
fnins-15-673401 August 5, 2021 Time: 15:46 # 1

ORIGINAL RESEARCH
published: 05 August 2021

doi: 10.3389/fnins.2021.673401

Edited by:
Narly Golestani,

University of Vienna, Austria

Reviewed by:
Alexander Bertrand,
KU Leuven, Belgium

Lars Hausfeld,
Maastricht University, Netherlands

*Correspondence:
Giovanni M. Di Liberto

diliberg@tcd.ie

Specialty section:
This article was submitted to

Auditory Cognitive Neuroscience,
a section of the journal

Frontiers in Neuroscience

Received: 27 February 2021
Accepted: 17 June 2021

Published: 05 August 2021

Citation:
Di Liberto GM, Marion G and
Shamma SA (2021) Accurate

Decoding of Imagined and Heard
Melodies.

Front. Neurosci. 15:673401.
doi: 10.3389/fnins.2021.673401

Accurate Decoding of Imagined and
Heard Melodies
Giovanni M. Di Liberto1,2,3,4* , Guilhem Marion1 and Shihab A. Shamma1,5

1 Laboratoire des Systèmes Perceptifs, CNRS, Paris, France, 2 Ecole Normale Supérieure, PSL University, Paris, France,
3 Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity Centre for Biomedical Engineering, Trinity
College, Trinity Institute of Neuroscience, The University of Dublin, Dublin, Ireland, 4 Centre for Biomedical Engineering,
School of Electrical and Electronic Engineering and UCD University College Dublin, Dublin, Ireland, 5 Institute for Systems
Research, Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD, United States

Music perception requires the human brain to process a variety of acoustic and music-
related properties. Recent research used encoding models to tease apart and study
the various cortical contributors to music perception. To do so, such approaches
study temporal response functions that summarise the neural activity over several
minutes of data. Here we tested the possibility of assessing the neural processing
of individual musical units (bars) with electroencephalography (EEG). We devised a
decoding methodology based on a maximum correlation metric across EEG segments
(maxCorr) and used it to decode melodies from EEG based on an experiment where
professional musicians listened and imagined four Bach melodies multiple times. We
demonstrate here that accurate decoding of melodies in single-subjects and at the
level of individual musical units is possible, both from EEG signals recorded during
listening and imagination. Furthermore, we find that greater decoding accuracies are
measured for the maxCorr method than for an envelope reconstruction approach
based on backward temporal response functions (bTRFenv). These results indicate that
low-frequency neural signals encode information beyond note timing, especially with
respect to low-frequency cortical signals below 1 Hz, which are shown to encode
pitch-related information. Along with the theoretical implications of these results, we
discuss the potential applications of this decoding methodology in the context of novel
brain-computer interface solutions.
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INTRODUCTION

In our everyday life, our brain examines sounds by extracting various types of auditory features.
In music, one such feature is the melody, which is a sequence of pitches set to a particular rhythm
in which the individual tones are processed in terms of multiple structured relationships (Patel,
2003). The melody is generally one important part of a song that we remember and we enjoy
humming or whistling. However, the neural processes leading to the extraction of melodies from
complex auditory stimuli remain unclear. Recent work has provided new insights into this process
by studying the neural activity recorded with electroencephalography (EEG) during music listening
tasks (Carrus et al., 2013; Omigie et al., 2013; Di Liberto et al., 2020). That work used encoding
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models and found that neural signals encode both the acoustic
properties of music (timing and pitch of a note) and the
expectation of musical notes according to the preceding
proximal context and the musical background of the listener
(Di Liberto et al., 2020).

The ability to measure this multifaceted neural encoding of
melodies with non-invasive brain recordings provides us with
new opportunities to unveil the neural encoding of melodies and
its precise role in music perception. The encoding modelling
framework constitutes an effective solution to study the neural
processing of complex sounds, such as melodies, by teasing
apart its various cortical contributors (Koelsch, 2011; Brodbeck
et al., 2018; Obleser and Kayser, 2019; Di Liberto et al., 2021b).
While that work informed us on which properties of music are
encoded in cortical signals measured, hence contributing to our
understanding of how the human brain processes melodies, the
present study investigated the inverse question: can we use such
cortical signals to identify the corresponding melodies that were
either listened to or imagined? A successful classifier can then
be studied to determine which particular melodic properties are
encoded in the neural signal and contribute to the decoding.
Furthermore, the development of such a classifier for the case of
music imagery could directly translate into new brain-computer
interfaces (BCIs).

Recent work demonstrated that EEG signals recorded during
music listening (Di Liberto et al., 2020) and imagery (Marion
et al., 2021) encode both the sound envelope and higher-order
neural activity reflecting melodic predictions. Here we devised
a framework to capture this rich spectrum of signals including
both low- and higher-level neural processes, with the goal of
accurately decoding melodies from EEG. We present a re-analysis
of a publicly available dataset previously published by our team
(Di Liberto et al., 2021a; Marion et al., 2021). EEG signals were
recorded as participants listened or imagined Bach melodies. The
start of each musical measure was indicated to the participants
with a vibro-tactile metronome placed on their ankle, which
provided an important synchronisation signal for the imagery
task, but that was also presented in the listening condition for
consistency and was identical across melodies. The study tested
for the possibility that listened and imagined Bach melodies could
be precisely decoded from EEG. Our classification approach
consisted of partitioning the EEG signal into segments of a given
length (1, 2, 4, or 8 music bars), and then assigning each EEG
segments with the note sequence corresponding to the most
similar EEG segment in the dataset. The decoding quality was
then assessed both in terms of note timing and pitch value
information. Crucially, we used melodies with the same tempo
to ensure that the decoding was driven by the neural encoding of
melodies rather than differences in tempo.

