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a b s t r a c t

Rapid and accurate detection of COVID-19 coronavirus is necessity of time to prevent and

control of this pandemic by timely quarantine and medical treatment in absence of any

vaccine. Daily increase in cases of COVID-19 patients worldwide and limited number of

available detection kits pose difficulty in identifying the presence of disease. Therefore, at

this point of time, necessity arises to look for other alternatives. Among already existing,

widely available and low-cost resources, X-ray is frequently used imaging modality and on

the other hand, deep learning techniques have achieved state-of-the-art performances in

computer-aided medical diagnosis. Therefore, an alternative diagnostic tool to detect

COVID-19 cases utilizing available resources and advanced deep learning techniques is

proposed in this work. The proposed method is implemented in four phases, viz., data

augmentation, preprocessing, stage-I and stage-II deep network model designing. This study

is performed with online available resources of 1215 images and further strengthen by

utilizing data augmentation techniques to provide better generalization of the model and to

prevent the model overfitting by increasing the overall length of dataset to 1832 images.

Deep network implementation in two stages is designed to differentiate COVID-19 induced

pneumonia from healthy cases, bacterial and other virus induced pneumonia on X-ray

images of chest. Comprehensive evaluations have been performed to demonstrate the

effectiveness of the proposed method with both (i) training-validation-testing and (ii) 5-

fold cross validation procedures. High classification accuracy as 97.77%, recall as 97.14% and

precision as 97.14% in case of COVID-19 detection shows the efficacy of proposed method in
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present need of time. Further, the deep network architecture showing averaged accuracy/

sensitivity/specificity/precision/F1-score of 98.93/98.93/98.66/96.39/98.15 with 5-fold cross

validation makes a promising outcome in COVID-19 detection using X-ray images.

© 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish

Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Coronaviruses, a family of viruses, cause infection and conse-
quently illness ranging from the common cold to severe diseases
like Severe Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS). A novel coronavirus, COVID-19, is
the infection caused by SARS-CoV-2. A study by World Health
Organization (WHO) proves that COVID-19 virus like SARS cause
open holes in lungs and appear like a honeycomb [1]. The first
outbreak of Covid-19 was identified in Wuhan, Hubei, China, in
December [2]. Within three months (On March 11, 2020) of the
first outbreak, WHO declared the COVID-19 a pandemic [3]. By 09
April 2020, this virus affects more than 15.5 lakhs people and
more than 90 thousand people lost their lives [4]. The report from
Imperial College, London suggests that more than 90% percent of
the world's population could have been affected and could have
killed 40.6 million people if no mitigation measures have been
taken to combat the virus [5].

People suffering from COVID-19 have moderate respiratory
illness that can be cured without any special treatment of
antibiotics. However, people facing from medical complica-
tions like diabetes, chronic respiratory diseases, and cardio-
vascular diseases are more likely to suffer from this virus.
According to the reports of WHO, common symptoms of
COVID-19 are same as that of common flu, which include
fever, tiredness, dry cough, and shortness of breath, aches,
pains and sore throat [6]. These common symptoms make
difficult to detect the virus at an early stage. As this is a virus,
so there is no chance that it can be limited by anti-biotics,
which works on bacterial or fungal infections.

The National Institute of Allergy and Infectious Diseases
(NIAID) and Rocky Mountain Laboratories (RML) have released
some images of COVID-19 virus using scanning and transmis-
sion electron microscopy [7,8]. Fig. 1 shows the sample images of
COVID-19 virus captured by NIAID and RML using different
microscopes. Image in Fig. 1(a) shows the COVID-19 virus
captured by scanning electron microscope from a US patient
where virus particles are shown in yellow color and emerge from
the cells that are shown in blue and pink color. Image shown in
Fig. 1(b) is captured by the transmission electron microscope.
This figure is clearly able to illustrate that COVID-19 virus looks
similar form outside as most of the corona viruses including
SARS and MERS, sharing the bump covered spherical surface.

1.1. Challenges

Primarily, bacterial and viral pathogens are two leading causes of
pneumonia. It was found in some patients that COVID-19 virus,
like any other bacteria or virus, causes pneumonia. However, the
treatment is different in all these cases. The initial screening/
testing allows knowing whether an individual has pneumonia or
not. Further diagnosis of pneumonia, that is whether the patient
is carrying COVID-19 virus induced pneumonia/bacterial pneu-
monia or/a viral pneumonia different from COVID-19, is crucial
to prevent the spread of virus. If an individual is found infected
then according to the diagnosis some precautionary measures
can be taken. Bacterial Pneumonia requires intensive antibiotic
treatment while viral pneumonia is treated with intensive care.
Precautionary measures in case of COVID-19 virus also include
keeping the patient in quarantine for some days to reduce the
possibility to infect others. It is also crucial to determine the
spread of COVID-19 virus in various parts of the world and take
appropriate measure to slow down the spread. Therefore,
accurate and timely diagnosis of COVID-19 virus induced
pneumonia poses the biggest challenge.

The WHO approved method of testing corona virus are the
reverse transmission polymerase chain reaction (RT-PCR)
method where the short sequences of DNA or RNA are
analyzed and reproduced or amplified [9]. However, some
people require more than one test to rule out the possibility of
corona virus. The WHO guidelines of laboratory testing suggest
that negative results do not rule out the possibility that the
person is containing virus [10]. Limited availability of screening
workstations and testing kits to detect COVID-19 creates
tremendous burden to medical professionals and staffs to
handle the situation. In this scenario, rapid and accurate
detection of COVID-19 suspected cases is a great challenge for
medical experts. Exponential increase of cases also arises the
need of multiple testing to get the idea about true situation and
in making appropriate decision accordingly.

