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Abstract

Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination,
to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an
anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ
considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species
Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated
and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-
fold superior substrate affinity (KM) and nearly four-fold greater catalytic rate (kcat). Here we sought to combine genetic
elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A
comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor
binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues
in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were
identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132
(mutant T132S, numbering includes leader peptide) led to a three-fold improvement in kcat at the expense of a 3% loss of
substrate affinity (increase in apparent KM for glucose) resulting in a specify constant (kcat/KM) of 23.8 (mM21 ? s21)
compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also
identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with
specificity constants of 31.5, 32.2, and 31.8 mM21 ? s21, respectively. The thermal stability of these mutants was also
measured and showed moderate improvement over the parental strain.
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Introduction

We selected GOx (1.1.3.4) for rational redesign employing

genetic engineering techniques for improvement of specific

activity and affinity towards the substrate without sacrificing

stability. GOx, produced primarily by filamentous fungi such as

Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), is

a holoenzyme consisting of two identical 80 kDa subunits which

require a cofactor (flavin adenine dinucleotide, FAD) for

activity. Although much work has been done in the field of

directed enzyme evolution in general [1,2,3,4,5,6,7,8], there are

few reports on the genetic manipulation of GOx [9,10,11]. Zhu

et al. employed directed evolution to generally enhance the

catalytic performance of GOx resulting in a 1.5 fold improve-

ment in kcat [9]. In a subsequent work, Zhu and colleagues

again utilized directed evolution to improve the performance of

GOx at electrical anodes in conjunction with the mediator

ferrocene-methanol [10]. Chen and coworkers genetically

engineered GOx to include a poly-lysine ‘tether’ in order to

anchor more ferrocenecarboxylic acid mediator to the enzyme

resulting in improved stability and sensitivity in a glucose

biosensor utilizing the engineered GOx [11].

In this work a comparison of the sequence and structure-

function similarity in GOx and enzymes homologous to it from

various organisms was conducted in order to identify sequence

variations within conserved regions across organisms which could

provide logical targets for mutagenesis. This design stage was

performed using the BLASTP search engine to search NCBI’s

non-redundant protein database [12] for homologous proteins,

and sequence alignments were made using CLUSTALW.

Through sequence analysis, it was found that there is a high

degree of conservation in the FAD- and substrate-binding domains

among glucose oxidases. Among the two most studied GOx

enzymes, it was previously noted that while A. niger GOx is more

stable than GOx from P. amag., the latter enzyme has a six-fold

higher substrate affinity (reflected as a lower KM) and nearly four-

fold higher catalytic rate (kcat) at pH 7 [13,14].
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Based on these observations, 15 amino acids in the FAD- and

substrate-binding sites of A. niger were selected for site-directed

mutagenesis to mirror the comparable residues from Penicillium,

or for saturation mutagenesis. In the first region of the FAD-

binding domain, the site of ADP-binding and the most

conserved region of the FAD-binding site, nine residues are

not conserved between A. niger and P. amag. Eight were targeted

for site-directed mutagenesis as follows (A. niger sequence,

numbering used in this paper includes the leader peptide):

serine to alanine in position 38 (S38A), V42T, T56V, N65K,

S67K, S73K, S75F, and H100Q. The active site of GOx is

formed by tyrosines (Y90 and Y537), threonine (T132), arginine

(R534), asparagine (N536), and two histidine residues (H538

and H581) (Meyer et al., 1998). With the exception of the two

histidines, none of these residues is conserved across the glucose-

methanol-choline (GMC) oxidoreductase family [15]. This

region is therefore the most heterogeneous region among the

GMC oxidoreductases, and was targeted for saturation muta-

genesis, with the exception of tyrosine 537, which was only

changed to tryptophan to mirror the P. amag. structure. All of

the mutations, both site-directed and saturation, were initially

done independently of each other. Figure 1 illustrates the

position of these residues in relation to the cofactor and

substrate binding sites. Once these mutants were created,

a colorimetric kinetic assay was used to determine the viability

of the variant enzymes. Promising mutants were then charac-

terized more extensively using an electrochemical assay. The

most promising mutants were then subjected to further rounds

of saturation mutagenesis and combined with each other into

double mutants via site-directed mutagenesis.