MATERIALS AND METHODS

Data Acquisition and Experimental
Paradigm
Twenty-one healthy individuals (6 female, aged between 17 and
35, median = 25) participated in the EEG experiment, which

was conducted as part of a previous study (Di Liberto et al.,
2021a; Marion et al., 2021). All participants were highly trained
musicians with music degree. Ten of them were professional
musicians. The other eleven participants were studying to
become professional musicians at the CNSM (six of them) and
the CRR (five of them) Paris institutes. Eighteen participants
had strong expertise in at least one music instruments (piano,
guitar, saxophone, violin, percussions, cello, clarinet, accordion,
double bass, flute), two were singers, and one was an expert
in music theory. Each subject reported no history of hearing
impairment or neurological disorder, provided written informed
consent, and was paid for their participation. The study was
undertaken in accordance with the Declaration of Helsinki and
was approved by the CERES Committee of Paris Descartes
University (CERES 2013-11). The experiment was carried out in a
single session for each participant. EEG data were recorded from
64 electrode positions and digitised at 2,048 Hz using a BioSemi
Active Two system. Three additional electrodes were placed on
the upper midline of the neck, the jaw, and the right wrist to
control for motor movements of the tongue, masseter muscle,
and forearm fingers extensors, respectively. Audio stimuli were
presented at a sampling rate of 44,100 Hz using a Genelec
8010-10w loud-speaker and custom Python code. Testing was
carried out at École Normale Supérieure, in a dimmed room.
Participants were instructed to minimise motor activities while
performing the task.

The experiment consisted of 88 trials in which participants
were asked to either listen or perform mental imagery of ∼35 s
melodies from a corpus of Bach chorales (see section “Stimuli
and Procedure”). Participants were asked to read the music scores
placed at the centre of the desk during both listening and imagery
conditions. A tactile metronome (Peterson Body Beat Vibe Clip)
marking the start of 100 bpm bars (each 2.4 s) was placed on
the left ankle of all participants to allow them to perform the
mental imagery task with high temporal precision. A constant lag
of 35 ms was determined during the pilot experiments based on
the subjective report by the participants, who reported that the
metronome with lag 0 ms was not in sync with the music. That
correction was applied for all participants with the same lag value.
Before the experiment, musical imagery skills (or audiation skills)
were assessed for every subject with “The Advanced Measures of
Music Audiation” test1 (AMMA).

Stimuli and Procedure
Four melodies were selected from a monophonic MIDI corpus
of Bach chorales (BWV 349, BWV 291, BWV354, BWV 271).
Each melody was repeated 11 times per condition and the
order of melodies (four melodies) and conditions (listening and
imagery) was randomised. All chorales use similar compositional
principles: the composer takes a melody from a Lutheran
hymn (cantus firmus) and harmonises three lower parts (alto,
tenor, and bass) accompanying the initial melody on soprano.
The monophonic version of those melodies consist of the
cantifirmi. Original keys were used. The four melodies are
based on a common grammatical structure and show very

1https://giamusicassessment.com/
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similar melodic and rhythmic patterns. The audio stimuli were
synthesised using a Fender Rhodes simulation software (Neo-
Soul Keys) with 100 bpm, each corresponding to the start of a
bar (every 2.4 s).

EEG Data Preprocessing
Neural data were analysed offline using MATLAB software (The
Mathworks Inc.). EEG signals were digitally filtered between
0.1 and 30 Hz using a Butterworth zero-phase filter (low- and
high-pass filters both with order 2 and implemented with the
function filtfilt), and down-sampled to 64 Hz. The analyses
were also conducted on EEG data filtered between 1 and 30 Hz
(Butterworth zero-phase filters with order 2) to assess the impact
of low-frequency EEG < 1 Hz, which was previously suggested
to encode a relevant portion of imagery EEG signals (Marion
et al., 2021). EEG channels with a variance exceeding three
times that of the surrounding ones were replaced by an estimate
calculated using spherical spline interpolation. Channels were
then re-referenced to the average of the 64 channels.

Multiway Canonical Correlation Analysis
(MCCA)
A multiway canonical correlation analysis (MCCA) was
performed to combine EEG data across subjects to improve
the SNR. MCCA is an extension of canonical correlation
analysis (CCA; Hotelling, 1936) to the case of multiple (>2)
datasets. Given N multichannel datasets Yi with size T × Ji,
1 ≤ i ≤ N (time × channels), MCCA finds a linear transform
Wi (sizes Ji × J0, where J0 < min (Ji)1 ≤ i ≤ N) that, when
applied to the corresponding data matrices, aligns them to
common coordinates and reveals shared patterns (de Cheveigné
et al., 2019). These patterns can be derived by summing the
transformed data matrices: Y =

∑N
i=1 YiWi. The columns of

the matrix Y, which are mutually orthogonal, are referred to as
summary components (SC). The first components are signals that
most strongly reflect the shared information across the several
input datasets, thus minimising subject-specific and channel-
specific noise. Here, these datasets are EEG responses to the same
task for 21 subjects. The present study used the implementation
discussed by de Cheveigné et al. (2018; Matlab implementation
available at http://audition.ens.fr/adc/NoiseTools/).

