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ABSTRACT: Herein, the electrochemical hydrosilylation of alkynes
is reported. In the presence of the Suginome reagent (PhMe2Si−
Bpin), a large panel of terminal alkynes and internal alkynes was
successfully converted into the hydrosilylated product in good to
excellent yields and good selectivity in favor of the linear product.
Preliminary mechanistic study supported the involvement of a silyl
radical, which reacted on the alkyne.
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Silicon-containing molecules are key compounds in organic
synthesis and have found widespread applications in

materials and life sciences1−3 as well as in drug discovery
programs.4,5 In addition, organosilicon species are strategic
building blocks with applications in various important
transformations (e.g., Hiyama−Denmark cross-coupling,
Brook rearrangement, Hosomi−Sakurai allylation...). Among
the available reaction manifolds to forge organosilicon species,
the hydrosilylation reaction is probably the most important

one.6 The synthetic arsenal for the hydrosilylation of alkenes
and alkynes mainly relies on the use of expensive transition
metal complexes (e.g., Speier and Karstedt catalysts), although
outstanding progress in the development of earth abundant
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Scheme 1. State of the Art and Present Work

Table 1. Optimization of the Reactiona

entry variation from standard conditions yield (%)b l:bc

1 none 73 93:7
2 CH3CN 100% 0
3 THF instead of CH3CN 42 86:14
4 CH3CN:MeOH (4:1) instead of (9:1) 37 91:9
5 Ni foam electrodes instead of SST <5
6 Pt electrodes instead of SST 0 NDd

7 nBu4NOAc instead of nBu4NBF4 25 ND
8 nBu4NCl instead of nBu4NBF4 87 90:10
9 no current NRe ND

aReaction conditions: phenyl acetylene (0.4 mmol), Suginome
reagent (1.5 equiv), nBu4NBF4 [0.1 M] in CH3CN:CH3OH (9:1, 4
mL), rt, stainless steel electrodes (cathode and anode), 10 mA, 2 F·
mol−1, 5 mA·cm−2, undivided cell, under air. bDetermined by 1H
NMR using CH3NO2 as an internal standard. cLinear:branched ratio
determined on the crude reaction mixture using 1H NMR. dND: Not
determined. eNR: No reaction.
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metal catalyzed hydrosilylation reactions were recently out-
lined.7 Very recently, under the auspices of photocatalysis, an
impetus to design new hydrosilylation reactions, through the
generation of silyl radical, was witnessed and significant
contributions were reported (Scheme 1, eq 1).8−17

Moreover, organic electrosynthesis has known a resurgence
of interest and allowed the design of challenging trans-
formations in a sustainable manner.18−24 Therefore, electro-
synthesis appeared as a method of choice for the efficient
generation of silyl radicals. In 2020, Lin and co-workers
developed the vicinal disilylation of alkenes, alkynes, and
allenes as well as the hydrosilylation of alkenes and alkynes
using chlorosilanes, under electroreductive conditions, as
source of silyl radicals (Scheme 1, eq 2).25 Subsequently,
Zhang and co-workers reported the electrochemical conversion

of silanes into silanols according to an electro-oxidation
process (Scheme 1, eq 3).26 Then, He and co-workers
described the electrochemical silyl-oxygenation of electron-
deficient terminal alkenes.27 This methodology is based on the
in situ formation of a silyl radical from a silane with an
electrogenerated N-oxyl radical from the corresponding N-
hydroxy species (Scheme 1, eq 4).
In light of the conspicuous absence of electrochemical

hydrosilylation of alkynes, we conjectured that an original
approach using the Suginome reagent (PhMe2Si−Bpin) would
enable the formation of a silyl radical.
Indeed, we recently demonstrated the possible oxidation of

this reagent in the presence of a photocatalyst to generate the
corresponding silyl radical and promote the hydrosilylation of
alkynes and alkenes under continuous flow conditions.28

Scheme 2. Electrochemical Hydrosilylation of Alkynes with the Suginome Reagenta

aReaction conditions: alkyne (0.4 mmol), Suginome reagent (1.5 equiv), nBu4NCl [0.1 M] in CH3CN:CH3OH (9:1, 4 mL), rt, stainless steel
electrodes (cathode and anode), 10 mA, 2 F·mol−1, 5 mA.cm−2, undivided cell, under air. bDetermined by 1H NMR on the crude reaction mixture,
the major isomer was represented. c2.5 F·mol−1. d3 F·mol−1. e4 F·mol−1. f3.5 F·mol−1. gE:Z ratio determined for the crude reaction mixture.
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Hence, we intend to harness this possible oxidation in a
catalyst free process using electrochemical conditions to
develop the hydrosilylation of alkynes (Scheme 1, eq 5).
Based on the above blueprints, we started our investigations by
studying the hydrosilylation of phenyl acetylene.
After investigations, we discovered that the reaction in an

undivided cell using stainless steel electrodes at both the anode
and the cathode, a constant current of 10 mA, a total charge of
2 F mol−1 in a 0.1 M solution of nBu4NBF4 in a 9:1 mixture of

