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ABSTRACT We investigated the site of synthesis of two abundant proteins in clofibrate-induced 
rat hepatic peroxisomes. RNA was extracted from free and membrane-bound polysomes, 
heated to improve translational efficiency, and translated in the mRNA-dependent, reticulo- 
cyte-lysate-cell-free, protein-synthesizing system. The peroxisomal acyI-CoA oxidase and 
enoyI-CoA hydratase-/~-hydroxyacyI-CoA dehydrogenase 35S-translation products were iso- 
lated immunochemically, analyzed by SDS PAGE and fluorography, and quantitated by 
densitometric scanning. The RNAs coding for these two peroxisomal proteins were found 
predominantly on free polysomes, and the translation products co-migrated with the mature 
proteins. As in normal rat liver, preproalbumin and catalase were synthesized mainly by 
membrane-bound and by free polysomes, respectively, mRNAs for a number of minor 35S- 
translation products also retained by the anti-peroxisomal immunoadsorbent were similarly 
found on free polysomes. These results, together with previous data, allow the generalization 
that the content proteins of rat liver peroxisomes are synthesized on free polysomes, and the 
data imply a posttranslational packaging mechanism for these major content proteins. 

The peroxisome is a subcellular organdie, bounded by a unit 
membrane, that in liver functions in respiration, lipid metab- 
olism, purine and polyamine catabolism, and other metabolic 
pathways (1, 2). The biogenesis of the peroxisome has been 
the subject of controversy. On the basis of electron micro- 
scopic and biochemical studies of rat liver, it was long believed 
that the peroxisome forms by budding from the endoplasmic 
reticulum (3-12). However, studies of the synthesis of two rat 
liver peroxisomal proteins suggested otherwise (13-19). Cat- 
alase, the principal matrix protein of normal rat liver peroxi- 
somes (13), is synthesized at its final size on free polysomes, 
and enters peroxisomes in vivo posttranslationally as an apo- 
monomer without detectable proteolytic (or other) processing 
(l 4-17). Urate oxidase, located in the paracrystalline peroxi- 
somal core, is also synthesized on free polysomes at its final 
size (l 5, 19). 

We therefore decided to investigate the synthesis of other 
rat liver peroxisomal proteins to determine whether synthesis 
on free polysomes is a generality for peroxisomal proteins or 

whether catalase and urate oxidase are exceptions to the rule, 
just as cytochrome b5 (20) and cytochrome b5 reductase (21) 
are exceptions to the rule that endoplasmic reticulum proteins 
are made on bound polysomes (22). 

In these studies, we made use ofclofibrate, a hypolipidemic 
drug that causes peroxisome proliferation (23) and strongly 
induces the peroxisomal B-oxidation system (24). This system 
consists of three proteins: an acyl-CoA oxidase (AOx), ~ a 
bifunctional enoyl-CoA hydratase-#-hydroxy acyl-CoA de- 
hydrogenase (HD), and thiolase (25). HD becomes the most 
abundant protein in peroxisomes ofclofibrate-treated rats and 
AOx increases to probably fifth in abundance, as determined 
by Coomassie Blue staining (26, Mortensen et al., in prepa- 
ration). We investigated the site of synthesis of HD and AOx, 
using mRNA-dependent reticulocyte lysate to translate RNA 
from either free or membrane-bound polysomes of rat liver 

2Abbreviations used m this paper: AOx, acyl-CoA oxidase; HD, 
hydratase-dehydrogenase. 
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t r e a t e d  w i t h  c lof ib ra te ,  T h e  r e su l t s  h a v e  b e e n  c o m m u n i c a t e d  

in  a b s t r a c t  f o r m  (27). 

MATERIALS A N D  M E T H O D S  

A Fisher F-344 male rat was treated for 7 d with 0.5% (wt/wt) clofibrate in 
Purina rat chow (Ralston Purina Co., St. Louis, MO). Free and membrane- 
bound polysomes were isolated by the procedure of Ramsey and Steele (28) as 
modified by Rachubinski et al. (20). RNA was isolated from these polysome 
populations by the guanidinium thiocyanate procedure of Ullrich et al. (29) as 
modified by Raymond and Shore (30). Total RNA was isolated from a second 
clofibrate-treated rat liver by guanidinium thiocyanate/guanidinium hydro- 
chloride extraction (31 ). All RNAs were routinely dissolved in sterile distilled 
deionized (Millipore system, Millipore Corp., Medford, MA) H20. Aliquots 

