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Abstract. The aim of the present study was to construct 
a mathematical model to predict the changing trends of 
cardiac hypertrophy at gene level. Microarray data were 
downloaded from Gene Expression Omnibus database 
(accession, GSE21600), which included 35 samples harvested 
from the heart of Wistar rats on postoperative days 1 (D1 
group), 6 (D6 group) and 42 (D42 group) following aorta 
ligation and sham operated Wistar rats, respectively. Each 
group contained six  samples, with the exception of the 
samples harvested from the aorta ligated group after 6 days, 
where n=5. Differentially expressed genes (DEGs) were 
identified using a Limma package in R. Hierarchical clus-
tering analysis was performed on common DEGs in order to 
construct a linear equation between the D1 and D42 groups, 
using linear discriminant analysis. Subsequent verification 
was performed using receiver operating characteristic (ROC) 
curve and the measurement data at day 42. A total of 319, 
44 and 57 DEGs were detected in D1, D6 and D42 sample 
groups, respectively. AKIP1, ANKRD23, LTBP2, TGF‑β2 
and TNFRSF12A were identified as common DEGs in all 
groups. The predicted linear equation between D1 and D42 
group was calculated to be y=1.526x‑186.671. Assessment 
of the ROC curve demonstrated that the area under the 
curve was 0.831, with a specificity and sensitivity of 0.8. 
As compared with the predictive and measurement data at 
day 42, the consistency of the two sets of data was 76.5%. 
In conclusion, the present model may contribute to the early 
prediction of changing trends in cardiac hypertrophy disease 
at gene level.

Introduction

Cardiac hypertrophy is associated with the thickening of 
the heart muscle (1) and the risk factors of cardiac hyper-
trophy include hypertension, obesity, muscular dystrophy, 
cardiomyopathy or heart failure (2). Furthermore, it has been 
demonstrated that genetic factors and signaling pathways 
may participate in the pathogenesis of cardiac hypertrophy, 
which may be associated with an enhanced risk of sudden 
cardiac death and cardiovascular mortality (3,4). As the early 
symptoms of this disease are difficult to detect, it is crucial 
that novel molecular markers for the early therapy of cardiac 
hypertrophy are identified.

Molecular markers of cardiac hypertrophy have been 
identified  (5). In particular, Kontaraki et al  (6) identified 
GATA4, myocardin and β‑myosin heavy chain as early 
cardiac marker genes. Furthermore, smooth muscle α‑actin 
has been demonstrated to be a molecular marker for 
pressure‑overload hypertrophy  (7). Using mouse models, 
Qing et al (8) have previously reported that miR‑22 serves a 
crucial function in the regulation of cardiac hypertrophy and 
cardiac remodeling. Fibroblast growth factor 21, which is an 
endocrine factor, has a protective role in cardiac cells (9). As 
an increasing number of molecular markers are identified, 
mathematical models can be constructed to predict the risk 
of cancer (10).

Various types of mathematical models have contrib-
uted to the prediction of diseases. Flux balance models of 
cellular metabolism have been used to analyze and predict 
transcriptional regulation under certain conditions, including 
catabolite repression and amino acid biosynthesis pathway 
repression (11). Furthermore, various genes and pathways 
associated with differentiation, including MAOA and ADH1B 
metabolic genes in human pulmonary type  II cells  (12) 
and nuclear factor‑kappaB pathway in a mouse model of 
genitourinary inflammation  (13), have been identified via 
mathematical cluster analysis using GENECLUSTER, which 
is a publicly available computer package that contributed 
to the establishment of an effective treatment for acute 
promyelocytic leukemia (14). According to a previous study 
conducted by Kondo and Miura (15), the reaction‑diffusion 
model is effective in biological pattern formation. Thus, 
these previous studies suggest the mathematical modeling is 
a useful tool for the prediction of disease.
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Using microarray data downloaded from the Gene 
Expression Omnibus (GEO) database (accession, GSE21600), 
which included 35 heart samples harvested from a Wistar rat 
on postoperative days 1, 6 and 42 following aorta ligation and 
sham‑operated Wistar rats, respectively. Hellman et al (16) 
demonstrated a correlation between hyaluronan concentra-
tion and specific gene expression levels using SPSS software. 
Analysis of the correlation matrix was performed according to 
the Principal components method (17), and orthogonal partial 
least squares‑discrimination analysis was used to analyze 
the datasets of GSE21600, in which the previous clustering, 
including extracellular matrix and adhesion molecules were 
confirmed, and fatty acid metabolism, glucose metabolism, 
mitochondria and atherosclerosis were detected as the new 
clustering (18). However, these previous two studies failed to 
predict the changing trends of genes in this disease. Hence, 
the present study aimed to reanalyze the expression profiles 
of GSE21600 in order to construct a predictive model of 
cardiac hypertrophy using linear discriminant analysis 
(LDA) method. GSE21600 microarray data was used to iden-
tify differentially expressed genes (DEGs) using a Limma 
package in R (version. 3.26.5), which calculates linear models 
of microarray data. Common DEGs were used to construct a 
mathematical model in order to predict the expression levels of 
genes in the cardiac hypertrophy samples. The mathematical 
model was verified receiver operating characteristic (ROC) 
curve and the consistency of predictive and measurement 
data. The present study may be useful for the early prediction 
of changing trends in cardiac hypertrophy disease at the gene 
level.

