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Decisions aremade through the integration of external and internal inputs until a threshold

is reached, triggering a response. The subthalamic nucleus (STN) has been implicated in

adjusting the decision bound to prevent impulsivity during difficult decisions. We combine

model-based and model-free approaches to test the theory that the STN raises the

decision bound, a process impaired by deep brain stimulation (DBS). Eight male and

female human subjects receiving treatment for Parkinson’s disease with bilateral DBS

of the STN performed an auditory two-alternative forced choice task. By ending trials

unpredictably, we collected reaction time (RT) trials in which subjects reached their

decision bound and non-RT trials in which subjects were forced to make a decision with

less evidence. A decreased decision boundwould cause worse performance on RT trials,

and we found this to be the case on left-sided RT trials. Drift diffusion modeling showed

a negative drift rate. This implies that in the absence of new evidence, the amount of

evidence accumulated tends to drift toward zero. If evidence is accumulated at a constant

rate this results in the evidence accumulated reaching an asymptote, the distance of

which from the bound was decreased by DBS (p = 0.0079, random shuffle test),

preventing subjects from controlling impulsivity. Subjects were more impulsive to bursts

of stimuli associated with conflict (p< 0.001, cluster mass test). In addition, DBS lowered

the decision bound specifically after error trials, decreasing the probability of switching

to a non-RT trial after an error compared to correct response (28% vs. 38%, p = 0.005,

Fisher exact test). The STN appears to function in decision-making by modulating the

decision bound and drift rate to allow the suppression of impulsive responses.

Keywords: DBS, STN, Parkinson’s disease, decision-making, drift diffusion model

INTRODUCTION

The STN has been implicating in slowing of decisions, especially those made in the presence of
conflicting evidence (Zavala et al., 2015b). Unsurprisingly, DBS of the STN, like dopaminergic
medication (Weintraub et al., 2006), may cause impulse control disorders (Hälbig et al., 2009;
Castrioto et al., 2014), despite its benefit in improving motor control (Benabid et al., 2009).
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Decisions are made by accumulating evidence for potential
actions until an evidence bound is reached (Ratcliff andMcKoon,
2008). Conflicting evidence results in difficult decisions and
slower responses (Frank et al., 2007). While this can occur
simply through less net evidence, response slowing may also
occur through raising of the decision threshold during times
of high conflict. This may be mediated through the STN,
which, when lesioned (Baunez et al., 1995; Eagle et al., 2008;
Obeso et al., 2014) or stimulated (Frank et al., 2007), is
unable to prevent impulsive responses. The STN receives direct
input from frontal cortex through the hyperdirect pathway
(Monakow et al., 1978; Nambu et al., 2002), and phase
coupling of STN and mediofrontal theta activity correlates
with the decision bound (Herz et al., 2016). Furthermore,
conflict increases theta power (Cavanagh et al., 2011; Zavala
et al., 2013, 2014) and neuronal firing (Zavala et al., 2015a)
in the STN and theta coherence between the STN and
mediofrontal areas (Zavala et al., 2014). However, this activity
is reduced when subjects respond quickly despite high levels of
conflict, resulting in the hypothesis that the medial prefrontal
cortex (mPFC) acts on the STN through the hyperdirect
pathway to cause the STN to raise the decision threshold
(Frank et al., 2007; Cavanagh et al., 2011).

DBS causes faster responses despite conflicting evidence
(Frank et al., 2007), and drift-diffusion modeling has shown a
decreased decision bound during conflict (Frank, 2006). While
electrophysiological studies modeling the decision bound have
used the random dots task, in which subjects accumulate sensory
evidence over time (Zavala et al., 2014; Herz et al., 2016), early
studies used simultaneous presentation of two individual stimuli
with different probabilities of reward to simulate conflict. Two
studies using the evidence accumulation paradigm found that
DBS decreases the decision threshold (Green et al., 2013; Pote
et al., 2016). The stimuli in these studies are either discrete
stimuli presented concurrently (Frank et al., 2007; Cavanagh
et al., 2011; Zavala et al., 2013, 2015a) or continuous stimuli
presented over a time interval (Green et al., 2013; Zavala et al.,
2014; Herz et al., 2016; Pote et al., 2016). Humans make decisions
using a combination of these paradigms, by integrating discrete
stimuli over a period of time, and DBS impairs performance on
a task requiring integration of a train of 3 stimuli separated by a
constant time interval (Coulthard et al., 2012). Timing of stimuli
presented relative to one another can affect decisions, an effect
that cannot be modeled in previous paradigms used to assess the
effect of DBS on decision-making.