This technique allows the extraction of a “consensus signal”
that is shared across subjects and has higher SNR than any
individual subject signal. This methodology is a better solution
than averaging data across subjects which, in absence of
appropriate co-registration, can lead to loss of information
because of topographical discrepancies. MCCA accommodates
such discrepancies without the need for co-registration. Under
the assumption that the EEG responses to music and music
imagery share a similar time-course within a homogeneous group
of young adults, the MCCA procedure allows us to extract such
common cortical signals from other, more variable aspects of
the EEG signals, such as subject-specific noise. For this reason,
our analysis focuses on the first NSC summary components,
which we can consider as spanning the most reliable EEG
response to music and music imagery. Because the resulting

signals are then treated as a virtual best subject and compared
with the results on individual participants, NSC was set to 64
so that such a virtual subject would have the number of signals
of the single participants in the original EEG dataset. This
analysis was conducted on the 0.1–30 Hz and 1–30 Hz EEG
datasets separately. Note that the trials have to be sorted to
build the MCCA models, as different trial order was applied to
different participants.

Joint Decorrelation Analysis (JD)
The EEG signal contains responses driven by the stimulus as
well as stimulus-irrelevant neural activity. By assuming that the
stimulus-driven response is consistent over repetitions of a same
melody, we decomposed the EEG signal using joint decorrelation
analysis (JD) (de Cheveigné and Simon, 2008; de Cheveigné and
Parra, 2014), a component analysis method that extracts neural
activity consistent across repetitions. Specifically, JD maps the
multivariate EEG recording into a space where each component
is determined by maximising its trial-to-trial reliability, measured
by the correlation between the responses to the same stimulus
in different trials. The first JD component contains the most
consistent neural response across repetitions. Here, we selected
the first M components, where M was set so that the selected
components would capture 50% of the variance (which generally
corresponded to less than 10 out of 64 components). Note that
this procedure was run separately for each participant, including
the virtual MCCA participant. Components with topographical
maps consistent with what would be expected for eye-movements
and blinks have been removed via semi-supervised inspection
(automatic identification of such components via custom code
and manual inspection).

Sound Envelope Reconstruction Analysis
(bTRF)
Lagged linear regression models were fit to relate the music sound
envelope and the corresponding EEG signal. Models describing
the forward mapping from stimulus features to EEG signal can be
referred to as temporal response functions (TRF), as their kernel
(i.e., regression weights) estimates the neural impulse response
(Lalor et al., 2009; Ding et al., 2014). The same method can also be
used to describe the inverse mapping from the multivariate EEG
space to the univariate stimulus feature space (backward model).
Here, we used an implementation of such backward modelling
approach based on a regularised lagged linear regression (Crosse
et al., 2016) to map the EEG signal to the sound envelope of music
that was either presented to or imagined by the participants. The
present paper refers to this decoding methodology as backward
TRF (bTRF). Leave-one-out cross-validation (across the 44 trials
for each condition) was used to assess how well the decoding
models could reconstruct sound envelopes for portions of the
EEG data that was not included in the model fit, thus controlling
for overfitting. Note that only one music segment was selected
for each iteration, so the remaining dataset included trials with
the same stimulus of the left-out trial (see section “Maximum
Correlation Music Decoding”). The quality of a reconstruction
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was quantified by calculating Pearson’s correlation between the
actual and the reconstructed signals.

The interaction between stimulus and recorded brain
responses is not instantaneous, in fact a sound stimulus at time t0
affects the brain signals for a certain time-window (t1, t1+twin),
with t1 ≥ 0 and twin > 0. The linear decoding model takes this
into account by including multiple time-lags between stimulus
and neural signal, providing us with model weights that include
both space (scalp topographies) and time (music-EEG latencies)
dimensions. A time-lag window of 0–350 ms was selected as such
latencies were expected to capture the relevant TRF response
based on previous work (e.g., Freitas et al., 2018; Jagiello et al.,
2019; Di Liberto et al., 2020, 2021a; Marion et al., 2021).

In order to decode the melody, stimulus and EEG data were
partitioned into segments with a given fixed length. For each
segments, Pearson’s correlations were calculated between the
reconstructed envelope and the sound envelope of each original
stimulus. The musical piece leading to the highest correlation
was selected as the classification result for the particular EEG
segment. This classification procedure (bTRFenv) was run for
segments with increasing duration (2.4, 4.8, 9.6, 19.2 s), which
was always a multiple of the duration of a music bar (2.4 s).

One strength of this decoding approach is that it operates in
the sound envelope domain, where the EEG signal was projected
while reducing the impact of unrelated neural activity and EEG
noise. However, the sound envelope encodes only note timing
and loudness (however, all notes had the same loudness in this
study), thus it cannot distinguish segments of music with the
same timing. While this is not a problem when considering long
segments of music or entire songs, it constitutes a limitation when
decoding short segments of music.

