et al., 2017). Therefore, we assumed that
the normative states in terms of time at least included the low
and high connective states (de Vos et al., 2018). In addition,
a previous study showed that highly connected brain regions
behaved more tau burden in patients with AD (Cope et al.,
2018). Thus, we assumed that the high connective state is more
vulnerable than other states during the progression from SCD
to AD.

MATERIALS AND METHODS

Participants
Our dataset was composed of 165 participants, including 65 NC,
41 participants with SCD, and 59 patients with AD. The diagnoses
of SCD and AD were completed by experienced neurologists.
The standard of diagnosis and inclusion criteria for NC, SCD,
and AD were similar to a previous study (Yan et al., 2018).
All the participants agreed to and signed the informed consent
prior to scanning. This study was authorized by the Medical
Research Ethics Committee and Institutional Review Board of
XuanWu Hospital (ClinicalTrials.gov identifiers: NCT02353884
and NCT02225964).

All participants completed the Chinese version of the
Mini-Mental State Examination (MMSE), the Beijing version
of the Montreal Cognitive Assessment (MoCA), and the
auditory verbal learning test (AVLT) to evaluate their

cognitive capacity. In addition, the AVLT included AVLT-
immediate recall (AVLT-I), AVLT-delayed recall (AVLT-D), and
AVLT-recognition (AVLT-R).

MRI Acquisition
Structural MRI and rs-fMRI data were collected using a 3T
Siemens Magnetom Trio Tim MRI scanner with a standard
head coil. Cushions and headphones were used to minimize
movements and scanner noise.

The rs-fMRI data of participants were collected during the
eyes-closed and relaxed condition. A standard gradient-echo
echo planar imaging sequence was used with repetition time (TR)
= 2,000ms, echo time = 40ms, flip angle = 90◦, field of view
= 240 × 240 mm2, matrix size = 64 × 64, thickness = 4.0mm,
number of slices = 28, voxel size = 3.75 × 3.75 × 4 mm3, and
layer interval = 1mm. Each resting-state scan lasted for 478 s
(239 volumes).

Structural T1 data acquisition was same to a previous
published study (Yan et al., 2018). T1-weighted high-resolution
data were collected using a 3D magnetization-prepared rapid
gradient echo (MPRAGE) with repetition time = 1,900ms, echo
time = 2ms, inversion time = 900ms, flip angle = 9◦, field
of view = 224 × 256 mm2, matrix size = 448 × 512, no gap,
thickness= 1.0mm, and number of slices= 176.

The rs-fMRI Data Preprocessing
The rs-fMRI data were preprocessed using Statistical Parametric
Mapping software (SPM12, https://www.fil.ion.ucl.ac.uk/
spm/) and the Graph Theoretical Network Analysis Toolbox
for Imaging Connectomics (GRETNA, https://github.com/
sandywang/GRETNA). Both SPM and GRETNA (Wang
et al., 2015) were implemented in MATLAB (version R2014a,
MathWorks, Inc., Natick, MA, USA). The first ten volumes
were removed to allow for scanner stabilization and adaption
of participants, resulting in 229 volumes. The 229 volumes
were slice-timing corrected to allow for timing differences in
slice acquisition, realigned to the first volume, co-registered
to the corresponding T1 image, normalized to the Montreal
Neurological Institute (MNI) template, and resampled to 3 mm3.
Then, the fMRI data were smoothed with a Gaussian kernel
(FWHM = 5mm) and removed linear trends. In addition,
several nuisance signals (six head motion parameters, signals
from white matter and cerebrospinal fluid) were regressed out by
Friston 24-parameter model (Friston et al., 1996). Furthermore,
the time course of each voxel was applied temporal filtering
(0.01–0.1Hz). Participants were excluded if the max absolute
translations and rotations of their head motions were larger than
3mm or 3◦. The framewise displacement (FD) was calculated
to further control the head motion (Power et al., 2012). After
the preprocessing, the data were processed according to the
flowchart in Figure 1.

Computation for Dynamic Brain Networks
To compute the dynamic brain networks, the DOS atlas
(Dosenbach et al., 2010) was applied to define the 160 regions
of interest (ROIs) of 10mm diameter spheres. Furthermore,
the 160 ROIs of the DOS atlas were grouped into the
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FIGURE 1 | The workflow of processing.

following four functional networks: the default mode network
(DMN), the cognitive control network (CCN), the sensorimotor
network (SMN), and the occipital-cerebellum network (OCN)
(Tian et al., 2018).