Early detection of COVID-19 suspected cases is also a
challenge when it comes to public health security and control
of pandemic. Any failure in detection of COVID-19 virus
induced disease results in increase in mortality rate. The
incubation period which means the time between catching the
virus and beginning to have symptoms of the disease is 1–14
days. This makes it much more difficult to detect COVID-19
disease at a very early stage based on the symptoms shown by
the individual.

Despite the presence of many imaging modalities, chest
radiography is considered to have high suboptimal sensitivity
for important clinical findings [11,12]. X-ray imaging is
frequently used modality by medical practitioners to diagnose
pneumonia with the obvious fact that X-ray imaging system is
an essential part of medical care worldwide. Easy availability of
X-ray machines make it need of the time to use for detection
COVID-19 cases in the absence of screening workbenches and
kits. Also there may be certain cases when patients imaged for



Fig. 1 – COVID-19 virus image captured by: (a) scanning electron microscope in false color; (b) transmission electron
microscope.
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other reasons and their scans reveal finding potentially
suggestive for COVID-19. The X-ray images, as shown in
Fig. 2, are chest images taken in the interval of one year from a
patient before and after COVID-19 infection [13]. The findings
from X-ray images strongly suggests that even in the initial
stages of COVID-19, the affect can be seen in lungs particularly
in lower lobes and posterior segments, with peripheral and
subpleural distribution. The lesions diffuse more and more as
the time progresses. However, the biggest challenge encounter
here is that the examination of each X-ray image and extraction
of important findings take a lot of valuable time and presence of
medical experts in the domain. Therefore, computer assistance
Fig. 2 – X-ray images of lungs taken in year: (a) 2019; (b) 2020 fro
show cough and respiratory distress. The yellow circle and ovoi
is needed for medical practitioners to aid in detection of
COVID-19 cases with X-ray images. In the current scenario
when in each day lakhs of people are required to be check
whether they contain deadly COVID-19 virus or not, an
automatic, reliable and accurate computer-aided method is
imperative to detect the presence of disease. Deep learning
techniques in computer-aided methods contribute significant-
ly in analyzing medical images in state-of-the-art manner and
show excellent performances. Therefore, the present work
proposes a deep learning based two-stage method to detect and
classify pneumonia cases using X-ray images.
m a 72-year-old woman suffering from COVID-19. Images
d indicate the typical subpleural peripheral opacities [13].
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2. State-of-the-Art methods

Methods that have been designed for the automated detection
of COVID-19 coronavirus cases are summarized in Table 1.
These state-of-the-art methods are designed using either
chest X-ray images [14–20] or CT images [21–23] and based on
deep learning approaches. Machine learning approaches in
comparison to deep learning approaches highly depends on
expertise in extraction and selection of relevant features and
shows limited performance. Therefore in recent years, deep
learning techniques are preferred significantly due to major
advantages like (i) maximum utilization of unstructured data,
(ii) elimination of the need for feature engineering, (iii) ability
to deliver high-quality results, (iv) elimination of unnecessary
costs, and (v) elimination of the need for data labeling.
Therefore, deep learning techniques are frequently used now-
a-days to automatically extract relevant features to classify
the object of interest. Table 1 shows that the researchers
trained deep learning networks like Mobile Net, residual, and
VGG, and presents a comparative study of their performances
in the detection of COVID-19 cases. Apostolopoulos and
Bessiana achieved 97.8% accuracy in classification of COVID-19
with VGG19 architecture [14]. Ozturk et al. showed the
classification of COVID-19, no-finding and pneumonia show-
ing 87% accuracy [15]. Sethy et al. [16] worked on to classify
COVID-19+ and COVID-19- cases. However, state-of-the-art
studies, listed so far, are not designed to differentiate COVID-
19 induced pneumonia cases form other viral induced
pneumonia cases. Such identification is needed to avoid
misdiagnosis of COVID-19 virus as a common viral infection
because COVID-19 virus infection has a different line of
treatment. In addition, Abhiyev [24] et al., Tariq [25] et al.,
Bharati et al. [26] and Apostolopoulos et al. [27] proposed
pulmonary chest disease classification by applying deep
learning approaches. Research is beginning to focus on show
the identification of COVID-19 cases with a variety of other
pulmonary diseases like Fibrosis, Edema, and Effusion etc.

Therefore, the present work deals with the designing of a
novel deep network-based two-stage approach to detect
Table 1 – Brief detail of previous research works related to COV

Author (Year)
[reference no.]

Method Used Data Type Training m

Apostolopoulos and
Bessiana (2020) [14]

Deep Transfer
Learning

Chest X-ray VGG 19, M

Ozturk (2020) [15] Deep Learning Chest X-ray DarkCovid
Sethy (2020) [16] Deep Learning Chest X-ray ResNet50 

Yoo (2020) [17] Deep Learning Chest X-ray ResNet 18
Panwar (2020) [18] Deep Learning Chest X-ray nCOVnet 