We sought to determine whether DBS of the STN decreases
the decision threshold in a sensory accumulation of evidence task
in which subjects accumulate discrete information over time. We
used a modified version of the Poisson clicks task (Brunton et al.,
2013), in which stochastically presented discrete units of evidence
sample the space of multiple decision-making parameters,
including the decision bound. In addition tomodeling the bound,
we sought to test behavioral predictions of DBS-induced lowering
of the decision threshold on high-conflict trials. To do this we
used a task which combined reaction time trial design with non-
reaction time trials to assess subjects’ performance when they are
forced to respond before reaching a decision threshold.

METHODS

Subjects
Subjects were men and women being treated for Parkinson’s
disease with bilateral DBS of the STN. They were recruited at
their regular appointments and signed informed consent for
participation in the study as approved by the NYU Langone
Medical Center IRB. All subjects had no clinically significant
cognitive or hearing impairments. 7/8 subjects were right-
handed, and 4/8 were predominantly symptomatic on the right.

Experimental Design
Subjects completed 30-min sessions on different days, and took
their regularly scheduled medication throughout the study. Each
session was completed in two 15-min blocks, DBS OFF, and DBS
ON with randomly assigned order. Trials began with a “Ready”
phase, which terminated after the subject initiated the trial,
followed by a “Stimulus” phase composed of simultaneous click
trains played from the left and right headphone, respectively.
Subjects were instructed to respond by selecting the side with
more clicks, and they were informed that they could respond after
the stimulus ended or interrupt the stimulus with a response. The
stimulus phase ended either with a subject response (response
time (RT) trial) or with offset of the stimulus after a pre-
determined time (non-RT trial). Stimulus offset began the
“Response” phase in non-RT trials. Subjects were not explicitly
informed of stimulus termination or cued for a response in
either RT or non-RT trials. Distinct sounds indicated correct or
incorrect responses.

The duration of each trial’s “Stimulus” phase, tstim was selected
so that subjects could not predict when stimulus offset would
occur. It was chosen from the following probability distribution:

p (tstim) = α + βe−βtstim (1)

After a fixed time, α, the stimulus had a constant probability of
ending at any time defined by the time constant β . Click trains
were generated from Poisson distributions with average rates rlow
and rhigh. Such that:

rlow + rhigh = 20 Hz. (2)

TABLE 1 | Parameters fit in drift-diffusion models in this study. The final model

selected using AIC analysis used only 7 parameters (see Figure 3).

Model Parameters

λ: exponential drift to or from 0

σi : accumulator initial value noise

σa: accumulator noise

σs: sensory noise

B: bound

φ: sensory adaptation

τφ : sensory adaptation time constant

bias: constant shift of initial accumulator value

L: rate at which subjects respond randomly
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γ = log10

(

rhigh

rlow

)

(3)

The parameters α, β , γ , were adjusted for each subject between
sessions with the goal of subjects achieving 70% accuracy with
half of trials being RT trials. Subjects were compensated for
each session as well as each correct trial, encouraging subjects to
complete more trials while maintaining accuracy.

At the end of each 15-min block stimulators were turned
off/on. There was no washout period between blocks. Subjects
were allowed to complete the task either in the office or at home.

Statistical Analysis
All data were analyzed from 8 out of 13 subjects who completed
at least 2 sessions, so that a minimum amount of data was
available for modeling. Non-RT trials with response time above
5 s were discarded as timeouts (114/5,199 total trials). All data
was analyzed in Matlab R2017a.

Model Fitting

We fit a drift-diffusion model to subject responses based on
each discrete click as a unit of evidence using the method of
Brunton et al. (2013) as described in brief here. Parameters for
the full 9-parameter model are summarized in Table 1. Click
value, C(t), was altered by sensory noise by multiplication by
a factor of η, drawn from a normal distribution with mean
1 and variance σs

2. The accumulated evidence was subject to
an exponential drift toward or away from 0 described by the
parameter λ. Diffusion was defined by a Wiener process with
variance σa

2. Overall, evidence accumulated, a, was described by
the following equation:

da =

{

0 if |a| ≥ B

σadW + C (t)
(

ηRδt,tR − ηLδt,tL
)

dt + λadt otherwise
(4)

where dW is a Weiner process and B, is the decision bound.
δt,tR/L are delta functions equal to 1 at the time of right or

FIGURE 1 | Task structure. Structure of the same trial displayed as an RT trial

or a non-RT trial.

left clicks. The initial condition of a was defined by a normal
distribution with variance σ 2

i . C(t)was subject to adaptation with
an adaptation parameter, φ, and time constant, τφ :

dC

dt
=

1− C(t)

τφ

+ (φ − 1)C(t)(δt,tR + δt,tL) (5)

An additional bias parameter was used, as well as a lapse
parameter L, which represented the probability of a subject
producing a random response.