Dynamic FC analysis was examined by the sliding-time
window approach. Previous dynamic FC studies showed that
the window size should at least be larger than 30 s (Jones et al.,
2012). In this study, the sliding window approach segmented
the mean time series of each ROI into many 15-TR windows
with the size of 30 s and a time interval of 1 TR, resulting in
215 time-windows for each participant. In each window, the
weighted FC was defined by calculating Pearson’s correlation on
the time series of each pair of ROI. To improve the normality
of the distribution of Pearson’s correlation coefficients, the
Pearson’s correlation coefficients were transformed into z-scores
by Fisher’s z transformation.

FC State Analysis/Clustering Analysis
Reoccurring FC states in individual dynamic FC were identified
using k-means clustering algorithm (Kim et al., 2017; Fu
et al., 2018). The sklearn (https://scikit-learn.org/stable/) package
in Python v3.6 (https://www.python.org/) was used for the
realization of the clustering algorithm. In particular, each of the
215 windows was used as a sample; each upper triangular element
of the 160 × 160 matrix was used as a feature (12,720 features
in total); and the L1 norm (Manhattan distance) was used as a

distance function (Fu et al., 2018). The best k (number of clusters
or states) was determined by the elbow criterion (Vergara et al.,
2020), which was computed as the ratio of within-cluster distance
to between-cluster distance (Allen et al., 2014). In addition, the
k-means++ was the initial cluster centers algorithm (Arthur
and Vassilvitskii, 2007). To reduce random errors, the algorithm
was repeated 10 times for different centroid seeds and chose
the best output as the final result. Specifically, the algorithm
was performed on NC, individuals with SCD, and patients
with AD.

Group Differences
The differences among states were evaluated by global
and local network comparison. For each participant, the
mean FC matrix of each state was calculated based on the
label of each window after clustering. In global network,
the mean value of the mean FC matrix of each state was
calculated for the comparison among groups by ANOVA
(p < 0.05, Bonferroni corrected). In local network, the
mean value of FC in each network (CCN, DMN, SMN,
and OCN) was calculated for the comparison among
groups by ANOVA (p < 0.05, Bonferroni corrected). The
visualization of FC in the significantly different networks
among the three groups was completed by the Circos software
(Krzywinski et al., 2009).
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Associations Between Dynamic FC and
Cognitive Scales
The associations between dynamic FC and cognitive scales were
evaluated by partial Pearson’s correlation analyses (p < 0.05). As
mentioned above, participants underwent the following cognitive
scales: MMSE, MoCA, AVLT-I, AVLT-D, and AVLT-R. The
mean value of the five cognitive scales was calculated as the
independent variable, and the mean value of global FC matrix
was the dependent variable for the global association analysis.
Age, education, and FD were covariates. Since the differences
among groups were the research focus, the local association was
evaluated on the specific network in a specific state that showed
significant variation by ANOVA.

RESULTS

Demographic and Clinical Characteristics
After the control of head motion (the max absolute translations
and rotations of head motions were larger than 3mm or 3◦),
150 participants were included in the present research. The
demographic and clinical characteristics were detailed in Table 1.
No statistical difference (p < 0.05) among the groups was found
in gender and FD, which suggests that the head motion was
controlled well. Statistical difference among groups was found in
the age, education, and five cognitive scales.

Global Differences
Taking the elbow criterion and the comparison among groups
into the consideration, the best k was three. Thus, the dynamic
functional brain networks were clustered into three states: the
low state, middle state, and high state. The cluster centroids in
every group were shown in Figure 2. Specifically, 34 participants
were excluded from the following analysis because they showed
only one or two states during the whole scan. Thus, the
following results were obtained from 116 participants (45 NC, 36
individuals with SCD, and 35 patients with AD).

TABLE 1 | Demographic and clinical characteristics.

NC SCD AD P-value

Gender (M/F) 60 (26/34) 40 (16/24) 50 (17/33) p = 0.605a

Age (years) 62.57 ± 8.67 64.90 ± 8.31 70.86 ± 9.87 p = 0.000b

Education (years) 10.85 ± 5.06 11.65 ± 4.53 8.84 ± 5.65 p = 0.027b

FD (mm) 0.25 ± 0.12 0.22 ± 0.13 0.27 ± 0.12 p = 0.161b

AVLT-I 9.23 ± 1.89 8.32 ± 1.92 3.59 ± 1.61 p < 0.000b

AVLT-D 10.30 ± 2.87 8.95 ± 2.66 1.00 ± 1.62 p < 0.000b

AVLT-R 12.08 ± 2.59 11.18 ± 2.75 3.66 ± 3.36 p < 0.000b

MMSE 28.18 ± 2.13 28.05 ± 1.93 16.61 ± 6.17 p < 0.000b

MoCA 26.15 ± 3.08 25.51 ± 2.73 12.52 ± 5.06 p < 0.000b

Note: Values are presented as mean ± SD.