Albahli (2020) [19] Deep Learning Chest X-ray ResNet152

Civit-Masot (2020) [20] Deep Learning Chest X-ray VGG16 

Wang (2020) [21] Deep Learning Chest CT DeCovNet

Singh (2020) [22] Deep Learning Chest CT MODE-bas
Ahuja (2020) [23] Deep Learning Chest CT ResNet 18
covid-19 induced pneumonia cases. At the first stage, clinical
cases are classified into viral pneumonia, bacterial pneumonia
and normal cases with ResNet50 deep network architecture.
Further as covid-19 induced pneumonia is due to virus,
therefore at the second stage all the identified viral pneumonia
cases are differentiate into covid-19 induced pneumonia and
other viral pneumonia with ResNet101 deep network archi-
tecture. This two-stage approach is designed to provide a fast,
systematic and reliable computer-aided solution for the
detection of covid-19 cases to the patients visiting hospitals
and go for initial screening with X-ray scan of their chest.
Comprehensive evaluations have been performed to demon-
strate the effectiveness of the proposed method with both (i)
training-validation-testing and (ii) 5-fold cross validation
procedures. Further various experiments have been performed
to demonstrate the strength of the architecture (ResNet101) to
detect covid-19 cases in comparison to the other deep-learning
architectures used in state-of-the-art studies.

3. Materials

Two open-source image databases, Cohen [28] and Kaggle [29],
are used to carry out this research work. Fig. 3 shows few
example chest X-ray images of all the four cases, that are
considered in this research work, i.e., normal / healthy (first
row), bacterial pneumonia (second row), viral pneumonia
(third row) and COVID-19 (fourth row). Chest X-ray images of
COVID-19 infected patients have been obtained from GitHub
repository shared by Dr. Joseph Cohen consisting annotated
chest X-ray and CT scan images of COVID-19, acute respiratory
distress syndrome (ARDS), severe accurate respiratory syn-
drome (SARS) and middle east respiratory syndrome (MERS).
This repository contains 250 chest X-ray images of confirmed
COVID-19 virus infection. The chest X-ray images of healthy
persons, patients suffering from bacterial and other viral
pneumonia have been obtained from Kaggle repository [29]. It
contains 315 chest X-ray images of normal healthy persons,
300 images of patients suffering from bacterial pneumonia and
350 images of patients suffering from viral pneumonia.
ID-19 detection.

odel Image classes Performance
measure
(Accuracy%)

obile Net COVID-19, Pneumonia, Normal 97.8%

Net Covid+, Pneumonia, No-findings 87.0%
+ SVM COVID-19+ vs COVID-19- 95.4%
 COVID-19 vs Tuberculosis 95.0%
using VGG16 COVID-19 vs other 88.1%

 COVID-19+ vs
Other chest diseases

87.0%

COVID-19+ vs
Other

86.0%

 COVID-19+ vs
COVID-19-

90.1%

ed CNN COVID-19 vs COVID-19- 93.3%
 COVID-19 vs COVID-19- 99.4%



Fig. 3 – Example chest X-ray images of four different cases: Normal / healthy person (first row), Patient suffering from bacterial
pneumonia (second row), patient suffering from viral pneumonia (third row) and patient suffering from COVID-19 (fourth
row).
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4. Methodology

The proposed methodology, as shown in Fig. 4, consists of the
four phases, namely (i) image preprocessing, (ii) data augmen-
tation, (iii) training of deep learning ResNet50 network to
differentiate viral induced pneumonia, bacterial induced
pneumonia and normal cases (iv) training ResNet-101 network
to detect the presence of COVID-19 from positive viral induced
pneumonia cases using X-ray images. The steps followed in
these four phases are explained in this section.

4.1. Image preprocessing

The image preprocessing is done in two steps:
Step1: All the images, originally acquired, were first

checked to find out the minimum height and width present
in the dataset images. After finding this minimum dimension,
all the dataset images were resized to this dimension.
Minimum dimension as obtained in our work is 640 � 640.
Thus, all the images of dataset are resized to the size of
640 � 640.

Step2: Pre-processing of resized images is done according
to the ImageNet database. ImageNet database is a publicly
available computer vision dataset containing millions of
images with more than thousand image classes. ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) uses
subsets of images from ImageNet database to foster the
development of state-of-the-art algorithms [30,31]. A network
already trained on ImageNet database is used in this work to
train the network on our dataset. This method, where a pre-
trained network on ImageNet database is used to train the
network on new dataset, is termed as transfer learning.
Therefore, the resized images obtained after step1 are
preprocessed according to the images in ImageNet database.
In case of ImageNet database, a pixel wise division by 255,
followed by a subtraction of the ImageNet mean and division
by the ImageNet standard deviation is done. All the images of
our dataset are processed in the same way. Each pixel of three
channels in an image is individually normalized with the
following ImageNet statistics:

Mean: 0.485 for channel1, 0.456 for channel2, and 0.406 for
channel3.

Standard deviation: 0.229 for channel1, 0.224 for channel2,
0.225 for channel3.

This preprocessing step of image normalization is inte-
grated in FastAi library before training the model.

4.2. Data augmentation

Data augmentation is a strategy, which enables to increase the
data significantly. Fig. 5 shows the distribution of X-ray



Fig. 4 – Systematic block diagram of the proposed method to identify the presence of COVID-19 virus using X-ray images by
differentiating pneumonia caused by COVID-19 virus from the pneumonia caused by bacteria and other viruses.
*Viral Pneumonia + indicates that viral pneumonia X-ray images are along with COVID-19 X-ray images in the dataset of
stage-I network.