We reduced the number of parameters from 9 to 7 using
AIC analysis (Figure 3B), such that in our final model, evidence
accumulated was governed by the following equation:

da =

{

0 if |a| ≥ B
σadW + C (t) dt + λadt otherwise

(6)

In Brunton et al., all trials were non-RT and bounds could not
be adequately fit for many subjects. Therefore, we fit the decision
bound by maximizing the log-likelihood of each subject’s fraction
of RT trials. The probability of not responding exactly at time ti is
pnRTi , the probability mass not at the bounds. The probability of
an RT trial was calculated as the probability of responding 750ms
(non-decision time, 99.9% of non-RT trials occurred after this
time) before stimulus end.

pRT =
∑

[

(

1− pnRTi

)

i−1
∏

1

pnRTj

]

(7)

The fitted bound confidence interval was calculated using the
95% confidence interval of the fraction of RT trials. pRT values
were tested for B ∈ [0, 50].

Model identifiability was confirmed by simulating responses
using 10 separate parameter sets and using these simulated
responses to generate new best-fit parameters. The parameter sets
were used to simulate responses to trials performed by subject 1
in the DBS OFF condition. As in Brunton et al. (2013), to make
comparisons across different parameters, the parameters were all
normalized such that each of the original parameters ranged from
0 to 1.

Impulsivity Index

To calculate the impulsivity index, we selected RT trials with
bursts of n same-sided clicks at particular frequencies. The click
train corresponding to the response on each trial was analyzed
for bursts. Burst frequencies were defined based on the times of
the first and last clicks, t1, and tN , respectively: f = n

tN−t1
= n

1t .
We discretized 1t into overlapping bins defined as

n (i− 1) ∗ 5ms < 1ti < n (i− 1) ∗ 5ms+ n ∗ 25ms (8)

This created bins of identical frequency bands for varying n and
i. For all RT trials containing at least 1 burst of n clicks in 1ti, the
burst response time, tB, is the time from the beginning of the last
burst until the subject’s response.

If subjects accumulate clicks without regard for when they
are presented relative to one another, then tB is a randomly
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distributed variable that depends only on the generating Poisson
process. We can reformulate each click train as a sequence
of its inter-click intervals (ICI). Rearranging the ICIs creates
a new trial that should have an identical response time if
click timing is irrelevant to subjects. In contrast, impulsively
responding subjects would respond differently to the rearranged
trial. Considering the non-impulsive subject, we generated the
expected distribution of burst reaction times. For each trial, we
shuffled the ICIs and selected the last burst of n clicks in 1ti to
calculate the shuffled trial’s burst response time, tsB. This was done
1000 times for each trial to calculate the expected distribution of
tB. The impulsivity index is defined for [n, 1ti] as the fraction of
observed tB faster than 95% of the expected tB. A non-impulsive
subject would have an impulsivity index of 0.05.

Statistical significance was assessed by adapting the non-
parametric cluster mass method (Maris and Oostenveld, 2007)
to the chi-square tests for goodness of fit and independence.
The cluster mass method allows statistical testing of time
series data with correction for multiple comparisons by

taking advantage of the correlated nature of time-adjacent
points. We applied the same methodology to “frequency-
series” data, since frequency-adjacent points are similarly
correlated. The non-parametric cluster mass test uses
shuffling of the data between compared series to generate
an expected distribution. This is unnecessary here since the
impulsivity index is a proportion and follows a binomial
distribution. Statistical testing can therefore be done using a
χ2 distribution.

To determine whether the OFF and ON impulsivities were
different from 0.05, χ2 from the expected value of 0.05 was
used. To compare the OFF and ON impulsivities, χ2 of a
contingency table composed of the OFF and ON proportions
was used. Frequency-adjacent χ2 corresponding to p < 0.05
(one degree of freedom) were used to form clusters, and each
cluster’s test statistic is the sum of its individual χ2 values.
Significant clusters were defined as those with test statistics (i.e.,
cumulative χ2) greater than that corresponding to a critical p-
value for the χ2 distribution with degrees of freedom equal to

TABLE 2 | Medications and DBS protocol during completed sessions for each subject.