TABLE l 

Yields of RNAs from Liver of Clofibrate-treated Rats and 
Activities of RNAs in Cell-free Translation 

Yield Activity 

#g RNA/g liver c.om × 1031~g 
RNA* 

Total RNA 3,400 42 
Free polysomal RNA 860 45 
Membrane-bound 900 19 

polysomal RNA 

* Hot-trichloroacetic acid-precipitable radioactivity. All RNAs were heated at 
65 °C for 5 rain followed by rapid cooling on ice-water, immediately before 
translation. 

were heated at 65"C for 5 min in microfuge tubes, and then rapidly cooled in 
ice-H20 immediately before translation (32). Cell-free translation was per- 
formed for 1 h as described (33, 34) in an RNA-dependent, nuclease-treated 
rabbit reticulocyte lysate system with [3SS]methionine (1 mCi/ml, 1,000-1,300 
Ci/mmol) as the labeled amino acid. After translation, lysates were centrifuged 
at 150,000 g,~u for 1 h in the Beckman 50 Ti rotor (Beckman Instruments, 
Inc., Fullerton, CA) at 4"C to remove ribosomes and polysomes. The pattern 
of 35S-polypeptides seen by SDS PAGE and fluorography was not affected by 
this centrifugation, 

Peroxisomal cell-free translation products were isolated by immunoaffinity 
chromatography with a polyclonal goat antiserum. A goat was immunized with 
22 mg of highly purified normal rat liver oeroxisomes prepared according to 
Leighton et al. (35); serum was collected, beginning 1 mo later. A globulin 
fraction prepared by 30% (NH4)2SO4 precipitation was coupled to Sepharose 
4B (Pharmacia Fine Chemicals, Piscataway, N J) at a final concentration of 25 
mg of protein/ml of settled beads (36). Protein samples to be immunoadsorbed 
(~0.5-10 #1 of translation mixture) were incubated with 0.5 ml of PBS (50 mM 
sodium phosphate, pH 7.4, 0.15 M NaCI) containing 0.5% (wt/vol) deoxycho- 
late, 0.5% (vol/vol) Triton X-IOO and 5 mM methionine, and 100 td of solid- 
phase immunoadsorbent for 30 min at 4°C with constant mixing in a microfuge 
tube. The gel material was then transferred to a column (0.8 x 4 cm) and 
washed with 4 ml of 0.15 M borate, pH 8.6, containing 0.1% (wt/wt) Triton 
X-t00, 1 M NaCI and 5 mM methionine, and then with 5 ml of 5 mM 
ammonium bicarbonate, pH 8.3, containing IOO U/ml apoprotinin and 5 mM 
methionine (procedure of L. Wong, Louisiana State University Medical Center, 
New Orleans, unpublished observations). Material bound to the gel was eluted 
with 300 ~1 of 15 mM Tris-CI, pH 6.8, containing 0.5% (wt/vol) SDS and 1 
mM dithiothreitol by incubating/mixing at 4"C for 30 min. Any remaining 
elution buffer was washed from the column with 3OO ul of distilled H20. The 
eluant was concentrated on a Savant Speed Vac Concentrator (Savant lnstru- 

FIGURE 1 In vitro translation of free (upper panel) 
and membrane-bound (lower panel) polysomal 
RNA preparations from clofibrate-treated rat liver, 
demonstrating the effect of pretranslational heat- 
ing on total hot trichloroacetic acid-precipitable 
radioactivity. (O) RNA heated at 65°C for 5 min 
and rapidly cooled, immediately before in vitro 
translation. (O) Not heated. Endogenous incorpo- 
ration of [3SS]methionine into trichloroacetic acid- 
precipitable products without added RNA has 
been subtracted. (Inset) SDS PAGE fluorographic 
analysis of the translation products synthesized 
from free polysomal RNA (0.3 ~1 translation mix- 
ture). (Lane A) Heated (+A). (Lane B) Not heated 
(--A). Numbers on the right indicate the masses of 
molecular markers (in kdaltons): rabbit muscle 
phosphorylase b (97); bovine serum albumin (68); 
ovalbumin (45); bovine erythrocyte carbonic an- 
hydrase (29); soybean trypsin inhibitor (21); and 
egg white lysozyme (14). Bovine serum albumin 
migrates somewhat slowly for its size in our expe- 
rience. Fluorogram exposed 12 d. 



merits, Inc., Hicksville, NY) and brought up to 37.5 ul with distilled H20 and 
processed for SDS PAGE (37) and fluorography (38). 