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 1 3 9 1 – 1 4 0 51396
images, obtained from both the databases, in each of the four
classes, viz., normal/healthy and pneumonia caused by viral,
bacteria and COVID-19 infection separately. It can be clearly
observed from Fig. 5, that there is a difference in original
number of acquired images in each image class from these two
databases. This difference in number of images create a huge
class imbalance. This class imbalance could create many
problems like overfitting in which the model cannot generalize
well on the unseen dataset, on the other hand accuracy cannot
be a suitable performance metric in such case. The condition of
overfitting causes the model to learn the details of the training
dataset to the extent that it cannot generalize well and
therefore, to combat this problem of overfitting, regularization
technique like data augmentation are employed in this work.
Consequently, number of images of COVID-19 and other
classes are increased using augmentation techniques to
prevent the model from overfitting. The data augmentation
techniques, which are employed in this work, are rotation and
Gaussian blur.

(i) Rotation: Images were rotated at various angles in the
range of -158 to 158 to generate a greater number of images
and these augmented images were included in the training
dataset.

(ii) Gaussian blur: Gaussian filter of kernel size 5 � 5 is
employed to remove high frequency components from
the images and make them blur or smoother. The images
obtained after blurring by Gaussian filter are also included
in the training dataset.

However, while testing the networks, only images those are
non-augmented were passed into the network to check the
robustness of the model while predicting a class of the image.
It means, here it is insured that the model is not over-fitted to
only the images those are augmented.

4.3. Transfer learning with convolutional neural network

Transfer learning method is employed to train convolutional
neural network (CNN) in the present work. In transfer learning
method, a pre-trained CNN network on ImageNet database
with saved weights was loaded and then trained on the dataset
used in this work. The advantage of using transfer learning
method to train the CNN is that the initial layers of the network



Fig. 5 – Distribution of acquired database among various classes showing number of images.
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are already trained, which are otherwise very hard to train due
to the vanishing gradient problem. The other benefit is that the
network already has learned basic features like recognizing
shape, edges of the image etc. Thus, the pre-trained model
benefits from the knowledge acquired in the form of learning
basic features of the images from the existing database. This
method of training the network reduces the computational
time as only the final layers of the network needs to be trained.

Further, out of various architectures of CNN network, the
residual network architectures (ResNet) have already out-
performed to other network architectures like VGG, inception,
dense networks in terms of computational time and accuracy
in variety of challenges [32–36]. Therefore, the proposed
method to detect the presence of COVID-19 is implemented
in two stages having different residual network at each stage
[36]. The trainings of both residual networks have been done
via transfer learning.

In the pre-trained model, the last layers of the model are
adapted according to the number of classes in which the
dataset is to be differentiated. The last convolutional layer
stores the extracted features, which passes through the model
to convert into the predictions for each of the classes. The pre-
trained weights of the initial convolutional layers, which
serves as the backbone of the model, are freeze and only the
last convolutional layers are trained to convert those extracted
features into predictions for the specified classes for the new
dataset. At the last convolutional layer, the model is cut to add
new layers as (i) AdaptiveConcatPool2D layer, (ii) Flatted Layer,
(iii) Blocks of Rectified Linear Unit (ReLU), (iv) dropout layer, (v)
linear layer and (vi) Batch Norm1D. The last linear block has
the number of outputs equal to the number of classes in which
the dataset is to be distinguished for classification. This same
methodology is followed at both the stages of proposed
method.

The whole pre-processed dataset of X-ray images were split
in 80:20 ratio according to Pareto principle. This means that
80% of the whole dataset is used for training (70%) and
validation (10%), and the remaining 20% is used for testing the
network. Further as shown in Fig. 5, same number of images in
each image class, viz., bacterial pneumonia, viral pneumonia,
normal/healthy and COVID-19 are taken to construct the
training and validation datasets.

- Stage-I residual network

Residual network of the stage-I is trained to differentiate X-
ray images of bacterial induced pneumonia, viral induced
pneumonia and normal healthy people. Residual network
architecture with 50 layers (ResNet50) is employed at this stage
[35].

Learning Rate assessment
Learning rate is a very imperative hyper-parameter while

training the deep learning networks. After each epoch or
iteration, the weights of the neurons are updated according to
loss between the input and predicted values. After each epoch
the weights (u jÞ are updated by the formula as shown in eq. (1).

u jþ1 ¼ u j � a
@J uð Þ
@u j

(1)

where j is the number of epoch processed. J uð Þ is the loss
function and @J uð Þ

@u j
is the gradient of weight u j: The a is learning

rate and u jþ1 is the updated new weight. The choice of optimal
learning rate can be very hard sometimes, as (i) a high value of
learning rate can cause weights to converge quickly and may
result in loosing sub-optimal weights and unstable training
process, (ii) a small value of learning rate may result in slow
training process and can cause delay in training the network,
(iii)continuous iterations over different learning rates to opti-
mize the network model need manual intervention. Therefore,
in present work, the optimal choice of learning rate is made
according to the study proposed by Smith [37] where the best
rate can be found by varying learning rate cyclically between
the reasonable boundary limits. Training of networks with
cyclically varying learning rates instead of fixed values
achieves improved classification accuracy often in fewer itera-
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tions and without the need of manual intervention. This
method to find the optimal learning rate to train network
model is available in FastAi library with function lr_find.
The function lr_find launches a learning range test to provide
a defined way to find out optimal learning rate.

- Stage-II residual network

Residual network of stage-II is trained to detect the
presence of COVID-19 induced pneumonia from other virus-
induced pneumonia on X-ray images. Therefore, two sets of
images are used to model stage-II network (i) chest X-ray
images of patients suffering from COVID-19, and (ii) chest X-
ray images of patients suffering from other viral induced
pneumonia. Residual network architecture with 101 layers
(ResNet101) is employed at this stage.