Figure 1. A cartoon view of GOx monomer, with the protein shown as ribbons and the FAD groups shown as space-filling models.
Residues that were targeted for mutagenesis are also shown as space-filling models and labeled. The numbering used is from the A. niger protein
sequence and includes the 22 amino acid leader peptide. Residue N536 is obscured by residues T132, R534, and T537.
doi:10.1371/journal.pone.0037924.g001
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Materials and Methods

Site-directed and Saturation Mutagenesis
A synthetic version of the A. niger GOx gene, designed for

optimized codon efficiency in Saccharomyces cerevisiae (S. cerevisiae),

was constructed by DNA 2.0 (Menlo Park, CA). The pYES-

DEST52 GatewayH Vector (Invitrogen, Carlsbad, CA) was used

for cloning the GOx gene into yeast. This galactose-inducible S.

cerevisiae expression vector includes a c-terminal hexa-histidine tag

and a V5 antibody epitope. The native amino-terminal signal

peptide sequence flagging GOx for secretion was preserved. The

recombinant vector was then used to transform the S. cerevisiae

strain INVSc1 (MATa his3D1 leu2 trp 1-289 ura3-52; Invitrogen).

Mutations to this construct were made using the QuikChangeH
Multi Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA).

Saturation mutagenesis was achieved by using mixtures of

mutagenic oligonucleotides (degenerate oligos).

Protein Isolation and Purification
Purification of the secreted recombinant GOx was achieved

by using a tetradentate nickel chelate (Ni-NTA) purification

system (Invitrogen). After 24-hour growth in 50 mL of YP-Gal

induction media, the soluble His-tagged GOx was harvested by

centrifugation at 14006g. The media was subsequently dialyzed

with 50 mM NaH2PO4 buffer, pH 8.0, to remove residual

amino acids. Purification was carried out under native

conditions as described in the manufacture’s protocol with

slight modifications. Briefly, 1 mL of Ni-NTA resin was added

to polypropylene columns, washed and then equilibrated with

50 mM NaH2PO4 buffer containing 20 mM imidazole (native

binding buffer). Concentrated GOx samples were diluted to

6 mL volumes using 3 mL 18 MV water (Barnstead NanoPure

water purifier, Boston, MA) followed by 3 mL of native binding

buffer. Samples were incubated for 1 hour at 25uC with gentle

mixing. After washes, the purified GOx was eluted off the resin

using 1.5 mL of an elution buffer consisting of

50 mM NaH2PO4, 250 mM imidazole, pH 5.0. The resin was

incubated in the elution buffer for 15 minutes with mixing.

The presence of the hexa-histidine and V5 epitope tags allowed

for the use of affinity chromatography and immunodetection as

tools to evaluate the presence of recombinant GOx in the purified

sample. Post-purification concentration was measured and an

aliquot was removed for SDS-polyacrylamide gel electrophoresis

(SDS-PAGE). Samples were run on 10–20% Tris-Glycine gels for

1 hour. Proteins were then transferred onto a nitrocellulose

membrane followed by immunodetection using an anti-V5 (C-

term)-AP antibody and a chromogenic immuno-detection kit

(WesternBreeze, Invitrogen). After blocking with a buffer saline-

detergent-casein solution (supplied) the membrane was incubated

with 15 mL of a 1:2000 dilution of anti-V5 (C-term)-AP primary

antibody. An alkaline phosphatase (AP) conjugated anti-IgG

antibody (supplied) was used to visualize the Magic Mark Protein

standard ladder. After washing, the membrane was incubated in

10 ml of BCIP/NBT chromogenic substrate for alkaline phos-

phatase.