Maximum Correlation Music Decoding
(maxCorr)
A maximum correlation classification method was devised
to perform melody decoding in the EEG domain, without
constraining the classification procedure to any predefined
stimulus feature (e.g., sound envelope). In doing so, we
expected the resulting decoding to be more accurate than
bTRFenv, which focuses on timing information only. Data were
segmented and grouped into reference and test sets for a given
subject (Figure 1A). Leave-one-outcross-validation was applied,
meaning that a single segment was assigned to the test set and
all other segments constituted the reference set. The decoding
was performed on each test set by selecting the music segment
in the reference set with most similar EEG, based on a EEG-
EEG Pearson’s correlation metric (Figure 1B). We calculated
the EEG-EEG Pearson’s correlation for each JD component, and
then performed an average of those correlation scores multiplied
by a weighting vector w, which has as many elements as the
number of selected JD components. The weighting vector was
calculated by deriving the root mean squared for each of the
selected components over the entire duration of the experiment
for a given subject and condition. As such, more importance
was given to the correlation scores for JD components that
had larger variance over the entire duration of the experiment.

The reference and test sets of melody segments were built by
partitioning melodies into chunks with a fixed length w of 1, 2,
4, or 8 bars (corresponding to 2.4, 4.8, 9.6, and 19.2 s). Note
that, by partitioning we refer to a chunking based on a moving
window with an equal window size (w) and step. The reference set
contained the same segments in the test set, but was augmented
by setting the step to 1 bar for all window sizes. The entire
procedure was repeated for each subject and for the various
segment sizes, always multiples of the length of a music bar.
Note that longer segments would lead to smaller reference sets
(even though we used an epoching step of 1, less segments can be
derived at the end of each trial). Indeed, reference sets of different
size may lead to potentially largely different baselines. To avoid
this issue, we have resampled the reference set to 96 segments at
each iteration, where 96 was the size of the smallest reference set
(for the longest segment length).

Evaluation Metrics
Two distinct evaluation metrics were devised to compare the
decoding results for bTRFenv and maxCorr (Figure 1C). The first
metric evaluated the accuracy in the decoding of note-onsets.
Such a value was determined as the ratio between the number
of correct identifications of note vs. silence and the total number
of possible note positions (obtained by considering all segments
in the reference set). The second metric assessed the Spearman’s
correlation between the actual and decoded note pitch values
(using a Pearson’s correlation did not change the results). Note
that the identified music segments sometimes have different note
timing than the actual segments. In those cases, we calculated
the Spearman’s correlation based on the pitch values for notes
that were present in both the reconstructed and actual music
segments. Furthermore, because the reference set was limited to
the four Bach pieces presented in the experiment, some segments
could have been precisely identified even just based on timing
information, a consideration that becomes more relevant for
longer segments, where the timing of a segment is more likely
to be unique (in the given stimulus set). As such, we conducted a
control analysis where the pitch decoding metric was evaluated
based on timing only and tested whether the main decoding
result was above that baseline, thus indicating that the decoding
is driven by more than timing information. Such a baseline
was derived by shuffling segments with identical timing (but a
potentially different sequence of pitch values) in each reference
set before running the decoding (grey lines in Figure 2). This
baseline allowed us to assess whether EEG encoded pitch-related
information beyond the note timing.

Statistical Analysis
Three-way repeated measures ANOVAs were performed to assess
the effect of segment length (2.4, 4.8, 9.6, 19.2 s), decoding
method (bTRFenv and maxCorr), and condition (imagery and
listening). Separate tests were run for each evaluation metric
(note-onset and pitch). Greenhouse-Geisser corrections were
made if Mauchly’s test of sphericity was not met. All post hoc
model comparisons were performed using the Tukey’s HSD test,
which performs statistical tests while accounting for multiple
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FIGURE 1 | Schematics of the maxCorr decoding approach. (A) EEG data was recorded as participants either imagined or listened to monophonic music. Signals
were segmented into a reference and test datasets. (B) EEG data from each segment was compared with the EEG segments in the reference set with
cross-validation. The melody corresponding to the EEG segment with highest similarity was selected. The procedure was repeated for various segment sizes, always
multiples of the size of a music bar. (C) The quality of the melody decoding was assessed by means of two distinct metrics. The first evaluation metric measured the
accuracy in detecting the onset-time of the notes (black: actual melody; green: decoded melody). The second evaluation metric measured the correlation of the
pitch values between decoded and actual melodies. The correlation was evaluated on the notes whose temporal onset was correctly identified (all other notes were
discarded).

comparisons. Effects within individual participants were assessed
by means of permutation tests with N = 100 shuffles.

RESULTS

Melodies were decoded with the maxCorr method on individual
subjects by considering progressively longer segments of EEG
data (melody segment duration). Longer segments contain
more information, thus they were expected to lead to higher
decoding scores. The decoding scores with this procedure were
then compared with the results when maxCorr was based on
the envelope reconstructions obtained with bTRFenv. Figure 2
depicts this quantitative comparison for each experimental
condition (imagery vs. listening) and decoding quality metric
(note-onset accuracy vs. pitch sequence correlation) when
considering the broadband EEG signal (0.1–30 Hz). A three-
way repeated measures ANOVA on the note-onset decoding
accuracy metric indicated significant effects of: method [maxCorr
vs. bTRFenv; F(1, 20) = 80.6, p = 1.9 × 10−8]; segment
duration [F(3, 20) = 431.2, p = 2.6 × 10−21]; and condition
[imagery vs. listening; F(1, 20) = 6.0, p = 0.02].Significant
interactions were found for decoding method with segment