At the time of final implementation of the proposed
method, those samples are predicted positive for viral
pneumonia at stage-I, would be passed into the stage-II model
to detect the presence of COVID-19 virus.

4.4. Performance metrics

Performance of the proposed two-stage COVID-19 detection
system is evaluated via clinically important statistical mea-
sures like accuracy, precision and recall. These measures are
briefly described as:

a) Accuracy: It is a parameter that evaluates the capability of a
method by measuring a ratio of correctly predicted cases
out of total number of cases. Mathematically, it is expressed
as:

Accuracy ¼ ðTP þ TNÞ=ðTP þ FP þ FN þ TNÞ (2)

where TP: Number of correct predictions of positive cases by
the method; TN: Number of correct predictions of negative
cases by the method; FP: Number of incorrect predictions of
positive cases by the method; TN: Number of incorrect pre-
dictions of negative cases by the method. However, accuracy is
not always good to evaluate the performance of the model
especially in case of asymmetrical dataset. Therefore, there is
a need to evaluate the other performance metrics to test the
model.

b) Precision: It is the ratio of correctly predicted positive cases
to the total predicted positive cases. High precision relates
to the low false positive rate. It is expressed as:

Precision ¼ TP=TP þ FP (3)

c) Recall: It is the ratio of correctly predicted positive
observations to the all observations in actual class.

Recall ¼ TP=TP þ FN (4)
d) Specificity: It is the ratio of correctly predicted negative
observations to all the actual negative observations.

Specificity ¼ TN=FP þ TN (5)

e) F1-Score: F1 Score is measured in case of uneven class
distribution especially with a large number of true negative
observations. It provides a balance between Precision and
Recall.

F1 � Score ¼ 2 � precision � recall
precision þ recall

(6)

f) Receiver operating characteristics (ROC) curve: It plots true
positive rate (sensitivity) vs false positive rate (1-specificity)
across a wide range of values and area under the curve
represents the predictability of a binary classifier. The high
value of area under the curve demonstrates that the model
performs really well on the unseen dataset.

5. Results and discussion

The proposed COVID-19 detection method is implemented in
Python with FastAi library. FastAi library requires very less
code in standard deep learning domain and hence it can
provide state-of-the-art results quickly and easily. Addition-
ally, this library takes care of variations in image sizes and
normalization methods according to the model. FastAi library
facilitates faster training of the deep learning networks in
compared to Keras, Tensorflow, pytorch and achieves a higher
accuracy. FastAi is built on top of pytorch which means the
trained models are in pytorch format. Intel i9-9820X CPU with
NVIDIA GeForce RTX 2080 Ti having 16 GB memory is used to
provide a separate memory to train the model which decreases
the overall computational time. Jupyter notebook is used to
write the python code.

5.1. Stage-I network model (ResNet50)

Deep network model of stage-I is trained to differentiate X-ray
images of bacterial induced pneumonia, viral induced pneu-
monia and normal healthy cases. Deep network training
involves the backpropagation of errors from the last layer to
first and weights are constantly changing in this process.
Various parameters related to model were optimized during
training. The optimized values of parameters during training
of stage-I network model are (i) number of layers: 50, (ii) batch
size: 8, (iii) number of epochs: 11, (iv) optimizer: gradient
descent, (v) loss function: categorical cross entropy and (vi)
activation function of the last (classification) layer: softmax.
Learning rate is one more important parameter. It is optimized
in this work by analyzing the plot of loss vs learning rate during
training of stage-I network model as shown in Fig. 6. Here, the
loss reflects the deviation of predicted value by the model from
ground-truth (labelled) value. Higher the value of loss means
higher is the deviation of predicted value from ground-truth



Fig. 6 – Plot of training loss with the learning rate for stage-1
ResNet50 network.
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value. Learning range can be seen on this plot to find
appropriate learning rate to train the model. The plot clearly
illustrates by seeing within marked stars on plot that the loss is
continuously decreasing from 1e-04 (approx.) to 1e-02
(approx.). Therefore, to decrease the loss continuously during
the training phase of the model, any value from 1e-04 to 1e-02
can be chosen. Any value greater than this range results in
increasing loss between predicted and desired output. Start
with the low learning rate, loss improves slowly and then
training accelerates. Thus optimal value chosen for training
the model is 1e-04.

Trained ResNet50 model has 95.3% training accuracy. The
validation dataset consists of 150 X-ray images out of which 50
images consists of pneumonia patients, 50 images consists of
persons suffering from viral pneumonia and the remaining 50
images consists of normal healthy people. Some X-ray images
in validation dataset of lungs with people suffering from
bacterial and viral pneumonia were misclassified as normal is
due to close image resemblance between these two classes of
image. In addition, this could also be a possibility that the
infected patient with viral or bacterial pneumonia is at an
initial stage that the lungs are not much infected by the
disease.

Further, the images of validation dataset are divided into
following three categories to provide a wide illustration of
decision making by stage-I network model: (i) random
Table 2 – Confusion matrix on the test results at stage-I of dee

Ground-Truth 

Predicted Class Bacterial Pneumonia Normal 

Bacterial Pneumonia 80 0 

Normal 3 81 

Viral-Pneumonia 4 4 

Overall Ground-truth 87 85 

Recall 91.95% 95.29% 
samples, (ii) most incorrect samples and (iii) most correct
samples. This segregation of validation dataset images is
made on the basis of loss between predicted and ground-truth
values, and the probability score for the actual class. The
activation maps of the X-ray images of these three categories,
depict the areas in the image about the feature maps learned
by the model to distinguish among various classes and show
the regions in the images due to which designed model
predicts a particular class.