Patient summary

Subject Sessions Medications Left lead Right lead

1 1, 2 carbidopa-levodopa, ropinirole 1+2– 3.0/90/60 0+1– 1.7/90/130

2 1 carbidopa-levodopa-entacapone 1+0– 2.7/90/145 C+1– 2.4/60/130

2 carbidopa-levodopa-entacapone 1+0– 3.1/60/130 C+1– 2.4/60/130

3 1, 2, 3, 4 carbidopa-levodopa 1+2– 3.2/90/145 1+2– 3.5/90/185

4 1 carbidopa-levodopa C+1– 2.0/60/130 C+1– 2.4/60/130

2 carbidopa-levodopa C+0–1– 2.8/60/145 C+1– 2.6/60/145

5 1 carbidopa-levodopa 3+0–1– 2.2/90/120 3+2–1+ 2.5/60/130

2 carbidopa-levodopa-entacapone, rasagiline 3+0–1– 2.2/90/120 3+2–1+ 2.8/60/130

6 1 carbidopa-levodopa, rotigotine, amantadine C+2–3– 3.5/90/60 C+3– 3.0/60/60

2, 3 carbidopa-levodopa, rotigotine C+2–3– 2.8/90/130 C+3– 2.8/60/130

7 1 carbidopa-levodopa, ropinirole C+1– 3.0/60/185 2+1– 3.5/210/60

2 carbidopa-levodopa C+1– 3.0/60/185 2+1– 3.5/210/60

8 1, 2 carbidopa-levodopa-entacapone, ropinirole, rasagiline 1+2– 4.2/60/145 1+2– 4.0/60/145

Stimulation settings indicate the contacts used as the cathode (“+”) and anode (“–”) followed by “amplitude (mV)/pulse width (µs)/frequency (Hz)”. “C+” indicates monopolar instead of

bipolar stimulation. Contacts are numbered from 0 to 3.

TABLE 3 | Data summary.

Data collection summary

Subject Dominant side Symptomatic side Trials Sessions Alpha Beta Gamma

1 Right Right 635 2 1, 2 2.5, 3 0.4

2 Left Right 664 2 2, 1 3, 2.5 0.4

3 Right Left 1,052 4 0.5 1.5 0.4

4 Right Left 600 2 0.5, 1 1.5, 2 0.4

5 Right Right 512 2 0.5, 1 1.5, 2.5 0.4, 0.3

6 Right Right 537 3 1.5, 1.5, 0.5 3, 3, 1.5 0.4

7 Right Left 673 2 1.5, 0.5 3, 1.5 0.4

8 Right Left 412 2 1 2.5 0.4

The dominant side, symptomatic side, number of trials, sessions, and corresponding parameters for each session are shown for each patient.
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FIGURE 2 | Performance data across all subjects. (A) Fraction of trials in which subjects responded prior to termination of stimulus (RT trials) for DBS OFF (blue) and

ON (red). Subject responses as a function of click difference (positive is more left clicks) for non-RT trials (B), and RT trials (C). Markers represent data, and curves are

the logistic fit. Error bars are 95% confidence intervals. ***P < 0.001.

TABLE 4 | RT trials logistic regression.

RT Trials Logistic Regression

Odds ratio t(1993) P-value

Side 0.99 (0.63, 1.55) −0.051 0.96

Symptoms 1.01 (0.25, 4.15) 0.017 0.99

DBS 1.27 (0.82, 1.98) 1.08 0.28

Side × symptoms 0.67 (0.42, 1.07) −1.67 0.096

Side × DBS 0.42 (0.26, 0.69) −3.48 5.0E-04

Symptoms x DBS 0.90 (0.55, 1.47) −0.42 0.67

Odds ratios with 95% confidence intervals (in parentheses) and p-values for model terms

for the multinomial logistic regression on accuracy for RT trials. Odds ratios are for left to

right for each term.

the size of the largest cluster. Given that we performed several
of these cluster mass tests we were conservative by selecting
our critical p-value as 0.001. Each cluster mass test allows
for comparison of impulsivity at many different frequencies
while controlling the false alarm rate. The use of p < 0.05 to
select clusters controls the sensitivity of the test, not the false
alarm rate.

RESULTS

Our task is a two-alternative forced choice task that fused
reaction time (RT) and non-RT trial design. As diagrammed in
Figure 1, subjects listened to two simultaneous trains of “clicks,”
one from each headphone. These clicks were generated from
underlying Poisson distributions with different rates. Subjects
were instructed to respond with the side with more clicks when
they were confident of their choice. A Poisson process governed
trial termination; therefore, at any point in time, the current
stimulus duration provided no information regarding stimulus
termination time, preventing the creation of an urgency signal.
Subjects were not informed of stimulus termination; they were
simply instructed to respond when ready. This naturally created
two sets of trials, those in which the subjects responded before
(RT trials) and after (non-RT) stimulus offset. On RT trials,

subjects responded when they hit their decision threshold, while
on non-RT trials, they were forced to respond before reaching
their threshold.