NC, normal controls; SCD, subjective cognitive decline; AD, Alzheimer’s disease; FD,

framewise displacement; AVLT-I, the auditory verbal learning test (AVLT)-immediate recall

scores; AVLT-D, AVLT-delayed recall scores; AVLT-R, AVLT-recognition scores; MMSE,

the Chinese version of the Mini–Mental State Examination; MoCA, the Beijing version of

Montreal Cognitive Assessment.
aχ2-test.
bOne-way ANOVA. p < 0.05 was considered significant.

As described above, each subject has 215 windows across the
whole scan, and each window will belong to one of the three
states. The number of occurrences of each state in each group is
as follows: low state: mean ± standard error (SE) for NC group:
104.133 ± 5.943, for SCD group: 95.778 ± 6.793, and for AD
group: 89.657 ± 7.860; middle state: mean ± SE for NC group:
84.444 ± 4.027, for SCD group: 84.111 ± 4.756, and for AD
group: 88.486 ± 5.017; and high state: mean ± SE for NC group:
26.422 ± 4.030, for SCD group: 35.111 ± 4.788, and for AD
group: 36.857 ± 6.752. In each of the three groups, the low state
has the most occurrences, followed by the middle state, and the
high state has the least number of occurrences.

As shown in Figure 3, the mean value of the FCmatrix in each
state of each group showed statistical difference (low state: mean
± SE for NC group: 0.17 ± 0.003, for SCD group: 0.11 ± 0.003,
and for AD group: 0.15 ± 0.004; p < 0.01 for three groups; p
< 0.01 for NC vs. SCD group; p < 0.01 for NC vs. AD group;
p < 0.01 for SCD vs. AD group; middle state: mean ± SE for
NC group: 0.40 ± 0.004, for SCD group: 0.28 ± 0.003, and for
AD group: 0.36 ± 0.004; p < 0.01 for three groups; p < 0.01 for
NC vs. SCD group; p < 0.01 for NC vs. AD group; p < 0.01 for
SCD vs. AD group; high state: mean ± SE for NC group: 0.70
± 0.015, for SCD group: 0.54 ± 0.014, and for AD group: 0.65
± 0.013; p < 0.01 for three groups; p < 0.01 for NC vs. SCD
group; p = 0.014 for NC vs. AD group; p < 0.01 for SCD vs.
AD group; Bonferroni corrected). The differences suggest that
the three states were clustered according to the strength of FC.
Furthermore, the mean value of the FC matrix in middle state
was positively correlated with the mean scores of the cognitive
scales in NC and SCD group [partial correlation, r(76) = 0.259,
n = 81, p = 0.039, uncorrected], and NC and AD group [partial
correlation, r(75) = 0.493, n= 80, p < 0.01, uncorrected].

Local Differences
For local differences, the mean value of CCN in low state, SMN in
middle state, and SMN in high state showed statistical difference
both in NC and SCD group and in NC and AD group (CCN in
low state: mean± SE for NC group: 0.49± 0.018, for SCD group:
0.41 ± 0.020, and for AD group: 0.40 ± 0.021; p = 0.001 for
three groups; p = 0.01 for NC vs. SCD group; p = 0.004 for NC
vs. AD group; p = 1.00 for SCD vs. AD group; SMN in middle
state: mean ± SE for NC group: 1.26 ± 0.047, for SCD group:
1.01 ± 0.059, and for AD group: 0.99 ± 0.044; p < 0.01 for three
groups; p = 0.001 for NC vs. SCD group; p = 0.001 for NC vs.
AD group; p = 1.00 for SCD vs. AD group; SMN in high state:
mean ± SE for NC group: 1.89 ± 0.074, for SCD group: 1.40 ±