While testing the model, network predicts the probability
score (or weightage) for each class. Probability score of the
predicted class is based on the loss value between the actual
ground-truth and the predicted value by the model. The class,
which has the highest probability score (minimum loss value),
is assigned as a predicted class by the model. The confusion
matrix, as shown in Table 2, summarizes the results on test
dataset. It can be seen that the designed model at stage-I have
the predication of (i) bacterial pneumonia with 91.95% (80/87)
recall and 93.02% (80/86) precision, (ii) viral pneumonia with
92.00% (92/100) recall and precision both and (iii) normal cases
with 95.29% (81/85) recall and 94.19% (81/86) precision. Out of
87 test images of bacterial pneumonia, 3 are misclassified as
normal image and 4 are misclassified as viral pneumonia. Out
of 100 test images of viral pneumonia, 2 are misclassified as
normal images and 6 are misclassified as bacterial pneumonia.
Out of 85 test images of healthy cases, 4 are misclassified as
viral pneumonia. Thus the designed model at stage-I have
shown a sufficiently high overall classification accuracy of
93.01% on test dataset.

5.2. Stage-II network model (ResNet101)

Deep network model of stage-II is trained separately to
differentiate the presence of COVID-19 from viral pneumonia
X-ray images. The optimized values of parameters during
training of stage-II network model are (i) number of layers: 101,
(ii) batch size: 32, (iii) number of epochs: 25, (iv) optimizer:
gradient descent, (v) loss function: categorical cross entropy
and (vi) Activation function of the last (classification) layer:
softmax. Learning rate is also optimized to reduce the
computational time. The plot in Fig. 7(a) shows the variation
of loss with learning rate during training of stage-II network. It
can be seen that there is a high decreasing slope from 1e-4 to
5e-1. Therefore, the learning rate chosen here is 1e-4 as it will
cause the loss between predicted and actual value to decrease
at a fast rate. Further, the plot in Fig. 7(b) shows the variation of
training and validation loss with number of batches processed.
The batch size in 1 epoch, which is 16, indicates the number of
p network classifier.

Overall

Viral Pneumonia Classification Precision

6 86 93.02%
2 86 94.19%
92 100 92.00%
100 272
92.00%



Fig. 7 – (a) Plot of training loss with the learning rate for stage-2 ResNet101 network; (b) Plot of loss with each epoch for both
training and validation dataset.
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samples processed before model is updated. The entire dataset
is passed backward and forward through the network only
once. The number of batches processed is clearly an indication
of number of epochs. Plot shows that the training loss is
continuously decreasing till value 0.08 in approximately 110
batches being processed and thereafter, loss remains constant
Fig. 8 – Activation maps of the predicted class by the stage-II ne
class of some image, the above visualization shows the areas in
presence.
for further iterations. Therefore, this is the point where
training of the network should be stopped having minimum
validation error as it is not decreasing further. However, if the
model is continued to be trained further to minimize the
training loss, then there could be a problem of overfitting.
Overfitting means that model was not learned the decision
twork model. For example if the model predicts COVID-19
 the image where the model thinks about COVID-19



Table 3 – Confusion matrix on the test results at stage-II of deep network classifier.

Ground-Truth Overall

Predicted Class COVID-19 Other Viral Pneumonia Classification Precision

COVID-19 68 02 70 97.14%
Other Viral-Pneumonia 02 108 110 98.18%
Overall Ground-truth 70 110 180
Recall 97.14% 98.18%
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boundary or it has not been generalized to the unseen data,
and has learned the data itself.

The deep ResNet101 model was trained with 100% training
accuracy. The validation dataset at stage-II consists of 100 X-
ray images, out of which 50 images consist of persons suffering
from viral pneumonia and the remaining 50 images belong to
COVID-19 pneumonia cases. Fig. 8 shows the activation maps
of samples of validation dataset in three categories as random,
most incorrect and most correct samples. Discriminatory
location/features indicating the presence of COVID-19 in X-ray
images can be assessed by visualizing these activation maps.
In most of the images of infected patients by viral pneumonia
have the likelihood of presence of a disease in the air sacks of
the lungs.

The test dataset consists 180 images; out of which 70 chest
X-ray images are related to patients suffering from COVID-19
and 110 images are related to patients suffering from other
viral pneumonia. No augmented image is taken in test dataset
to maintain the robustness of model by excluding the
possibility to be over-fitted on augmented data class. The
confusion matrix, as shown in Table 3, summarizes the results
on test dataset. It can be seen that the designed model at stage-
II have the predication of (i) COVID-19 pneumonia cases with
97.14% (68/70) recall and 97.14% (68/70) precision, (ii) other viral
pneumonia cases with 98.18% (108/110) recall and 98.18% (108/
110) precision. Out of 70 test images of COVID-19 pneumonia, 2
are misclassified as other viral pneumonia. Out of 110 test
images of other viral pneumonia, 2 are misclassified as
Table 4 – Illustration of ResNet101 and ResNet50 network arch

Layer name Output size 

Conv1 112 � 112 

Conv2_x 56 � 56

Conv3_x 28 � 28

Conv4_x 14 � 14

Conv5_x 7 � 7

1 � 1 
COVID-19 pneumonia. Thus, the designed model at stage-II
have shown a sufficiently high overall classification accuracy
of 97.78% on test dataset.