To immunoprecipitate in vitro-synthesized catalase, we diluted the transla- 
tion mixture 10 times to final concentrations of I% (wt/vol) Nonidet P-40, 10 
mM Ttis-Cl (pH 7.4), 0.15 M NaCI, 20 mM methionine, and 0.02% (wt/vol) 
sodium azide. The diluted translation mixture was centrifuged for I h at 150,000 
g,,~, and the supernatant was adjusted to 1.15 M NaCI and 0.9 mM phenyl- 
methylsulfonyl fluoride. 270 ul of superuatant was incubated with 50 ul of 
rabbit anticatalas¢ antiserum (39) for 90 min (with rotation) at room temper- 
ature and overnight at 4"C. Protein A (100 #1 of a 10% suspension of inactivated 
Staphylococcus aureus cells (Pansorbin, Calbiochem-Behringer Corp., La Jolla, 
CA) was then added, and incubated at room temperature with rotation for 2 h. 
The S. aureus cells were pelleted in a microfuge and washed sequentially with 
(a) 0.15 M NaC1 buffered with 10 mM sodium phosphate, pH 7.4 (PBS), 
containing 1% (wt/vol) Nonidet P-40 and 20 mM methionine; (b) 0.1% (wt/ 
vol) SDS; (c) PBS; and (d) 0.15 M NaCI. The immune complexes were 
dissociated from the cells by boiling in SDS sample buffer and analyzed by 
SDS PAGE and fluorography as described above. 

Highly purified peroxisomal bifunetional protein (HD) and acyl-CoA oxi- 
dase (AOx) were as described previously (26). 

RESULTS 

The procedure for isolating free and membrane-bound poly- 
somal RNAs yielded approximately equal amounts of these 
two RNAs from clofibrate-treated rat liver (Table I). RNA 
from both free and membrane-bound polysomes stimulated 
protein synthesis in the rabbit reticulocyte lysate system (Fig. 
1). Heating of RNA before in vitro translation increased 
template activity substantially, and the linearity of the trans- 
lation system was extended to higher concentrations of RNA 
(Fig. 1). As shown previously for total guanidinium thiocya- 
nate-extracted RNA (32), the heating does not affect the 
translation of all mRNAs equally. Rather, the increase in 
translation of certain mRNAs coding for large polypeptides 
was much more pronounced, especially in the region from Mr 
60,000 to 80,000, where several peroxisomal polypeptides of 
interest are located (Fig. 1, inset). The template activities of 
the heated RNA preparations, estimated from the linear por- 
tions of the curves (Fig. 1), are summarized in Table I. The 
activity of the free polysomal RNA was 2.4 times that of the 
membrane-bound polysomal RNA. The activity of the total 
RNA (which was extracted from a liver homogenate without 
the isolation of polysomes) was approximately equal to that 
of the free polysomal RNA. All subsequent translations were 
performed at RNA concentrations in the linear portion of the 
c u r v e .  

The polypeptides encoded by the three RNA preparations 
were analyzed by SDS PAGE and fluorography (Fig. 2). 
Membrane-bound and free polysomal RNAs coded for differ- 
ent populations of polypeptides. The synthesis of preproal- 
bumin, a protein known to be synthesized exclusively by 
membrane-bound polysomes (40), was directed almost en- 
tirely by RNA from membrane-bound polysomes. A number 
of other polypeptides were synthesized predominantly by free 
polysomal RNA (Fig. 2). These data demonstrate the success- 
ful separation of free and membrane-bound polysomes from 
clofibrate-treated rat liver. The translation products of both 
these classes of RNA are present among the translation prod- 
ucts of total RNA (Fig. 2, lane 1). 

Peroxisomal polypeptides were immunoselected from 
translation products of total RNA by immunoaffinity chro- 
matography using goat antiperoxisome antibodies (Fig. 2, lane 
4). The two highly labeled [35S]polypeptides immunose- 
lected under these conditions were identified as acyl-CoA 
oxidase (AOx) and the bifunctional hydratase-dehydrogenase 
(HD) by competition with the purified enzymes (Fig. 3). At 
least 12 smaller translation products were retained by the 

antiperoxisome immunoadsorbent (Fig. 2, lane 4). Many of 
these are probably peroxisomal polypeptides, but we do not 
exclude the possibility that some are nonspecifically adsorbed. 