Eight subjects completed at least 2 sessions for a total of
5,085 trials. All subjects took dopaminergic medication at their
regularly scheduled doses while participating in this study. Their
medications at the time of task completion as well as the
stimulation settings used are shown in Table 2. See Table 3 for
full subject data regarding task completion. Subjects were more
accurate on RT trials (RT accuracy: 80.0%, non-RT accuracy:
69.1%, p < 10−5, Fisher exact test) In the DBS OFF condition
subjects responded before stimulus offset (RT trials) on 34.6% of
trials, and when DBS was turned ON this rate increased to 43.5%
(p< 10−5, Fisher exact test). This increased rate of early response
decreased accuracy on the trials where the correct answer was
a leftward response (OFF: 80.4%, ON: 69.7%; p = 1.82 ∗ 10−4,
Fisher exact test), as shown in Figures 2A–C. A multinomial
logistic regression using RT trials with random effects subject
terms and fixed effects for correct side, symptomatic side, and
for DBS status showed a significant accuracy effect only for
the correct side × DBS interaction term (odds ratio: 0.42, 95%
confidence interval: 0.26–0.69). Odds ratios and significance for
all model terms are shown in Table 4.

We fit a 7-parameter drift-diffusion model, modified from
Brunton et al. (2013), to the data from each subject, separately
for DBS OFF and ON trials (but with a single parameter set
for RT and non-RT trials). Simulated responses generated from
model parameters were indistinguishable from the actual data
for both non-RT and RT trials, as shown in Figures 3C–F.
To validate the model, we used 10 different parameter sets to
generate simulated responses to the trials of a single subject
in the DBS OFF state (to determine if a single subject’s trials
were sufficient for fitting), to which we fit the model, recovering
parameter fits that reasonably approximated the generating
parameters (Pearson’s r = 0.56, p = 0.55 ∗ 10−7), as shown
in Figure 3A. We fit 3 additional models using up to the 9
parameters used by Brunton et al., and selected our model
based on AIC (Figure 3B). For one subject, the upper and lower
bounds of the decision threshold could not be fit. Figure 4
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FIGURE 3 | Model validation. (A) Best-fit parameters to responses simulated using 10 parameter sets plotted against the simulated parameters. All parameters are

normalized such that the simulated parameters are between 0 and 1. The line of equality is shown along with the Pearson’s correlation coefficient (r) and associated

p-value. (B) AIC values for 4 different drift-diffusion models with the parameters shown. Box indicates the model we selected. Accuracy as a function of click

difference for non-RT OFF (C), ON (D), RT OFF (E), and ON (F) trials for actual data (solid boxes) and responses simulated using best-fit parameters (empty triangles).

FIGURE 4 | Drift diffusion parameter estimates for bound (A), drift (B), bias (C), noise (D), adaptation (E), adaptation time constant (F), and lapse rate (G). Maximum

likelihood parameters for each subject for DBS OFF (blue) and ON (red). Parameters on each panel are sorted from least to greatest DBS OFF parameter with each

subject’s DBS ON parameter adjacent to its corresponding OFF parameter. Error bars are 95% confidence intervals. Non-overlapping 95% confidence intervals within

the same subject for DBS ON vs. OFF indicate a significant parameter change. In (A), error bars stretching to the end of graph indicate confidence interval fits that did

not converge.
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FIGURE 5 | Drift-diffusion model example trial. (A) A visual description of the drift diffusion model of accumulated evidence (blue line). Right (green) and left (purple)

click times are shown as a raster plot. The clicks that occur soon after prior clicks have a value (red line) that is adjusted by the adaptation (φ) and adaptation time

constant (tφ) parameters. Accumulated evidence drifts with parameter λ and is affected by noise (σa). Not shown are the bias parameter which shifts the positive or

negative bound without shifting both and the lapse parameter which governs the frequency with which subjects respond randomly. (B) Drift diffusion model with

constant click rates (blue line) and approximate click value assuming continuous evidence presentation (red line). Evidence approaches an asymptote for negative

values of λ.