5.3. Architecture of stage-I and stage-II network models

Table 4 illustrates the architectural details of stage-I
(ResNet50) and stage-II (ResNet101) residual networks.
ResNet101 contains more layered blocks as compared to
ResNet50. Thus, ResNet101 network is allowed to learn a large
number of parameters than ResNet50 due to its large depth,
and making it easier to extract latent space features
differentiating Covid-19 from other types of virus induced
pneumonia. These learnable parameters in ResNet101 are over
7.6 billion whereas these parameters in ResNet50 are over 23.2
million. Higher number of parameters allows the ResNet101
network to create deep abstract representation of the input to
obtain a good classification accuracy. At stage-II, ResNet101
model has to provide classification in between COVID-19 cases
and a large number of other virus induced pneumonias cases
such as SARS, MERS, and ARDS into a single class. Therefore, a
deep 101-layered residual network is suitable to learn a large
number of parameters required to generalize the classification
of COVID-19 cases form other viral pneumonia cases. Even
though the depth of the network is very high, the complexity of
the network is still lower than the 16/19 layered VGG network,
which contains 15.3/19.6 billion parameters, allowing the
network to train faster with less computational cost.
itectures.

101-layer 50-layer

7 � 7,64,stride 2
3 � 3 max pool, stride 2

1x1; 64
3x3; 64
1x1; 256

2
4

3
5X3

1x1; 64
3x3; 64
1x1; 256

2
4

3
5X3

1x1; 128
3x3; 129
1x1; 512

2
4

3
5X4

1x1; 128
3x3; 129
1x1; 512

2
4

3
5X3

1x1; 256
3x3; 256
1x1; 1024

2
4

3
5 X23

1x1; 256
3x3; 256
1x1; 1024

2
4

3
5 X3

1x1; 512
3x3; 512
1x1; 2048

2
4

3
5 X3

1x1; 512
3x3; 512
1x1; 2048

2
4

3
5 X3

Average pool, 3D Fully Connected Layer, Softmax



Table 5 – The table compares the 5-fold cross validation performances of various classifiers in the detection of Covid-19.

MODELS/FOLD Confusion matrix and Performance results (%)

TP TN FP FN Accuracy Recall Specificity Precision F1-score

ResNet18 Fold-1 75 75 0 0 100.00 100.00 100.00 100.00 100.00
Fold-2 75 73 2 0 98.67 100.00 97.30 97.40 100.00
Fold-3 75 68 7 0 95.33 100.00 90.60 91.46 95.54
Fold-4 73 73 2 2 97.33 97.33 97.30 97.33 97.33
Fold-5 71 72 3 4 95.33 94.67 96.00 95.95 95.30
Mean 97.33 98.4 96.20 96.42 97.63

VGG16 Fold-1 72 74 1 3 97.33 96.00 98.60 98.63 97.30
Fold-2 72 74 1 3 97.33 96.00 98.60 98.63 97.30
Fold-3 74 72 3 1 97.33 98.67 96.00 96.10 97.37
Fold-4 74 73 2 1 98.00 98.67 97.30 97.37 98.01
Fold-5 65 75 0 10 93.33 86.67 100.00 100.00 92.86
Mean 96.66 95.20 98.1 98.14 96.56

DenseNet121 Fold-1 75 70 5 0 96.67 100.00 93.33 93.75 96.77
Fold-2 75 73 2 0 98.67 100.00 97.33 97.40 98.68
Fold-3 75 72 3 0 98.00 100.00 96.00 96.15 98.04
Fold-4 73 73 2 2 97.33 97.33 97.30 97.33 97.33
Fold-5 73 73 2 2 97.33 97.33 97.30 97.33 97.33
Mean 97.60 98.93 96.20 96.39 97.63

ResNet101 Fold-1 75 75 0 0 100.00 100.00 100.00 100.00 96.77
Fold-2 75 71 4 0 97.33 100.00 94.67 94.94 97.40
Fold-3 75 74 1 0 100.00 100.00 98.67 98.68 99.34
Fold-4 71 75 0 4 97.33 94.67 100.00 100.00 97.26
Fold-5 75 75 0 0 100.00 100.00 100.00 100.00 100.00
Mean 98.93 98.934 98.66 96.39 98.154
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5.4. Performance analysis of ResNet101 with other
networks in detection of COVID-19 cases

Table 5 illustrates the performance comparison of stage-II
model, i.e., ResNet101 network architecture in detection of
Covid-19 cases with the other CNN architectures like VGG16,
DenseNet121 and ResNet18 [36,38,39]. Five-fold cross valida-
tion procedure is followed to evaluate the generalized
performance of the model and better comparison of it with
other network architectures. Fig. 9 depicts the five-fold cross
validation procedure where one unique fold is chosen as a test
set and the remaining folds are chosen as a training dataset.
The model is fitted on the training dataset and evaluated on
test dataset. Same procedure is followed for each of the
iteration. The performance parameters obtained for each of
the five folds are averaged out to get the resultant evaluation
performance parameters of the model. This five-fold cross
validation is performed with a dataset consisting 750 images.
These 750 images of dataset are divided into five folds of 150
images with each fold having 75 images of COVID-19 and rest
75 images of other viral pneumonias. The weights of the initial
layers, which are pre-trained on the ImageNet database, are
kept frozen for all the architectures and the last convolutional
Fig. 9 – Depiction of 5-fold cross vali
layers are same as mentioned earlier. The parameters for
training for all the networks are: learning rate: 0.001, batch
size = 32, number of epochs: 15, weight decay = 0.3 for a fair
comparison. Table 5 shows the results of 5-fold cross
validation in terms of (i) confusion matrix, expressed by True
Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN) and (ii) performance measures like accuracy,
recall, specificity, precision, F1-score. It can be observed that
the deeper networks achieved a higher performance in
comparison to shallower networks on comparing the results
of different models from the Table 5. The higher values of
quantitative parameters like accuracy, recall, specificity and F1
score clearly demonstrate the superiority of ResNet101
architecture than the other architectures. ResNet101 has the
best performance by achieving averaged score of accuracy/
sensitivity/specificity/Precision/F1-score as 98.93/98.934/
98.66/96.39/98.154 over 5-folds on the same dataset.