Materials and methods

Data preprocessing and DEGs screening. GSE21600 
microarray data were downloaded from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/) (16). GSE21600 included 
data from 35  heart samples harvested from 36  Wistar 
rats which were excised on postoperative days 1, 6 and 42 
following aorta ligation and sham‑operated groups, respec-
tively. Each group contained six samples at each time point, 
with the exception of the samples harvested from the aorta 
ligated group at 6 days, where n=5. The microarray platform 
of GSE21600 was Illumina GPL6101 RatRef‑12 expression 
bead chip (version 1.0; Illumina, Inc., San Diego, CA, USA).

Samples were divided into three groups: Day 1 (D1), day 6 
(D6) and day 42 (D42). DEGs between the postoperative 
and sham‑operated samples were identified in these three 
groups, respectively. Firstly, normalization of the microarray 
data was performed in the R  language (19,20), and DEGs 
were subsequently identified using a Limma package in 
R (21). False discovery rate (FDR) was used to adjust the 
P‑value, according to the method outlined by Benjamin and 
Hochberg (22). FDR<0.05 and >1 log2fold change (FC) were 
chosen as the cut‑off criteria.

Specific gene screening. In order to screen the specific expres-
sion levels of genes at each time point, DEGs were compared 
between the two groups. Subsequently, hierarchical clustering 
analysis (23) was performed on the common DEGs in the 
three groups.

Sorting algorithm and construction of the mathematical 
model. Linear discriminant analysis (LDA) is a method that is 
commonly widely used in microarray classification to obtain 
discrimination function. LDA analysis can be performed when 
there are ≥2 groups and each group contains >2 variables (24,25). 
In this method, a linear equation based on the variations in the 
two groups is established: Y=a + b11 + b22 +…+ bnXn, where 
̔a̓ represents a constant and ̔b1,b2 … and bn̓ represents the 
regression coefficient. In the present study, the cardiac hyper-
trophy samples were defined as ̔1̓  and the control samples 
were defined as ‑̔1̓ . Based on the dynamic expression changes 
of the common DEGs detected in the D1 group, the expres-
sion pattern in the D42 group was predicted via the calculated 
mathematical model constructed using the LDA method (26).

Verification of the mathematical model. Disease classifica-
tion models are typically determined using multivariate 
regression analysis (27,28), ROC curve (29‑32) or prospective 
validation (33). ROC curve was used in the present study in 
order to evaluate the discriminant effect of the mathematical 
model and directly observe the accuracy of the present anal-
ysis method. Indices, including specificity and sensitivity, 
were calculated in order to estimate the predictive ability 
of LDA, in addition to area under the curve (AUC) of the 
ROC curve, which was also calculated to estimate accuracy. 
In the present study, AUC was used to distinguish non‑accu-
racy (AUC≤0.5), low accuracy (0.5<AUC≤0.7), moderate 
accuracy (0.7<AUC≤0.9) and high accuracy (0.9<AUC<1). 
Furthermore, by comparing the prediction data with the 
measurement data in the D42 samples, the consistency of two 
sets of data was evaluated.

Results

Identification, comparison and feature selection of DEGs. 
Normalization of the microarray data is presented in Fig. 1. 
DEGs were identified, and the genes with FDR<0.05 and 
>1 log2FC were considered as differentially expressed between 
the ligated samples and sham‑operated samples. A total of 319, 
44 and 57 DEGs were identified in the D1, D6 and D42 groups 
respectively.