0.078, and for AD group: 1.56± 0.065; p < 0.01 for three groups;
p < 0.01 for NC vs. SCD group; p = 0.006 for NC vs. AD group;
p = 0.393 for SCD vs. AD group; Bonferroni corrected). The
visualization of FC between three kinds of network (i.e., CCN in
low state, SMN in middle state, and SMN in high state) and other
regions was shown in Figure 4. As shown in Figure 5, SCD group
and AD group showed fewer connections compared with NC
group. Partial Pearson’s correlation analyses showed statistical
positive correlations (p < 0.05) in SMN. Particularly, NC and
AD group showed the correlations in both middle state and high
state [middle state: partial correlation, r(75) = 0.312, n = 80, p
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FIGURE 2 | Variations of SSE with k and cluster centroids for different states in different groups. (A) A line plot between SSE (within-clusters sum of squared errors)

vs. k (number of clusters). (B–D) The three FC states, namely, low state, middle state, and high state, of NC, SCD, and AD groups are shown in (B–D), respectively.

The value in the matrix indicates the center of FC measured by Pearson correlation (Fisher’s z-transformed) in each state.

FIGURE 3 | Global differences among NC, SCD, and AD groups. (A) The top 5‰ (64/12720) functional connectivity of SMN in middle state. (B) The mean value of

functional connectivity in each state. The statistically significant p-value is 0.01 (**) and Bonferroni corrected. (C,D) The plots of the mean value of functional

connectivity in middle state vs. mean scores of the cognitive scales were shown in (C) for NC and SCD groups and in (D) for NC and AD groups. The statistically

significant p-value is * < 0.05 or ** < 0.01.
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FIGURE 4 | Local differences. The 160 ROIs were arranged along the circle. In each circle, the blue lines indicated the correlations between DMN and CCN (in the first

column) or between DMN and SMN (in the second and third columns). The green lines indicated the correlations within CCN (in the first column) or between CCN and

SMN (in the second and third columns). The purple lines indicated the correlations between SMN and CCN (in the first column) or within SMN (in the second and third

columns). The orange lines indicated the correlations between OCN and CCN (in the first column) or between OCN and SMN (in the second and third columns). (A–C)

In NC (A), SCD (B), and AD (C) groups, low state averaged FC between CCN and the other three networks (i.e., DMN, SMN, and OCN) was visualized. Similarly,

middle state and high state averaged FC between SMN and the other three networks (i.e., DMN, CCN, and OCN) were visualized. For the visualization, the correlation

coefficients larger than 0.4, 0.5, and 0.8 were shown in the first, second, and third column.

= 0.013; high state: partial correlation, r(75) = 0.313, n = 80, p
= 0.012; uncorrected]. However, NC and SCD group showed the

correlation only in high state [partial correlation, r(76) = 0.285,
n= 81, p= 0.023, uncorrected].
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FIGURE 5 | Local differences. (A) The statistically significant difference of the mean value of functional connectivity within four networks (i.e., DMN, CCN, SMN, and

OCN) among groups (NC, SCD, and AD). The statistically significant p-value was 0.05 (*) or 0.01 (**) and Bonferroni corrected. The plots of the mean scores of the

cognitive scales vs. the mean value of functional connectivity within SMN in middle state of NC and SCD groups, and SMN in high state of NC and SCD groups and

NC and AD groups are shown in (B–D) respectively. The statistically significant p-value is (*) 0.05.

DISCUSSION

In this study, the reoccurring states of dynamic FC in NC, SCD,
and AD were characterized by sliding windows and k-means

clustering analysis (k = 3). The reoccurring states were clustered

based on the correlation between each pair of brain regions and
included the low state, middle state, and high state in each group.
The high state indicated the highly connected within the brain
but not always occurred during the rs-fMRI scanning. Based on
the three different connected states, changes in global and local
dynamic FC were clarified among NC, SCD, and AD groups. For
global dynamic FC, each of the three states showed a significant
difference in the mean value of the global network among the
three groups. The mean value of middle state FC was positively
correlated with cognitive scales. The results suggest that the
middle state is good for memory and may serve as a preclinical
biomarker of AD. For local FC, CCN in low state and SMN in
middle state and high state showed significant differences among
the three groups. The mean value of SMN in high state was

positively correlated with cognitive scales. Taken together, global
and local network results suggest that both middle state and
high state were the vulnerable dynamic states in the progression
of AD.