CH3CN/CH3OH gave the desired product 1 in 73% yield as a
93:7 mixture of linear and branched products and a complete
E-selectivity for the linear product (Table 1, entry 1). In the
course of the optimization, we found that the presence of
CH3OH was crucial for the formation of 1, and CH3CN was
the best cosolvent (entry 3) and an optimum ratio of 9:1 was
beneficial (entry 4). Moreover, the use of other electrodes at
both the cathode or the anode was detrimental for the reaction
(entries 5 and 6). Finally, a survey of the electrolytes
demonstrated that switching from nBu4NBF4 to nBu4NCl,
gave the hydrosilylated product 1 in 87% as 90:10 mixture of
the linear and branched isomers, while nBu4NOAc was less
efficient (entries 7 and 8). Finally a control experiment
revealed that the reaction did not proceed in the absence of
current (entry 9).
With these optimized conditions in hand, we examined the

scope and the limitations of this electrochemical hydro-
silylation reaction (Scheme 2). First, the substitution of the
aromatic ring on the phenyl acetylene scaffold was studied.
The presence of electron-donating (NH2 and NMe2) or
methyl group at the para-position was well tolerated and the
products were isolated in good to excellent yields with a good
selectivity in favor of the linear product (2−4). Then, other
substituents, like alcohol (5), acetal (6), or boronic acid ester
(7), were introduced, giving the hydrosilylated products in
similar yields and selectivities. Note that in the case of the
boronic ester (7), the product was contaminated with the
product resulting from the desilylation reaction (ca. 19%). The
substitution pattern was also evaluated, and the substitution at
neither the meta nor the ortho position hampers the reaction
efficiency (8−11). Pleasingly, the functionalization of a bis-
alkyne was performed, although the yield of the reaction
remained modest (30%). The reaction was also tolerant to
indole and ferrocene substituents as shown with the
compounds 13 and 14. Then, an enyne was tested and the
reaction was selective to the alkyne residue, giving 15 in a good
75% and a 87:13 ratio in favor of the linear product. Alkyl-
substituted alkynes were then evaluated, and the products 16−
21 were obtained in good to excellent yield and poor to
moderate selectivities toward the formation of the linear
product (up to 70:30). The reaction was tolerant to the
unprotected alcohol as well as the ether motif, giving the
product in good yield, albeit with a moderate linear:branched
selectivity (22−24). Interestingly, the presence of a tertiary
alcohol or a morpholine moiety did not hamper the efficiency
of the reaction, as demonstrated with compounds 25 and 26.
Then, the reaction was tested on complex molecules (i.e.,
ethynyl estradiol and α-tocopherol derivatives) and the
products 27 and 28 were isolated in good 60% and 85%
yields, respectively, demonstrating the efficiency of the reaction
on complex structures. Finally, the reaction was evaluated with
internal alkynes, and the corresponding vinyl silanes 29−32
were isolated in moderate to excellent yield and good to
excellent selectivity (85:15 to 100:0).
To get a better understanding of the reaction, we carried out

several control experiments.29 First, labeling experiments using
a mixture of deuterated and nondeuterated solvents were
conducted to ascertain the origin of H atom incorporated into
the final product (Scheme 3, eq 1). These results suggested
that the H-atom, added to the alkene, results from the cleavage
of the O−H bond of the methanol, despite a higher bond
dissociation energy (BDE) compared to CH3CN.

30 Note that
similar levels of deuterium incorporation were obtained when

Scheme 3. Control Experiments

Scheme 4. Plausible Mechanism for the Electrochemical
Hydrosilylation Reaction with the Suginome Reagent
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the labeling experiments were performed with the aliphatic
substituted alkyne 23.29 Then, the kinetic isotopic effect was
measured. In parallel reactions, KIE = 2.4 was measured, while
the reaction carried out in a CH3CN:CH3OH:CH3OD mixture
(9:0.5:0.5) gave KIE = 5.4 (Scheme 3, eqs 2 and 3). These
results support that the H abstraction after the addition of the
silyl residue to the alkyne could be the rate determining step.
Then, a control experiment demonstrated that the reaction is
suppressed in the presence of TEMPO. Then, we precluded
that the reaction might result from the presence of metallic
salts released from the electrodes. Indeed, when the reaction
was stopped after 64 min (1 F·mol−1) and allowed to stir for an
additional period of 24 h, no increase of the reaction yield was
witnessed (Scheme 1, eq 5). Finally, we demonstrated that the
addition of MeONa (2 equiv) to the reaction mixture did not
enhance the rate of the reaction (Scheme 3, eq 5). Moreover,
additional stirring of the reaction mixture for 24 h in the
presence of immersed electrodes and 2 equiv of MeONa did
not increase the reaction yield. This result suggests that no side
reaction involving the methoxide anion and the Suginome
reagent occurred in our electrochemical process. In addition,
this result highlights the requirement of electricity to promote
the reaction. With these observations in hand, we suggested
the following mechanism (Scheme 4).
First, the methoxide anion, generated by the reduction of the

methanol at the cathode, reacted with the Suginome reagent to
form a borate species I. A subsequent anodic oxidation of the
borate I28 could generate the radical species II, which
decomposes into PinB−OMe and the silyl radical III. Then,
a fast addition31 of this radical to the alkyne led to the highly
reactive vinyl radical IV. A final H abstraction resulted in the
formation of the hydrosilylated product. With regard to this
final H-abstraction and taking into account the labeling
experiments and the previous studies from our group,32−34

we suggested that the H atom comes from the O−H bond of
the methanol. However, taking into account the high bond
dissociation energy of this bond,30 a possible coordination of
the latter to a boron species (i.e., a Lewis acid center) might
decrease the bond dissociation energy of the O−H bond and
therefore allow the H abstraction by the radical IV.
In conclusion, we report herein a practical procedure for the

hydrosilyation of alkynes under electrochemical conditions.
The reaction proceeded smoothly and was applied to the
functionalization of a large panel of terminal and disubstituted
alkynes in good to excellent yields and decent selectivities in
favor of the linear product. With control experiments, a
plausible mechanism was suggested involving the addition of a
silyl radical, generated at the anode, on the alkyne.
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