shows the best-fit parameters, and Figure 5A illustrates the effect
of the parameters on the accumulation of evidence. Despite
prior evidence that DBS decreases the decision bound, only
2/8 subjects had significantly lower decision bounds with DBS
ON (Figure 4A). 2/8 subjects had a significantly higher decision
bound with DBS ON, and the remainder showed no significant
difference. Consistent with the behavioral results (Figures 2B,C)
5/8 and 7/8 subjects had a significant rightward bias (negative
bias parameter) with DBS OFF and ON, respectively. There
were no differences between DBS ON and DBS OFF in mean
decision bound or mean bias across patients (p = 0.23, 0.95,
respectively, paired random shuffle test). There was a trend in
which DBS caused higher decision bounds and less negative drift
parameters in some patients. Negative drift parameters, present
in 7/8 and 8/8 patients in DBS OFF and ON, respectively, result
in asymptotes of the total accumulated evidence (patient 8 was
not used in this analysis due to a positive drift parameter).
Considering the simplified case of no diffusion, a constant rate of

evidence accumulation (the difference between average left and
right click rates), c, and a drift parameter, λ, the rate of change of
the total accumulated evidence is

da

dt
= c+ λa (9)

Setting da
dt

= 0, results in the accumulated evidence asymptote:
− c

λ
, as illustrated in Figure 5B. The closer this value is to the

decision bound, the more likely is a decision caused by stochastic
variables (accumulator noise, variation in click rates, etc.). Thus,
the parameter that controls susceptibility of decision-making to
randomness is a modified decision bound: B −

(

− c
λ

)

= B + c
λ
.

As shown in Figure 6, DBS significantly decreased this parameter
across patients (p = 0.0079, random shuffle test). A negative
value (1 patient with DBS OFF and 5 patients with DBS ON)
implies an asymptotic evidence value above the decision bound,
meaning that there is effectively no asymptote. This results in
subjects affected by bursts of evidence, since the asymptote
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FIGURE 6 | Effective decision bound. The difference between the evidence

asymptote and the bound (B+ c/λ) for DBS OFF and ON. Lines connect data

points from the same patient. **P < 0.01.

effectively causes subjects to “forget” bursts of evidence and
prevents impulsivity.

An evidence asymptote implies a different treatment of bursts
of clicks than of clicks presented with arbitrary inter-click
intervals. We next sought to determine in a model-free way if
DBS caused subjects to respond differently to bursts of evidence.
Using bootstrapping (see Methods), we calculated an impulsivity
index at each frequency in response to 2-, 3-, and 4-click bursts
for DBS OFF and ON (Figure 7). An impulsivity index of 0.05
implies a non-impulsive subject. With DBS OFF, subjects were
impulsive at all frequencies except those in the 4–8Hz range. In
contrast, with DBS ON, subjects were impulsive in all frequency
ranges including the 4–8Hz range, and for 2- and 3-click bursts,
impulsivity was significantly greater than with DBS OFF. This
increased impulsivity was explained entirely by incorrect trials:
with DBS ON, subjects’ impulsivity was both significant and
significantly greater than with DBS OFF below 8Hz on 2- and
3-click bursts.

Thus, DBS caused subjects to respond impulsively and
possibly incorrectly to bursts of evidence below 8Hz. Previous
studies have suggested that DBS interferes with modulation of
impulsivity at times of high conflict (Frank et al., 2007; Cavanagh

et al., 2011). In our task, two opposing click trains create conflict,
and the difference between the numbers of clicks per second
presented to each side is a natural measure of conflict; a small
difference implies high conflict. This is separate from the click
bursts themselves as this considers all clicks heard by a subject in
a trial, as opposed to a 2-, 3-, or 4-click bursts. Considering all RT
trials together showed that the correlation between impulsivity
and conflict is small as shown in Figure 8 and is not significantly
different between DBS OFF and ON (p = 0.22, 0.26, and 0.084,
0.053 for trials with 2-, 3-, and 4-click bursts and across all
bursts, respectively, Z-test). Examining only trials containing
bursts of clicks at specific frequencies, as above, we found
empirically that trials with bursts in the 4–8Hz range contain
higher levels of conflict than all other trials (Figures 7D,H,L)
(p < 10−4, random shuffle test for mean conflict in the 4–8Hz
range compared to outside of it, tested separately for 2-, 3-,
and 4-click bursts for DBS OFF and ON). Therefore, subjects
decrease their impulsive responses to specific bursts of evidence,
which signify high levels of conflict, but DBS prevents this
decrease, causing paradoxically faster responses when there is
conflicting information.