The synthesis of both HD and AOx was directed preferen- 
tially by RNA from free polysomes (Fig. 2, compare lanes 5 
and 6). The other 12 polypeptides retained by the antiperox- 
isome antibody column were also preferentially synthesized 
by free polysomal RNA. 

The in vitro synthesis of catalase was investigated by using 
monospecific rabbit anticatalase (39). As shown in Fig. 4, 

FIGURE 2 In vitro translation of RNA from total, membrane-bound, 
and free polysomes; fluorogram of total translation products and of 
products immunoselected by means of antiperoxisome antibody 
chromatography. (Left) Total translation products of total liver RNA 
(lane 1), of membrane-bound polysomal RNA (lane 2), and of free 
polysomal RNA (lane 3). Lanes I -3 each contained 0.3 ~.1 of trans- 
lation mixture: lane 1 had 12 ~g RNA/50 ~1 translation mixture; lane 
2 was from pooled aliquots of the four translations shown in Fig. "1 
(lower panel, solid circles); lane 3 was from pooled aliquots of the 
four translations shown in Fig. 1 (upper panel, solid circles). (Right) 
Immunoselected translation products of total liver RNA (lane 4), 
membrane-bound polysomal RNA (lane 5), and free polysomal RNA 
(lane 6). Immunoselection was carried out on 3 #1 of translation 
mixtures as in lanes 1-3. (AIb) preproalbumin. (AOx) peroxisomal 
acyI-CoA oxidase. (HD) peroxisomal hydratase-dehydrogenase. (Ar- 
rowhead) Catalase. Numbers on the right correspond to masses of 
molecular markers (kdaltons). Fluorogram of the SDS polyacrylam- 
ide gel exposed 12 d. 
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catalase synthesis was directed by total and by free polysomal 
RNA (lanes 1 and 2, respectively), but only poorly by bound 
polysomal RNA (lane 3). No catalase synthesis occurred in 
the reticulocyte lysate cell-free protein-synthesizing system in 
the absence of exogenous RNA (lane 4). The catalase trans- 
lation product may also be seen as a faint band under AOx 
in Fig. 2, lanes 4 and 6 (arrowhead). 

These results were quantitated by densitometric scanning 
of the fluorograms and computation of the areas under indi- 
vidual peaks by triangulation. As shown in Table II, template 
activity for the cell-free synthesis of HD, AOx, and catalase 
was localized in free polysomal RNA to the extent of 91%, 
92%, and 83%, respectively. Our interpretation of these results 
is that the 8-17% of synthesis of these three proteins coded 
for by membrane-bound polysomal RNA most likely reflects 
the contamination of the bound polysomal fraction by a small 

FIGURE 4 Synthesis of catalase. Catalase was immunoprecipi tated 
from the translation products of total liver RNA (lane 7), free 
polysornal RNA (lane 2), membrane-bound polysornal RNA (lane 
3), and reticulocyte lysate wi thout  added exogenous RNA (lane 4). 
Irnrnunoprecipitation was done on 67,000 cpm of translation prod- 
ucts directed by each RNA preparation. The dots (made with 
radioactive ink) indicate the position in the SDS polyacrylamide gel 
of the 66,000-mo[-wt Coornassie Blue-stained subunit of catalase. 
The fluorogram was exposed for I rno in order to detect the band 
in lane 3. 

FIGURE 3 Identification of irnrnunoselected cell-free translation 
products by compet i t ion with purified enzymes. (Lane 1) Tota[ 
products immunoselected with 40 #1 of immunoadsorbent from 10 
#1 of translation mixture. (Lane 2) Immunoadsorbent presaturated 
with 20 pg of hydratase-dehydrogenase (HD). (Lane 3) Irnmunoad- 
sorbent pre-saturated with 10 ~g of acyl-CoA oxidase (AOx). The 
arrow and radioactive ink dot indicate the positions of the purified 
HD and AOx subunit A (25, 26, 48), respectively, in the SDS gel. 
Fluorogram exposed 2 d. 

TABLE II 

Quantitation of Immunoselected Products Synthesized in the 
Cell-free System by RNA from Free and Membrane-bound 

Po/ysornes* 

Membrane- 
Free polyso- bound polyso- 

maIRNA 
malRNA 

Translation product A* B s A* B s 

of total 
Hydratase-dehydrogenase (HD) 91 92 9 8 
AcyI-CoA oxidase (AOx) 93 91 7 9 
Catalase 83 17 
Preproalbumin H ~100 

* Translation products directed by RNA from free or membrane-bound 
polysomes were submitted to immunoselection and SDS PAGE. The fluo- 
rograms were scanned with a Bio-Rad model 1650 densitometer and the 
areas under individual peaks were computed by triangulation. Synthesis by 
free (or bound) polysomal RNA is computed as a percentage of synthesis 
by free plus bound. 