5.5. Covid-19 detection in the presence of other pulmonary
diseases

This experiment aims to (i) realize the detection of COVID-19
cases in the presence of pulmonary diseases like Atelectasis,
dation for performance analysis.



Table 6 – Performance comparison of different deep network models to detect a specific pulmonary disease in presence of
rest others using area under the receiver operating characteristic curve as a performance measure.

Network Edema Effusion Atelectasis Cardiomegaly Consolidation Covid-19

VGG-16 0.809 0.883 0.809 0.766 0.892 0.998
ResNet -18 0.868 0.899 0.816 0.797 0.905 0.999
ResNet-101 0.889 0.907 0.813 0.810 0.905 0.982
DenseNet-121 0.883 0.908 0.809 0.794 0.895 0.999

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 1 3 9 1 – 1 4 0 5 1403
Cardiomegaly, Consolidation, Edema and Effusion and (ii) get
the suitable model for this classification task. Therefore, in this
experiment, different deep learning models are trained and
their performances are compared in classifying Atelectasis,
Cardiomegaly, Consolidation, Edema and Effusion and
COVID-19 cases.

The open source database called CheXpert [40], which
consists of 224,316 frontal view chest X-ray images of 14
disease classes acquired from 65,240 unique subjects, is used
to perform this experiment. Five classes of pulmonary
diseases, viz., Edema, Effusion, Atelectasis, Cardiomegaly,
Consolidation have been chosen for this experiment with only
frontal images. Original images obtained from this database of
these five classes are resized to 320 � 320 for further
preprocessing according to the ImageNet database. Preproces-
sing has been done as stated earlier in section 4.1.

Different models, like ResNet18, ResNet101, DenceNet121
and VGG-16, are trained as a binary classifier to detect the
presence of each disease in view of that a person may have
more than one disease at a time. Network models and learning
rate assessment procedure are same as mentioned in the
previous experiments. Area under the ROC curve (AUROC)
becomes imperative in determining the performance of the
models because of huge class imbalance in the dataset. Table 6
shows the performance comparison in terms of AUROC of
ResNet18, ResNet101, DenceNet121 and VGG-16 models in
each binary classification task, i.e., one disease versus rest
other diseases. It can be observed that the detection of COVID-
19 among other pulmonary diseases is highly promising on X-
ray images with all the deep network models. Moreover, the
predictions of this experiment can finally be pooled together to
identify the types of diseases present with the possibility of
more than one disease at a time. Consequently after this
preliminary work, it can be said that a deep network
architecture-based computer-aided solutions may help in
the detection of COVID-19 cases and they can be used in
parallel testing to patients visiting to a hospital or clinic
suffering for other pulmonary diseases to avoid the spread of
infection.

5.6. Limitations

There are certain limitations too of the proposed work. First,
the network design could be improved in order to increase the
sensitivity or true positive rate for COVID-19 detection. For
example, in the current workflow, if the stage1 model
misclassify a viral pneumonia image as healthy or bacterial
pneumonia, the further detection of COVID-19 or other
viruses completely fails. Therefore, in the current design
the accurate detection of COVID-19 heavily relies on the
stage1 model. Second, the limited number of COVID-19
images makes a bit difficult to train the deep learning models
from scratch, which is overcome by using deep transfer
learning method in the current study. The present work is
carried out with the images from two databases, i.e., Cohen
[28] and Kaggle [29]. The work can be extended with a greater
number of images of COVID-19 form other databases. Last, the
pipeline for COVID-19 detection could also be extended to
detect other virus like MERS, SARS, AIDS and H1N1.

6. Conclusion

In this study, a promising two-stage strategy to detect
COVID-19 cases while differentiating it from bacterial
pneumonia, viral pneumonia and healthy normal people
with the X-ray images of chest using deep residual learning
networks is proposed. The first stage model shows a good
performance with an accuracy of 93.01% in differentiating
viral induced pneumonia, bacteria induced pneumonia and
normal/healthy people. The viral induced pneumonia X-ray
images were further analyzed for detecting the presence of
COVID-19. The second stage model to detect the presence of
COVID-19 shows an exceptional performance with an
accuracy of 97.22%. The model is reliable, accurate, fast
and requires less computational requirements to detect the
presence of pneumonia caused by COVID-19 virus from the
viral induced pneumonia so that appropriate treatment
could be given. In the present scenario, parallel testing can be
used to avoid the spread of infection to frontline workers and
generate primary diagnosis to understand if a patient is
affected or not by COVID-19. Therefore proposed method,
when impacting management, can be used as an alternative
diagnostic tool with potential candidature in detection of
COVID-19 cases. Finally, the present work suggests that it
may be possible to detect COVID-19 using deep learning
models, since all current studies show good results. The high
accuracies obtained by several methods suggest that the
deep learning models find something in images and that
something makes deep networks capable of distinguishing
the images correctly. Research as to whether the results of
the deep learning methods constitute a reliable diagnosis is
left for the future.
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