The STN, in addition to containing electrophysiological
correlates of the decision threshold, also contains correlates
of post-error slowing (Cavanagh et al., 2014; Siegert et al.,
2014; Zavala et al., 2016), suggesting that post-error slowing is
accomplished by a dynamic decision threshold that increases
after errors. Varying levels of evidence were presented in each
trial in this study, so simple slowing of reaction time after an
incorrect trial is not to be expected here. However, examining
the aftermath of post-error trials in which subjects reached their
decision threshold is still informative. With DBS OFF, after
correct and incorrect RT trials, the following trial was a non-RT
trial in 40% and 42% of cases, respectively (p= 0.58, Fisher exact
test) as shown in Figure 9. In contrast, the DBS ON condition
resulted in a decreased probability of switching to a non-RT
trial after an error (38% vs. 28%, p = 0.0050, Fisher exact test);
this suggests that subjects were actually more likely to adjust
their decision threshold downward after an error in which they
hit their decision threshold. There was no difference in trial-
switching after incorrect non-RT trials (p = 0.64, p = 1, DBS
OFF and ON, respectively, Fisher exact test). While this analysis
combines trials from all subjects, similar results are obtained
when taking into account different subjects using a mixed effects
multinomial logistic regression with random effects terms for
the subjects and a fixed effect term for the accuracy of the
prior trial. With DBS ON, the accuracy of the prior trial is a
significant predictor of the next trial being non-RT after an RT
trial (p = 0.037), but it is not a significant predictor with DBS
OFF (p= 0.92).

DISCUSSION

Using a two-alternative forced choice perceptual decision-
making task with both RT and non-RT trials, we found that DBS
of the STN does more than simply decrease the decision bound.
DBS causes a decrease in accuracy on RT trials but not non-RT
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FIGURE 7 | Impulsive responses to bursts. Impulsivity index (higher is more impulsive) calculated for 2- (A–C), 3- (E–G), and 4-click (I–K) bursts of particular

frequencies for all RT trials (first column), correct RT trials (second column), and incorrect RT trials (third column). The conflict index (difference in click frequency

between left and right, higher is lower conflict) for different frequencies is plotted for 2-, 3- and 4-click bursts in the last column (D,H,L). Shading is 95% confidence

intervals for impulsivity index and standard error for conflict index. Blue and red bars at the top of each plot indicate statistical significance (from 0.05, which is the

expected value if there is no impulsivity) of DBS OFF and ON impulsivity indices, respectively. Black bars indicate significant differences between DBS OFF and ON

indices. Statistical significance is p < 0.001 using the cluster mass method for the χ2 test.

trials, as would be expected if DBS lowers the decision bound, but
drift-diffusion modeling showed no consistent DBS-mediated
changes on decision bound or drift, individually. Instead it
showed that the combined effects on these two parameters result
in a decreased difference between an evidence asymptote and
the decision bound. In 4/7 patients, DBS abolished the evidence
asymptote altogether, effectively preventing the filtering of bursts
of evidence. Model-free analysis showed that subjects were more
impulsive to bursts of evidence with an intrinsic frequency
below 8 Hz.

Neural correlates of conflict are present in the STN on both
perceptual (Zavala et al., 2013, 2014, 2015a) and probabilistic
reward (Frank et al., 2007; Cavanagh et al., 2011) decision-
making tasks. The STN also contains the correlate of the
decision bound (Herz et al., 2016), and DBS reduces decision
threshold in perceptual (Green et al., 2013; Pote et al., 2016) and
probabilistic reward (Frank et al., 2007; Cavanagh et al., 2011)
tasks. While a DBS-induced decrease of the decision bound is not
inconsistent with our data (and was found to occur in 2/8 subjects
using drift-diffusion modeling), it is not sufficient to explain
all of our results. In contrast to previous tasks used to assess
decision-making in the STN, ours uses many discrete stimuli
presented in conflict with one another over a time interval.

Therefore, the effect of the temporal variation of stimuli can
be assessed.