duration [F(3, 60) = 295.7, p = 1.6× 10−20] and with condition
[F(1, 20) = 14.0, p = 1.3 × 10−3]. No significant interaction
was measured between segment duration and condition [F(3,
60)= 0.48, p= 0.64]. A three-way repeated measures ANOVA on
the pitch decoding correlation metric indicated significant effects
of method [F(1, 20) = 142.3, p = 1.5 × 10−10] and segment
duration [F(3, 20) = 524.2, p = 5.1 × 10−34], but no significant
effect of condition was found [F(1, 20) = 1.8, p = 0.19]. As
for the note-onset metric, significant interactions were shown
for the pitch metric between decoding method and segment
duration [F(3, 60) = 294.6, p = 1.6 × 10−30] and between
method and condition [F(1, 20) = 8.2, p = 9.4 × 10−3]. No
significant interaction was measured between segment duration
and condition [F(3, 60) = 0.6, p = 0.55]. Post hoc Tukey’s HSD
tests indicated that maxCorr produces overall better decoding
scores than bTRFenv across all conditions and decoding metrics,
with this gain being larger for increasing segment duration with
similar decoding scores for imagery and listening. This result is in
line with our hypothesis that the EEG data contains information
relevant to decoding melodies that cannot be captured with
envelope based linear decoding models.

The use of two distinct decoding metrics (note-onset
classification accuracy and pitch correlation) informed us on
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FIGURE 2 | Robust note and pitch decoding from EEG. Melody decoding
scores obtained with maxCorr from EEG data filtered between 0.1 and 30 Hz
are compared with scores obtained when using backward envelope TRFs
(bTRFenv ) for the imagery (A) and listening (B) conditions. Decoding
accuracies are reported for note timing (left) and decoding correlation values
for note pitch values (right). As expected, decoding scores were higher for
maxCorr than bTRFenv (three-way repeated measures ANOVA p < 0.001,
post hoc Tukey’s HSD; *p < 0.05, **p < 0.01, ***p < 0.001). Grey lines
indicate the pitch decoding correlation scores with the maxCorr method when
pitch information was shuffled among segments with identical timing. Scores
larger than this baseline indicate that the decoding is partially driven by
pitch-related EEG information. Bottom panels indicate the effect size (Cohen’s
d) of the comparison between maxCorr and bTRFenv (blue solid lines) and
between maxCorr and the maxCorr baseline after shuffling the pitch values
(grey solid lines). Note that longer segments would lead to smaller reference
sets, thus potentially affecting the decoding baseline. This potential confound
was solved by randomly resample the reference set to the size of the smallest
set across all segment durations (see section “Materials and Methods”).
Supplementary Figure 1 shows the results of this analysis for EEG filtered in
the frequency band 1–30 Hz.

the quality of the decoded melody from both the timing and
pitch perspectives. Note that the range of possible music bars
was confined to the particular musical pieces used in the EEG
experiment. As such, the accurate decoding of note-onsets from
EEG could lead to the identification of the exact stimulus
segment, thus to the precise identification of pitch progressions.
To assess whether pitch-related EEG signals contributed to the

decoding of melodies, the procedure was repeated after shuffling
the pitch among segments with identical timing, providing
us with the pitch decoding correlation based solely on EEG
signals reflecting note-onsets (grey lines in Figure 2). The pitch
decoding correlation with maxCorr was significantly larger than
that baseline for segment durations of 2.4 and 4.8 s in both
conditions, indicating a significant contribution of pitch-related
EEG information to the decoding (Tukey’s HSD, p < 0.05).
As expected, such a contribution did not emerge for longer
segment durations, which was an expected outcome because
timing information is sufficient to uniquely characterise long
segments of music.

Similar but overall weaker effects were measured when
considering the EEG signal filtered in the band 1–30 Hz
(Supplementary Figure 1). A three-way repeated measures
ANOVA on the note-onset decoding accuracy metric indicated
significant effects of: method [maxCorr vs. bTRFenv; F(1,
20) = 5.8, p = 0.03]; segment duration [F(3, 20) = 89.4,
p = 5.3 × 10−11]; and condition [imagery vs. listening;
F(1, 20) = 74.0, p = 3.7 × 10−8]. Significant interactions
were found for decoding method with segment duration [F(3,
60) = 177.3, p = 6.0 × 10−18] and with condition [F(1,
20) = 10.2, p = 4.5 × 10−3]. Differently from the analysis in
the 0.1–30 Hz band, a significant interaction was also measured
between segment duration and condition [F(3, 60) = 48.4,
p = 3.6 × 10−10]. A three-way repeated measures ANOVA
on the pitch decoding correlation metric indicated significant
effects of method [F(1, 20) = 17.8, p = 4.2 × 10−4], segment
duration [F(3, 20) = 157.0, p = 5.4 × 10−15], and condition
were found [F(1, 20) = 33.9, p = 1.1 × 10−5]. As for the note-
onset metric, significant interactions were shown for the pitch
metric between decoding method and segment duration [F(3,
60) = 33.0, p = 6.4 × 10−11], between method and condition
[F (1,20) = 7.6, p = 0.01], and between segment duration and
condition [F(3, 60)= 24.0, p= 1.6× 10−7].

Significant melody decoding were also measured at the
individual subject level with maxCorr (Figure 3). Specifically, all
participants showed significant note-onset decoding scores for
segment with a duration greater or equal to 4.8 s, in both imagery
and listening conditions (permutation test, N = 100). Significant
decoding was also measured for the shortest segment length (2.4
s) in 16 and 18 out of 21 or listening and imagery conditions,
respectively. While this was unsurprising as the EEG signal is
an excellent means to measure the timing of sensory responses,
significance at the individual subject level was also measured
for pitch decoding across all segment durations for 20 out of
21 participants.