A total of 23 DEGs were detected between the D1 and 
D6 groups, 14  DEGs were detected between the D1 and 
D42 groups, and five DEGs were identified between the D6 
and D42 groups. Five common DEGs, including A kinase 
interacting protein  1 (AKIP1), ankyrin repeat domain  23 

Table I. Expression levels of five common differentially 
expressed genes the in aorta ligated operation group were 
calculated, as compared with the sham operated group.

Gene	 Day 1	 Day 6	 Day 42

AKIP1	‑ 1.24914	‑ 1.36699	‑ 1.80092
ANKRD23	‑ 2.90253	‑ 3.69624	‑ 2.85077
LTBP2	‑ 3.68846	‑ 4.20566	‑ 2.02513
TGFB2	‑ 2.15313	‑ 2.11814	‑ 1.75841
TNFRSF12A	 ‑1.99987	‑ 2.08827	‑ 1.54923
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Table II. Predicted data at day 42 using a linear equation of the gene expression levels of cardiac hypertrophy.

Gene accession	 State	 Expression on day 1	 Expression on day 42	 Predicted on day 42

GSM539275	  1	 332.1987	 337.3279	 326.1898781
GSM539276	  1	 272.2375	 126.1764	 235.327208
GSM539277	  1	 485.7471	 792.9784	 558.8706386
GSM539278	  1	 778.9512	 344.6311	 1,003.179749
GSM539279	  1	 320.8331	 108.7458	 308.9669279
GSM539280	  1	 716.3563	 479.7876	 908.3260809
GSM539281	‑ 1	 85.13754	 66.26252	‑ 48.1961695
GSM539282	‑ 1	 71.55708	 13.26508	‑ 68.775425
GSM539283	‑ 1	 50.69723	 41.25237	‑ 100.385561
GSM539284	‑ 1	 23.54682	 75.99313	‑ 141.528145
GSM539285	‑ 1	 124.7012	 29.73599	 11.75692997
GSM539286	‑ 1	 49.61586	 52.55618	‑ 102.024223
GSM539275	  1	 4,201.869	 6,096.354	 6,190.124821
GSM539276	  1	 1,882.365	 5,415.158	 2,675.24642
GSM539277	  1	 3,337.275	 9,621.91	 4,879.955589
GSM539278	  1	 3,016.572	 4,261.265	 4,393.975807
GSM539279	  1	 2,658.368	 3,865.638	 3,851.168593
GSM539280	  1	 1,956.894	 8,021.108	 2,788.184519
GSM539281	‑ 1	 1,219.844	 959.4762	 1,671.290077
GSM539282	‑ 1	 1,070.036	 1,546.261	 1,444.277361
GSM539283	‑ 1	 1,431.854	 1,145.456	 1,992.561078
GSM539284	‑ 1	 1,024.116	 3,023.837	 1,374.692133
GSM539285	‑ 1	 988.543	 1,751.745	 1,320.786311
GSM539286	‑ 1	 1,213.691	 2,605.091	 1,661.966081
GSM539275	  1	 880.5447	 147.3087	 1,157.130248
GSM539276	  1	 126.5936	 169.5375	 14.62459301
GSM539277	  1	 1,011.612	 281.1071	 1,355.744099
GSM539278	  1	 1,073.774	 185.5347	 1,449.941769
GSM539279	  1	 340.023	 62.10585	 338.0464919
GSM539280	  1	 122.0065	 237.4351	 7.673495398
GSM539281	‑ 1	 36.33411	 32.24878	‑ 122.150826
GSM539282	‑ 1	 50.67635	 24.24548	‑ 100.417201
GSM539283	‑ 1	 36.68185	 45.16885	‑ 121.623876
GSM539284	‑ 1	 30.85578	 71.55927	‑ 130.452456
GSM539285	‑ 1	 15.40947	 32.20256	‑ 153.859142
GSM539286	‑ 1	 34.06184	 51.90232	‑ 125.594128
GSM539275	  1	 1,915.488	 1,621.039	 2,725.439616
GSM539276	  1	 719.9728	 1,732.95	 913.8063723
GSM539277	  1	 1,491.145	 1,375.875	 2,082.408155
GSM539278	  1	 2,425.283	 3,341.205	 3,497.961428
GSM539279	  1	 1,208.035	 885.0079	 1,653.395218
GSM539280	  1	 1,999.254	 1,564.762	 2,852.375074
GSM539281	‑ 1	 391.4185	 495.3794	 415.929062
GSM539282	‑ 1	 355.6202	 400.3427	 361.6818301
GSM539283	‑ 1	 437.2545	 578.2272	 485.3870006
GSM539284	‑ 1	 215.4102	 719.1659	 149.2135176
GSM539285	‑ 1	 464.529	 402.5466	 526.717626
GSM539286	‑ 1	 483.1193	 857.3302	 554.8885815
GSM539275	  1	 1,776.678	 768.9708	 2,515.092804
GSM539276	  1	 998.7648	 732.2133	 1,336.275995
GSM539277	  1	 2,373.809	 1,362.486	 3,419.959903
GSM539278	  1	 3,322.548	 1,513.086	 4,857.638915
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(ANKRD23), latent transforming growth factor beta binding 
protein (LTBP2), transforming growth factor (TGF)‑β2 and 
tumor necrosis factor receptor superfamily member  12a 