Using this feature of our task, we show that DBS of the
STN abolishes the filtering of bursts of evidence. This results in
impulsive and incorrect choices to particular temporal patterns of
evidence. With DBS OFF, subjects respond impulsively to bursts
except those with frequencies <8Hz. DBS prevents modulation
of this impulsivity and causes impulsive responses to bursts of
all frequencies resulting in incorrect responses to bursts <8Hz,
which included trials with the greatest level of conflict in this
task. This is consistent with prior behavioral evidence that DBS
of the STN causes impulsive and incorrect choices (Frank et al.,
2007; Cavanagh et al., 2011) as well as the presence within
STN of the neural signature of conflict (Zaghloul et al., 2012;
Zavala et al., 2015a). Appropriate responses on high conflict
trials require coherence of the theta phase between the mPFC
and STN, synchronization that appears to be driven by mPFC
activity (Zavala et al., 2013, 2014). While this mPFC activity
may raise the effective decision bound on high conflict trials,
this study suggests that this may occur through a combination
of modifications to decision bound and drift rate. We did not
find DBS-induced increased impulsivity on trials with increased
conflict, but instead found DBS-induced impulsivity to stimuli
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FIGURE 8 | Impulsivity and conflict correlations. Pearson’s r for impulsivity

index and conflict index for trials with 2-, 3-, and 4-click bursts of any

frequency. Error bars are 95% confidence intervals.

that were commonly associated with conflict. Thus, DBS of the
STN may interfere with the proper use of priors to suppress
responses to particular stimuli.

Parkinson’s subjects on dopaminergic medication are less
able to incorporate priors in their decision-making relative to
controls on a perceptual decision-making task (Perugini et al.,
2016). The latter study also showed decreased use of priors
on the symptomatic side compared to the asymptomatic side.
All data presented here is from subjects taking dopaminergic
medication, and our results displayed laterality, too; there
was a general rightward response bias detectable in both the
behavioral response curves and in the modeled bias parameter.
However, there was no bias in the behavioral responses to
RT trials with DBS OFF (Figure 2C, Table 4). This suggests
that the bias is not a feature of our task but is present in
subjects’ decision-making, and incomplete evidence (e.g. as on
non-RT trials) or impulsivity as caused by DBS unmasks this
bias. It is possible that bias is introduced by dopaminergic
medication, but this was not assessed here since all subjects
were on such medication (Table 2). Of note, in Brunton
et al., both rodents and non-Parkinsonian human subjects
showed little if any bias to one side. DBS caused a decrease
in accuracy on RT trials where the correct response was
to the left. However, there was no relationship between our
subjects’ symptomatic side and the reduction in accuracy. It
is possible that subjects in this task use certain inter-click
intervals to calculate a prior that a trial contains high levels
of conflict. They then suppress pre-potent responses not by
raising the decision threshold, but by using a negative drift

rate, a process that may be suppressed by DBS of the STN.
Consistent with this hypothesis, beta band activity in the STN
is associated with the inhibition of responses during motor
planning (Kühn et al., 2004; Ray et al., 2012; Alegre et al., 2013),
and STN DBS prevents motor suppression on go/no-go tasks
(Hershey et al., 2010; Wylie et al., 2010; Georgiev et al., 2016).

This is in contrast to the theta phase activity in the STN
associated with conflict and raising of the decision bound.
Theta coherence (Zavala et al., 2016) and LFP amplitude
(Siegert et al., 2014) increase after errors. This activity is
associated with post-error slowing (Cavanagh et al., 2014),
and we show that DBS of the STN actually speeds post-
error responses; subjects were more likely to hit their decision
threshold after an error than after a correct response under
DBS. Errors due to impulsivity were more likely to occur
on trials with bursts in the <8Hz range, which overlaps
with the theta band. However, this band also overlaps with
the frequencies of bursts on trials with the highest conflict.
Disentangling whether DBS causes impulsivity specifically on
bursts in the theta range or on bursts associated with conflict
requires varying the frequencies of bursts on the highest
conflict trials.

Furthermore, there are elements of decision-making in
Parkinson’s that we do not address here, such as the effect of
dopaminergic therapy on decision-making parameters. Active
contact location within STN as well as trajectory through
surrounding brain tissue also influences the motor (Koivu et al.,
2018) and non-motor (Tsai et al., 2007; York et al., 2009;
Witt et al., 2013) effects of DBS in both observational and
modeling (Mandali et al., 2015; Mandali and Chakravarthy,
2016) studies. However, due to the small size of our study,
we cannot make any inferences on the effect of lead location
or stimulation paradigm on the effects of DBS on impulsivity.
In addition, while we exact lead locations and trajectories are
known to us for 4/8 patients, the remainder had their electrode
implantation performed at other institutions and this data is
not available.

With these limitations in mind, we have found that the
STN adaptively inhibits responses while evidence is being
accumulated to make a decision under a state of conflict.
Furthermore, it specifically inhibits responses after errors. Here
we show that DBS of the STN interrupts both of these
mechanisms; DBS prevents filtering of bursts of evidence and
it promotes faster responses after errors. The combination of
these effects results in impaired decision-making under DBS of
the STN.
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