The individual-subject result was then compared with the
decoding scores obtained when considering the virtual best
subject, obtained by extracting a signal that is most consistent
across all participants with MCCA. This virtual best subject
has in principle a higher SNR than any individual participant,
thus providing decoding scores that should be at least as high
as the best participant. Note that the MCCA procedure relies
on the assumption that there exist some level of consistency
in the EEG responses recorded from the 21 participants. The
result in Figure 3 indicates that this was the case in both the
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FIGURE 3 | Single-subject melody decoding from EEG. Single-subject
melody decoding from EEG (0.1–30 Hz) with maxCorr. Note-onset decoding
accuracies (left) and pitch decoding correlations (right) are reported for the
imagery and listening conditions. Grey shaded areas indicate the chance level
(95th percentile of a distribution obtained by shuffling 100 times the
identification indices of the EEG segments for each subject). Black circles
indicate the decoding for the virtual best subject obtained by extracting EEG
signal components that are most consistent across all participants with
MCCA. Supplementary Figure 2 shows the results of this analysis for EEG
filtered in the frequency band 1–30 Hz.

listening and imagery conditions. In fact, the measured decoding
scores for the virtual subject were larger than those for any
individual participant.

Further analyses were conducted to assess which EEG
frequencies were most relevant for melody encoding during
music imagery and listening (Figure 4). To this end, the impact
of low delta frequencies (<1 Hz), which have been shown
to encode melodic expectations, was assessed by comparing
the decoding results for EEG filtered between 0.1–30 and 1–
30 Hz directly. A three-way repeated measures ANOVA on
the note-onset accuracy metric indicated significant effects of:
frequency-band [0.1–30 Hz vs. 1–30 Hz; F(1, 20) = 369.8,
p = 2.3 × 10−14]; condition [imagery vs. listening; F(1,
20) = 15.5, p = 8.1 × 10−4]; and segment duration [F(3,
60) = 1675.8, p = 1.0 × 10−36]. Significant interactions were
measured between frequency-band and segment duration [F(3,
60) = 165.3, p = 3.3 × 10−20], between frequency-band and
condition [F(1, 20)= 39.1, p= 4.2× 10−6], and between segment
duration and condition [F(3, 60) = 9.1, p = 1.1 × 10−3].The
same three-way repeated measures ANOVA procedure was used
on the pitch correlation metric, indicating significant effects

FIGURE 4 | Robust melody decoding relies on low-frequency EEG (<1 Hz).
Melody decoding scores obtained with maxCorr are compared for EEG filtered
in the bands 0.1–30 Hz and 1–30 Hz. The inclusion of the low frequencies
between 0.1 and 1 Hz largely increases the decoding scores in the imagery
and listening conditions (three-way repeated measures ANOVA p < 0.05,
post hoc Tukey’s HSD; *p < 0.05, **p < 0.01, ***p < 0.001). Supplementary
Figure 3 shows the results of this analysis for the bTRFenv decoding method.

of: frequency-band [F(1, 20) = 201.6, p = 6.6 × 10−12] and
segment duration [F(3, 60) = 757.4, p = 1.6 × 10−32], but
no significant effect of condition [F(1, 20) = 2.7, p = 0.12].
Significant interactions were measured between frequency-band
and segment duration [F(3, 60)= 85.8, p= 1.7× 10−17], between
frequency-band and condition [F(1, 20) = 9.9, p = 5.1 × 10−3],
and between segment duration and condition [F(3, 60) = 5.9,
p = 6.2 × 10−3]. Post hoc Tukey’s HSD indicated that low-
frequency EEG < 1 Hz greatly contributes to the decoding
of melodies in both the imagery and listening conditions. The
individual-subject results for the band 1–30 Hz are reported
in Supplementary Figure 2. Note that, differently from the
band 0.1–30 Hz, the MCCA analysis on the 1–30 Hz EEG led
to decoding scores that are larger than most participants in
the listening condition only, while the imagery MCCA showed
lower decoding scores than most individual participants. This
could indicate that the 1–30 Hz EEG is substantially variable
across participants in the imagery condition, causing difficulty
in extracting common patterns for the accurate decoding of
melodies. Another possible cause of this result could be a low
SNR of imagery neural activity in the 1–30 Hz band for the
imagery condition.

The use of a broader EEG frequency-band provides us with
additional information that, when relevant to melody decoding,
can improve the quality of the decoded melody. Indeed, the
improved decoding also depends on the ability of the decoding
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model itself to learn and take advantage of such additional
information. The result in Figure 4 demonstrates that low EEG
frequencies between 0.1 and 1 Hz provides us with information
that was not present in the faster frequencies, and that maxCorr is
sensitive to such slow melody-related information. Interestingly
the role of such low frequencies was not as prominent and
even absent in the case of bTRFenv. This result is detailed
in Supplementary Figure 3, which shows that the inclusion
of low-frequency EEG rhythms (0.1–1 Hz) in the decoding
analysis improves the results for imagery but not for listening.
Specifically, a three-way repeated measures ANOVA on the
note-onset accuracy metric indicated no significant main effect
of frequency-band [0.1–30 Hz vs. 1–30 Hz; F(1, 20) = 3.2,
p= 0.09]. Significant effects were instead measured for condition
[imagery vs. listening; F(1, 20) = 48.8, p = 8.9 × 10−7]; and
segment duration [F(3, 60) = 6.9, p = 0.01]. A significant
main effect of frequency-band was instead measured with a
three-way repeated measures ANOVA on the pitch correlation
metric [F(1, 20) = 10.3, p = 4.4 × 10−3]. Significant
effects were also measured for condition [F(1, 20) = 28.6,
p = 3.1 × 10−5]; and segment duration [F(3, 60) = 56.6,
p= 8.6× 10−12].