Sample Preparation for Activity Assays
Each clone was inoculated into 50 mL of YP-Gal induction

media and incubated for 24 hours at 30uC. To prepare

recombinant GOx secreted into spent growth media for activity

assay, Then the cultures were briefly centrifuged to pellet the cells,

which were then discarded. The collected media was then filtered

and concentrated using 30 kDa molecular weight cut-off (MWCO)

Centricon Plus-70 centrifugal filters (70 mL processing vol.,

Millipore, Billerica, MA) to an end volume of 0.5 mL. The

retained high mass fraction was then buffer exchanged with

50 mM NaH2PO4 again using 30 kDa MWCO centrifugal filers.

GOx concentration in filtered, concentrated, and buffer ex-

changed culture media samples was determined via SDS-PAGE

against known concentrations of GOx from A. niger. using Sypro

Ruby Red (Molecular Probes, Eugene, OR) as protein stain. An

immunoaffinity assay was used to determine the band that

corresponded to GOx (as above), and ImageQuant software

(Amersham Biosciences, Piscataway, NJ) was used to correlate

band intensity to protein concentration.

Colorimetric Enzyme Activity Assay
Amplex Red Glucose Oxidase Assay (Invitrogen) was used

according to the manufacturer’s protocol. A second colorimetric

assay method using 2, 29-azino-bis [3-ethyl-benzothiazoline-6-

sulfonic acid] (ABTS, Thermo Scientific, Waltham, MA) was

modified from Sun, et al [16]. The ABTS working solution

consisted of 100 mM sodium phosphate buffer, pH 7.0, 50 mM

glucose, 3 units of horseradish peroxidase (HRP), and 2 mg/mL

ABTS. The reaction solution in both cases consisted of 50 mL of

protein sample combined with 50mL of working solution.

Absorbance measurements were taken in 96 well plates ten

seconds after mixing, and were done in triplicate.

Electrochemical Enzyme Activity Assay
Electrochemical initial rate measurements were performed on

a PGZ 402 VoltaLab potentiostat (Radiometer Analytical, Lyon,

France) and were measured versus a micro Ag/AgCl reference

(Microelectrodes Inc, Bedford, NH) and a platinum (Pt) wire

counter electrode. A rotating disk electrode system (RDE-1,

Bioanalytical Systems, West Lafayette, IN) was used in conjunc-

tion with the 3 mm diameter Pt working electrode (Bioanalytical

Systems). Polystyrene 24 well plates (3.5 mL well volume) were

used as the electrochemical cell (BD Falcon, San Jose, CA).

Figure 2. Western blot of Ni-NTA affinity purified yeast culture
media. Bands observed via anti-V5 epitope-AP antibody labeling. Lane
1: Sample from culture with induced GOx expression; Lane 2: Sample
from uninduced culture.
doi:10.1371/journal.pone.0037924.g002

Protein Engineering of GOx

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e37924



Prior to each initial rate assay the Pt electrode was

thoroughly cleaned to ensure a consistent electrode surface.

The Pt electrode was rinsed in 18 MV water followed by

electrochemical cleaning via potential cycling in 1 M H2SO4

from 2200 to +1200 mV vs. Ag/AgCl at 100 mV s21 until

a stable voltammogram was obtained with well defined

hydrogen and oxygen absorption and desorption waves (typi-

cally 25 cycles). Afterwards the electrode was thoroughly rinsed

and sonicated for several seconds in 18 MV water. The

electrode was further conditioned in 1 mM ferricyanide, 1 mM

ferrocyanide, 0.1 M KCl, in 10 mM sodium phosphate buffer

(NaPB), pH 7.0, via 0.25 second chronopotentiometric steps

from 20.5 mA to +0.5 mA for a total of 500 cycles. This was

followed by 10 cyclic voltammograms in the same solution from

2100 mV to +500 mV at 100 mV s21. The anodic and

cathodic potential peak separation (?Ep) of the final sweep was

used to determine whether the electrode had been adequately

cleaned. If the ?Ep exceeded 80–90 mV, the cleaning process

was repeated starting with H2SO4 cleaning. Following final

conditioning, the electrode was thoroughly rinsed in 18 MV
water.