* Equal volumes of translation mixtures taken for immunoselection. Correc- 
tion was made for the difference in total incorporation in cell-free synthesis. 
Fig. 2, lanes ,5 and 6. 

t Equal numbers of total counts of translation products (after subtracting 
residual endogenous synthesis) taken for immunoselection. HD and AOx 
fluorogram not illustrated; catalase data from Fig. 4, lanes 2 and 3. 

u Densitometry of Fig. 2, lanes 2 and 3. No preproalbumin peak could be 
discerned among the total translation products of free polysomal RNA. 
Presumably a small amount would be found if immonoprecipitation of 
albumin were carried out, as noted by other investigators (20, 21, 30, 41) 
and ourselves (47). 

amount of free polysomes, as observed by other investigators 
(30, 20, 21, 41). 

The sizes of the in vitro products were also investigated. 
The HD translation product co-migrated in SDS PAGE with 
mature HD of peroxisomes (Fig. 5). Similarly, the AOx trans- 
lation product co-migrated with subunit A of AOx in perox- 
isomes (Fig. 5). The HD and AOx translation products also 
co-migrated with the corresponding purified enzymes (Fig. 3). 
In confirmation of previous observations (14, 15, 17), the 
catalase translation product co-migrated with the subunit of 
the mature enzyme (Figs. 4 and 5). We also observed co- 
migration of the HD, AOx, and catalase translation products 
with their mature counterparts when the SDS gel electropho- 
resis was carried out for 90 h instead of the usual 20 h (not 
illustrated). Thus, none of these peroxisomal proteins appears 
to be synthesized as a larger precursor. Furuta et al. (42) have 
reported that the HD and AOx in vitro translation products 
are approximately the same sizes as the mature proteins as 
judged by SDS PAGE. 
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FIGURE 5 Size comparison of peroxisomal polypeptides synthe- 
sized in vitro and in vivo. (Lane A) Fluorogram of immunoselected 
in vitro translation products. (Lane B) Coomassie Blue-stained SDS 
gel of clofibrate-induced peroxisomal polypeptides (15 u,g) identi- 
fied as described (13, 17, 26), Fluorogram exposed for 12 d. 

DISCUSSION 

These data, together with previous reports (13-15, 17, 26), 
permit us to draw two generalizations for the first time: the 
content proteins of  rat liver peroxisomes are synthesized on 
free polysomes and (with the apparent exception of thiolase 
[42, 43]) they are made at their final sizes. These conclusions 
are based on the following facts. The two most abundant 
proteins in normal rat liver peroxisomes (catalase and urate 
oxidase), two of the most abundant proteins in clofibrate- 
treated rat liver peroxisomes (HD and AOx), and as many as 
a dozen other peroxisomal proteins are encoded by RNA 
located in free polysomes. Thus far, no peroxisomal protein 
has been found to be synthesized on membrane-bound poly- 
somes. The four major proteins investigated, which include 
three matrix proteins and the main (if not only) constituent 
of  the paracrystalline peroxisomal core (urate oxidase) are all 
synthesized in vitro at their final sizes, rather than as larger 
precursors. 

These results are inconsistent with the old hypothesis that 
peroxisomal content proteins are synthesized by membrane- 
bound polysomes and then transported through endoplasmic 
reticulum cisternae to forming peroxisomes (3-12). The pres- 
ent data imply the posttranslational uptake of newly synthe- 
sized proteins into preexisting peroxisomes. 

Elsewhere we report on investigations of the intraceUular 
transport of  peroxisomal proteins in vivo (44), the post- 
translational uptake of acyl-CoA oxidase in vitro (45) and the 

biogenesis of  the major Mr 21,700 membrane protein (46, 
47). These observations are fully consistent with the present 
findings and conclusions. 

Methodologically, we have found that free and membrane- 
bound polysomes can be isolated from the liver of clofibrate- 
treated rats by the same procedure that is used for normal rat 
liver; the extent of  cross-contamination of fractions is similar. 
As might be expected, clofibrate does not alter the site of  
synthesis of  albumin or of catalase. The procedure of heating 
RNA before translation to increase translational efficiency 
(32) made it possible to carry out these experiments without 
months-long fluorographic exposures. 
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