DISCUSSION

This study demonstrates that melodies can be accurately
decoded from EEG responses to music listening and imagery
at the individual participant and trial level. The use of music
stimuli with the same tempo ensured that the decoding
was driven by the neural encoding of melody at the level
of individual notes, rather than by overall differences in
timing or tempo. In doing so, we provide novel insights into
the neural underpinnings of listening and auditory imagery,
demonstrating that low-frequency EEG signals robustly encode
melodic properties beyond the sound envelope. Furthermore,
our results indicate a functional distinction between low-
frequency neural activity that is either slower or faster than
1 Hz, with slower neural signals greatly contributing to the
melody decoding during both imagery and listening. Finally, the
accurate results achieved with our relatively simple methodology
open new opportunities for applied research that we discuss
in this section.

Recent research on speech perception provided substantial
evidence indicating that low-frequency neural signals in the
delta- and theta-bands encode both acoustic features, such as
the sound envelope and higher-level linguistic properties (Lalor
and Foxe, 2010; Ding et al., 2014; Di Liberto et al., 2015,
2021b; Brodbeck et al., 2018; Alday, 2019; Obleser and Kayser,
2019). This multifaceted encoding has also been measured in the
context of music, showing that non-invasive neural recordings
reflect properties such as tonal structure (Koelsch and Friederici,
2003; Koelsch and Siebel, 2005; Sankaran et al., 2018), beat (Tal
et al., 2017), and melodic expectations (Omigie et al., 2013; Di
Liberto et al., 2020). Our study indicates that such a multifaceted
neural encoding also occurs in the case of auditory imagery.
In line with our recent finding that both music listening and

imagery engage neural expectation processes (Di Liberto et al.,
2021a; Marion et al., 2021), the present study demonstrates
that EEG signals recorded during music listening and imagery
encode information beyond the acoustic envelope, allowing for
the decoding of short music segments (Figure 2). Pitch-related
information emerged in both the 0.1–30 Hz and 1–30 Hz
bands, with a large portion of that information being present
in the low-frequency neural signals below 1 Hz (Figure 4).
Interestingly, such slow rhythms below 1 Hz did not contribute
to the note-onset decoding accuracy when using the linear
sound envelope decoder bTRFenv (Supplementary Figure 3),
indicating that such a decoding approach could not reliably
capture valuable low-frequency EEG signals. One possibility is
that such signals reflect music properties that are different from
the acoustic envelope and, as such, are not explicitly described by
the bTRFenv.

One open issue is determining what specific music properties
are encoded in the EEG signal and contribute to the decoding.
Indeed, a robust EEG signature of absolute or relative pitch
would explain the strong pitch decoding scores measured in
the present study. However, that is not the only possible
explanation. For example, the use of a limited set of music
stimuli could lead to segments whose timing is unique within
that dataset, especially when using stimuli with different tempo
or when considering long segments of music. In those cases, of
course, note timing information would be sufficient to correctly
identify the segments. Here, we controlled for that issue by
presenting stimuli with the same tempo and by including
a pitch permutation baseline (Figure 2 and Supplementary
Figure 1). The results showed that, although the decoding of
longer segments (9.6 and 19.2 s) was solely driven by note timing
information, neural signals reflecting more than note timing
contributed to the melody decoding for the shorter segments
(2.4 and 4.8 s; Figure 2, pitch correlation metric). Our results
demonstrates that both timing and pitch-related EEG signals can
contribute to melody decoding and, crucially, that the stimulus
reconstructions obtained with envelope linear decoders can be
substantially improved by using models capturing information
beyond timing with methods such as maxCorr. We speculate
that our decoding results may reflect the EEG encoding of
a combination of pitch and other pitch-related signals (e.g.,
melodic context), which act here as proxy indices for pitch.
Indeed, EEG has been shown to encode other pitch-related
properties, such as the pitch expectation strengths (Omigie et al.,
2013; Di Liberto et al., 2020), which could at least partly explain
our results. Further work is needed to disentangle the factors
contributing to the melody decoding, for example by using richer
sets stimuli where the impact of pitch-related signals could be
controlled and minimised.

The neural encoding of music was previously shown to
be different during listening and imagery largely due to the
presence and absence of an auditory stimulus, respectively
(Di Liberto et al., 2021a). In fact, previous work showed
both shared and non-overlapping neural activation during
listening and imagery tasks, largely by means of high spatial-
resolution functional recordings with fMRI (see Zatorre and
Halpern, 2005 for a review). Interestingly, despite these
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dissimilarities, accurate melody decoding was possible in
both conditions (Figure 3), indicating that both listened and
imagined melodies elicit neural responses that are consistent
across time and repetition. This consistency is of great
importance as it confirms that studying imagery responses
with methodologies that summarise neural signals across time,
such as encoding models, is a valid and feasible approach.
Indeed, this result is highly dependent on the use of an
experimental paradigm allowing for a precise synchronisation
of the imagery task, which was possible with naturalistic
music here but may be more challenging for other stimuli,
such as speech, whose precise synchronisation may require
some loss in terms of ecological validity. Furthermore, the
consistency in the neural responses to music measured
in this study supports the hypothesis that a same music
segment remains relevant for a listener across repetitions,
eliciting a consistent neural activation at each occurrence.
Extensive work and discussions have been conducted on
this topic, however there remains considerable uncertainty
on the precise impact of repetition in auditory perception
(Margulis, 2014). One argument is that repetition has a
special and fundamental role in music, while that is not
the case in other auditory stimuli such as speech. For this
reason, the central role of repetition in music may be at
the basis of the remarkably consistent neural responses to
listened and imagined music segments allowing for the accurate
decoding of melodies.