For enzymatic activity assay, the Pt electrode was immersed

with the reference and counter electrodes in 1.775 mL of

100 mM NaPB, pH 6.8, containing a given concentration of

glucose. The Pt electrode was rotated at 6000 rpm and

a chronoamperometric step to +700 mV vs. Ag/AgCl was

applied. The system obtained a pseudo steady state current

response within 150 seconds after which 25 mL of the enzyme

solution was injected into the well.

Stability Assay
To determine the thermal stability of the mutant and

commercial enzymes, tubes of enzyme were incubated in the

ABTS assay buffer at 50uC for 48 hours. Every two hours an

aliquot was removed from each tube and an ABTS kinetic assay

was performed, as described above. Absorbance measurements

were taken every minute for ten minutes, and each set of

measurements was done in triplicate.

Results

Protein Isolation and Purification
Recombinant GOx secreted by yeast into culture media was

harvested, affinity purified, ran on a SDS-PAGE gel, and

visualized by Western blotting with anti-V5-AP antibodies using

the WesternBreeze Chromogenic Immuno-detection, as shown in

Figure 3. Comparison between Amplex Red and ABTS GOx activity assays. A) Amplex Red and B) ABTS assay absorbance vs. GOx
concentration standard curves. Glucose concentration was 50 mM. Error bars are the standard deviation of 3 independent measurements.
Comparison of activity assay results for mutant GOx stains using C) Amplex Red or D) ABTS assay. Each 96 well plate contained 96 different mutant
GOx samples that were loaded in identical wells between plates.
doi:10.1371/journal.pone.0037924.g003
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Figure 2. Hyperglycosylated recombinant GOx was positively

identified at ,180 kDa. Colorimetric ABTS assays performed

directly in native gels also confirmed the identity of this band as

GOx (data not shown). Expression in E. coli was abandoned due to

the formation of inclusion bodies, and the difficulty in reconstitut-

ing the functional enzyme from them.

Colorimetric Activity Assays
GOx catalyzes the oxidation of b-D-glucose to D-glucono-1,5-

lactone and hydrogen peroxide, using molecular oxygen as the

electron acceptor as shown in the following two half-reactions:

b-D-glucose + GOx:FAD + H2O « GOx:FADH2+ glucono-

lactone +2H+(1)

GOx:FADH2+ O2+2H+ R GOx:FAD + H2O2(2)

In the interest achieving higher throughput, in all assays

concentrated, buffer exchanged, partially purified protein from

spent culture media was used instead of protein purified to

homogeneity via nickel-affinity column chromatography. Using

immunoaffinity labeling, band in SDS-PAGE gels corresponding

to GOx in such samples was clearly identified. Protein concen-

tration was quantified from the band intensity using ImageQuant

software (Amersham Biosciences, Piscataway, NJ) as described in

the Methods section. All measurements were performed in

triplicate to insure accuracy and reproducibility.

Two different assay methods were used for screening of

mutants: colorimetric and electrochemical. Both methods rely on

the generation of hydrogen peroxide produced as a by-product of

GOx turnover. Though the optimal pH for both the A. niger and P.

amag. enzymes is near 6, both retain nearly 90% activity at pH 7

[13,14]. Since many applications for GOx are conducted near

physiological pH values, we carried out all of our assays at either

pH 6.8 (electrochemical) or 7.0 (colorimetric) to insure that our

enzymes would be useful under such conditions.