To the best of our knowledge, this study is the first study to
investigate the different connected states based on the resting
state dynamic FC in individuals with SCD and patients with AD.
In this study, three states were clustered. Some other studies
clustered the resting-state FC into five or six states and also
revealed similar results. They classified the dynamic brain FC
into five states and found that two states belong to the low
correlations and three states belong to the high correlations (Plis
et al., 2018). A recent study focused on patients with autism
spectrum disorder and found four dynamic FC states, including
the globally disconnected state (similar to low correlation state),
globally hyperconnected state (similar to high correlation state),
globally modularized state, and DMN modularized state (Rashid
et al., 2018). However, too many clusters would make the
contrasts between low state and high state decrease. A previous
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study clustered the healthy subjects’ subject-level spatiotemporal
brain networks into 12 clusters by k-means clustering analysis
(Griffa et al., 2017), and no obvious high state was found. Highly
and lowly connected states were common, but the common
states would be covered up by too many clusters. Thus, three
clusters or states were suitable for characterizing the changes
in brain.

The basic goal of this study was to find the changes
between NC and individuals with SCD or patients with AD.
Compared with NC, a reduction of FC was revealed in
individuals with SCD and patients with AD in this study,
which was similar to previous studies (Jacobs et al., 2015).
Similar changes were found between BOLD and resting EEG
coherence (alpha and beta bands). Furthermore, they revealed
a positive correlation between blocking γ-aminobutyric acid
transmission and resting-state FC (Nasrallah et al., 2017). The
reduction of global FC in individuals with SCD and patients
with AD indicated the abnormal blocking γ-aminobutyric acid
transmission in the progression of AD. A previous study of
permutation entropy (PE) showed that AD exhibited lower
complexity than did the MCI and NC controls, and the results
were related to the results of the regional homogeneity (ReHo)
analysis (Wang et al., 2017).

This study not only found the abnormal global dynamic FC
but also investigated the changes in different local networks,
including CCN, DMN, SMN, and OCN. A recent meta-
connectomic analysis revealed that neuropsychiatric disorders,
such as AD, were disconnected mainly in the default mode
network, frontoparietal network, and sensorimotor network
(Sha et al., 2018). The increase of amyloid burden measured
by PET in bilateral posterior cingulate cortex showed the
reduction of face-name associative memory exam performance
in individuals with SCD (Sanabria et al., 2018), and the
frontoparietal subnetworks can compensate for mental fatigue-
related cognitive decline (Taya et al., 2018). Structural or static
FC analysis on patients with MCI and AD has revealed the
abnormality in DMN (Vipin et al., 2018). A study based on
a multimodal support vector machine (SVM) to investigate
the structural and functional connectivity patterns of three
stages of AD (i.e., SCD, MCI, and AD) showed that the most
discriminating brain regions of AD were mainly located in
DMN and subcortical structures (Yan et al., 2019). Dynamic
FC analysis showed the state, which was typical of strong
correlations between CCN and DMN (Faghiri et al., 2018) and
revealed the importance of large-scale networks in the dynamic
FC analysis.

Static resting-state FC analysis on early autosomal dominant
patients with AD showed the preferential degradation of
cognitive networks (such as DMN and dorsal attention networks)
over sensorimotor networks (Chhatwal et al., 2018), while, in
the present dynamic FC analysis, the abnormality of SMN
was more preferential than DMN among the three groups.
SMN is one of the commonly identified and replicated
resting-state networks and is associated with motor execution
and somatosensory components (Hohenfeld et al., 2018). A
previous study showed the altered sensorimotor integration
in patients with AD reflected by pitch reflex, a behavioral

index (Ranasinghe et al., 2017). A DTI study on patients
with AD showed abnormal complex graph measures in
sensorimotor cortex (Ebadi et al., 2017). A transcranial magnetic
stimulation (TMS) and EEG co-registration study revealed the
abnormality and the compensatory mechanism of sensorimotor
system based on patients with mild AD without motor
symptoms (Ferreri et al., 2016). Taken together, the disruptions
of SMN may be effective biomarkers in the progression
of AD.

In summary, the reoccurring states of resting-state FC,
including low state, middle state, and high state, were
characterized among NC, SCD, and AD groups by sliding
windows and clustering analysis. In local network, SMN in high
state showed a statistical difference compared with NC, and it is
positively correlated with the mean score of the cognitive scales.
Therefore, SMN in highly connected brain states behaved more
vulnerable in individuals with SCD and patients with AD. Motor
execution and somatosensory function network abnormalities
may be related to the early stage of AD. Last but not least, this
study has a few limitations that should be considered. We need
a follow-up study to evaluate the conversion from SCD to AD
and to predict the stability or conversion of individuals with
SCD (Bessi et al., 2018). Future studies should shed light on
the correlation between high state and pathological proteins in
large-scale networks, such as DMN and SMN.
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