Our results show that accurate decoding of melodies
at the level of individual musical units can be achieved
with a relatively simple procedure based on a maximum
correlation metric. As such, the decoding scores in this study
are certainly expected to improve by using more elaborate
decoding procedures. This possibility encourages further
investigations on BCIs based on imagery tasks. For example,
the present work may constitute a starting point for the
development of BCI solutions for the rapid selection of
songs and other audio material in individuals with mobility
impairment. In fact, the decoding results in the musical imagery
condition were significant on most individual participants
and for segments as short as 2.4 s. Note that the MCCA
and JD procedures indicated consistent neural responses
across time and participants both within the listening and
imagery conditions, which is an encouraging result for
future BCI solutions. Furthermore, the ability to decode
melodies at the level of individual musical units offer a new
opportunity for the continuous monitoring of cognitive
functions that have a central role in music perception, such as
attention and prediction.

Our finding is particularly relevant for BCI applications as
the decoding method, organised into reference and test sets,
could be promptly applied in realistic settings involving the
decoding of melodies that were previously presented to the
user. In that context, the decoding results for different segment
durations inform us on how rapidly and accurately a song could
be identified. It should be noted that the use of music pieces
with different tempo would likely improve our decoding scores,
thus making a BCI even more rapid and accurate. However,

that was not the focus of this investigation as the paradigm
was optimised to investigate the multifaceted contributors to
music perception while controlling for the dominant encoding
of timing. Future studies should also explore the possibility
of extending the paradigm to decode unseen songs, for which
there would be no prior EEG data available, which could
be possible in the presence of a rich reference EEG set.
In this regard, further work is needed to determine optimal
reference sets with sufficient musical variability to generalise
and allow for the accurate decoding of unseen songs within
a given musical culture or genre. Another open challenge
is to determine if the present findings apply to the general
population. The choice of focusing on expert trained musicians
was driven by experimental and not theoretical reasons. In
fact, the imagery task used here requires some level of training
to be performed accurately and reliably. It could be possible
to utilise this experimental paradigm on non-musicians too.
While we speculate that our results apply to the general
population, note that we would expect weaker decoding scores
in the general population due to reduced and variable (over
time and participants) task performance, making it difficult to
use that decoding analysis to assess differences in the neural
representation of imagined and listened music itself. Other
tasks less reliant on individual imagery temporal precision
could provide us with a more fair comparison between trained
musicians and the general population, for example paradigms
involving imagery during silent gaps in familiar music (e.g.,
Gabriel et al., 2016).
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Supplementary Figure 1 | Note and pitch decoding (1–30 Hz EEG). Melody
decoding scores obtained with maxCorr from EEG data filtered between 1 and
30 Hz are compared with scores obtained when using backward envelope TRFs
(bTRFenv ) for the imagery (A) and listening (B) conditions. Decoding accuracies
are reported for note timing (left) and decoding correlation values for note pitch
values (right). A three-way repeated measures ANOVA indicated a significant effect

of decoding method (note-onset metric: p = 0.03; pitch metric: p = 4.2 × 10−4;
post hoc Tukey’s HSD; *p < 0.05, **p < 0.01, ***p < 0.001). Grey lines indicate
the pitch decoding correlation scores with the maxCorr method when pitch
information was shuffled among segments with identical timing. Scores larger than
this baseline indicate that the decoding is partially driven by pitch-related EEG
information. Bottom panels indicate the effect size (Cohen’s d) of the comparison
between maxCorr and bTRFenv (blue dotted lines) and between maxCorr and the
maxCorr baseline after shuffling the pitch values (grey solid lines).

Supplementary Figure 2 | Single-subject Melody Decoding (1–30 Hz EEG).
Single-subject melody decoding from EEG (1–30 Hz) with maxCorr. Note-onset
decoding accuracies (left) and pitch decoding correlations (right) are reported for
the imagery and listening conditions. Grey shaded areas indicate the chance level
(95th percentile of a distribution obtained by shuffling 100 times the identification
indices of the EEG segments for each subject).

Supplementary Figure 3 | Linear decoding models (bTRFenv ) fail to capture
low-frequency EEG ( < 1 Hz) melody information in the listening condition. Melody
decoding scores obtained with bTRFenv are compared for EEG filtered in the
bands 0.1–30 Hz and 1–30 Hz. The inclusion of the low frequencies between 0.1
and 1 Hz largely increases the decoding scores in the imagery and listening
conditions (three-way repeated measures ANOVA, main effect of frequency-band;
Note-onset: p = 0.09; pitch: p = 4.4 × 10−3, post hoc Tukey’s HSD; *p < 0.05,
**p < 0.01, ***p < 0.001).
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