(TNFRSF12A), were identified among the three groups 
(Fig. 2).

Clustering analysis of the five common DEGs demon-
strated that the sham operated and ligated samples were 
respectively clustered together; however, three ligated samples 
(16.67%; 3/18) were mixed into the operated group and two 
sham‑operated samples (11.76%; 2/17) were mixed into the 
ligated group (Fig. 3). These five common DEGs were identi-
fied as downregulated genes (Table I).

Construction and verification of the mathematical model. 
Based on the expression levels and dynamic changes detected 
in the five common DEGs, a linear equation between the D1 
and D42 groups was calculated as follows: y=1.526x‑186.671; 
where ̔y̓ and ̔x̓ represent the expression levels in the D42 
and D1 groups, respectively.

Assessment of the ROC curve demonstrated that AUC 
was 0.831, which indicated that the predictive accuracy was 
83.1% and the specificity and sensitivity were 0.8, respectively 
(Fig. 4A). By comparing the predictive and measurement data 

Table II. Continued.

Gene accession	  State	 Expression on day 1	 Expression on day 42	 Predicted on day 42

GSM539279	  1	 879.2261	 513.2602	 1,155.132097
GSM539280	  1	 1,201.621	 1,250.521	 1,643.675713
GSM539281	‑ 1	 411.144	 251.4373	 445.8202516
GSM539282	‑ 1	 375.7809	 208.7139	 392.2325034
GSM539283	‑ 1	 406.536	 168.1061	 438.837483
GSM539284	‑ 1	 297.8341	 399.4494	 274.1152146
GSM539285	‑ 1	 322.7278	 352.2844	 311.8380763
GSM539286	‑ 1	 316.283	 400.1669	 302.0718985

1, the aorta ligated operation group; ‑1, the sham operated group.
 

Figure 1. Microarray data normalization. Samples were divided into three groups: days 1, 6 and 42. White, aorta ligated operation samples. Blue, sham operated 
samples. 

Figure 2. Identification of specific differentially expressed genes. Yellow, day 1 
(D1) group; green, day 6 (D6) group; purple, day 42 (D42) group.
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at 42 days (Table II), the consistency of these two datasets was 
calculated to be 76.5% (Fig. 4B).

Discussion

In the present study, the expression profiles of sham operated 
and ligated heart samples harvested from a Wistar rat were 
analyzed and 319, 44 and 57 DEGs were subsequently identified 
in the D1, D6 and D42 groups, respectively. AKIP1, ANKRD23, 
LTBP2, TGF‑β2 and TNFRSF12A were identified as common 
DEGs among the three groups, and their association with 
cardiac hypertrophy has previously been demonstrated (34‑37). 
AKIP1 was identified as a key regulator of heart function via 
the cAMP‑dependent protein kinase signaling pathway (38). 
During periods of the oxidant stress, the expression of AKIP1 
is capable of protecting cardiac myocytes from the ischemic 
injury via enhanced mitochondrial integrity (38). Furthermore, 
the expression of AKIP1 may also protect the heart via mito-
chondrial stress adaptation (39), and it has been demonstrated 
that mitochondrial DNA damage may contribute to the devel-
opment of cardiac hypertrophy and heart failure (40). These 
results suggested that AKIP1 may serve a crucial function in 
the development of cardiac hypertrophy via mitochondrial 
stress adaptation mechanisms. Hellman et al (16) have previ-
ously demonstrated that LTBP2 and TGF‑β2 are associated 
with the development of cardiac hypertrophy. LTBP2, which 
belongs to the fibrillin superfamily, regulates the release of 
TGF‑β1  (41,42). Previous studies have demonstrated that 
TGF‑β, including TGF‑β1, TGF‑β2 and TGF‑β3, have an 
important role in the pathogenesis of cardiac hypertrophy by 
stimulating the proliferation of cardiomyocytes (43,44). These 

Figure 3. Hierarchical clustering analysis of five common differentially expressed genes in day 1 (D1), 6 (D6) and 42 (D42). Red labels represent the 
samples which were mixed into the false group. 

Figure 4. Verification of the prediction model. (A) The model was verified by 
receiver operating characteristic (ROC) curve (B), which was determined by 
the consistency of predictive and measurement data at day 42. The area under 
curve (AUC) of ROC was used to assess the accuracy of data. AUC value 
0.7<AUC≤0.9 implies moderate accuracy, whereas AUC value 0.9<AUC<1 
implies high accuracy. Cor, correlation of predicted data and measurement 
data.

  A

  B
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results demonstrated that LTBP2 and TGF‑β2 are associated 
with the regulation of cardiac hypertrophy. However, the role 
of ANKRD23 and TNFRSF12A in the development of cardiac 
hypertrophy is yet to be elucidated. As the results of the present 
study demonstrated that they were detected as common genes 
in the three groups, we hypothesize that AKIP1, ANKRD23, 
LTBP2, TGF‑β2 and TNFRSF12A may contribute to the devel-
opment of cardiac hypertrophy.

Numerous mathematical techniques have been developed 
in order to analyze large datasets, and mathematical modeling 
is a useful and powerful tool for the analysis of gene expres-
sion patterns (14). LDA is a well‑known multivariate technique 
that is used for dimension reduction and classification (45). 
A 3‑gene model, TNFRSF8, BATF3 and TMOD1, which was 
obtained by LDA and leave‑one‑out cross‑validation, was 
previously used to separate ALK (‑) and anaplastic large‑cell 
lymphoma from peripheral T‑cell lymphoma, and the accuracy 
of the model was ~97% (46). Furthermore, a class‑prediction 
model of patients with Graft‑vs‑host disease was previously 
constructed using LDA, and the accuracy was 63‑80%, as esti-
mated by reverse transcription‑quantitative polymerase chain 
reaction (47). ROC, which directly displays the correlation of 
specificity and sensitivity can be used to assess the accuracy 
of diagnostic tests  (48). In a previous study conducted by 
Barretina et al (49), Cancer Cell Line Encyclopedia, which is a 
predictive model, was cross‑validated by specificity and sensi-
tivity of the ROC curve and used to predict the drug response 
to gene expression, including topoisomerase inhibitors associ-
ated with Schlafen family member 11. Similarly, a predictions 
model has previously been constructed for dementia using 
LDA and verified by ROC curve, and the accuracy of the 
model was 66%; whereas the specificity and sensitivity 
were 73% and 64%, respectively (50). In the present study, 
a prediction model of cardiac hypertrophy was constructed. 
The assessment of ROC curve demonstrated that the predic-
tive accuracy of the model was ~83.1% and the specificity and 
sensitivity were 0.8, respectively. By comparing the predictive 
and measurement data at 42 days, the consistency of these two 
datasets was calculated to be 76.5%. These results suggested 
that the present prediction model provides improved predic-
tive ability, which may contribute to the early prediction of 
the changing trends in gene expression exhibited in patients 
with cardiac hypertrophy disease. However, to elevate the 
discrimination ability of the model, further studies with an 
increased number of samples and more suitable machine 
learning algorithm are required.

In the present study, 319, 44 and 57 DEGs were detected 
in D1, D6 and D42 groups, respectively. AKIP1, ANKRD23, 
LTBP2, TGF‑β2 and TNFRSF12A were identified as common 
DEGs. A linear equation was calculated between the D1 and 
D42 groups, as follows: y=1.526x‑186.671. This linear equa-
tion, which acted as a prediction model of gene expression 
levels, may contribute to the early prediction of the changing 
trends in cardiac hypertrophy disease.
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