The Amplex Red Glucose Oxidase Assay provides a sensitive

coupled enzyme method for the detection of GOx activity based

on peroxidase turnover of hydrogen peroxide produced by GOx in

the presence of the Amplex Red reagent (10-acetyl-3,7-dihydrox-

yphenoxazine). For the Amplex Red GOx assay, a standard curve

with GOx concentrations ranging from 0–5 mU/ml was con-

structed and is presented in Figure 3A. A linear dependence of

absorbance on GOx concentration was observed over the

conditions tested with high reproducibility between measurements

(R2 = 0.9971). The ABTS colorimetric assay also relies on the

coupled GOx-peroxidase turnover yielding polymerized ABTS

and a standard curve with GOx concentrations ranging from 0–

5 mU/ml was also generated using this assay (Figure 3B). Similar

to the Amplex Red assay, the ABTS assay yielded a strong linear

dependence of absorbance on GOx concentration with high

reproducibility (R2 = 0.9964). The Amplex Red assay exhibited

a higher sensitivity of 0.224 (Abs a.u./mU GOx) compared with

0.171 measured from the ABTS assay.

When employing the Amplex Red and ABTS GOx activity

assays to evaluate the activity of GOx mutants, disagreement

between the two different colorimetric assays was observed.

Typical results for the Amplex Red and ABTS activity assays

on GOx mutant strains are shown in Figure 3C and 3D
respectively. Each 96 well plate contained 96 mutant GOx

samples that were loaded in identical wells between plates.

Upon comparing the two assays, variation in the measured

activity of identical samples was observed, as can be seen

between Figure 3C and 3D, with particularly notable

variation for samples located in the lower left side of the

plates. The Amplex Red assay routinely identified a greater

number of mutants as enzymatically active than were identified

by the ABTS assay. Variation in the relative degree of activity

obtained for mutants was also observed between assays.

Although slight variation was observed in replicates performed

using a specific assay, significant variation between the two

assays was common. Colorimetric assays generally rely on

secondary enzymes, chemical reagents, and/or dyes to report

activity. Environmental and chemical sensitivity of these

reagents, in addition to batch-to-batch reagent variation, may

have contributed to inconsistent results. Additionally, the source

of enzyme for these assays was filtered, concentrated, and buffer

exchanged spent culture medium which may have contained

trace levels of interferants that impacted the colorimetric assays.

Figure 4. Electrochemical GOx activity assay: H2O2 concentra-
tion calibration and assay controls. A) Steady state current
response vs. H2O2 concentration. Pt working electrode held at
+700 mV vs. Ag/AgCl, 6000 rpm, in 100 mM NaPB, pH 6.8. Error bars
are the standard deviation of 3 independent measurements. Inset:
Lower H2O2 concentration segment of plot. B) Current response upon
a 25 mL injection of sample prepared from yeast cultures in which GOx
expression was induced (red trace) or uninduced (blue trace), into
100 mM NaPB, pH 6.8 with 100 mM glucose. Injection of sample
prepared from induced GOx expression yeast culture into 100 mM
NaPB, pH 6.8, without glucose (green trace). Pt working electrode held
at +700 mV vs. Ag/AgCl, 6000 rpm.
doi:10.1371/journal.pone.0037924.g004
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Electrochemical Activity Assay
Promising mutants identified by colorimetric assays were further

characterized by an electrochemical assay which yielded precise

enzymatic kinetic rate information. Hydrogen peroxide can be

directly oxidized at a positively charged platinum electrode

yielding one molar equivalent of dioxygen, and two molar

equivalents of electrons and protons:

H2O2 R O2+2e- +2H+ (3)

The measured current is proportional to the concentration of

hydrogen peroxide in solution. The electrochemical measurement

of hydrogen peroxide produced by GOx provides a very useful

and sensitive method for studying the kinetic properties of GOx.

The electrochemical assay chosen is well characterized

[17,18,19,20], mediator-less, reproducible, does not depend on

secondary enzymes or reporters, and accurate kinetic rate data is

obtainable as the measurement is direct and real-time (10 data

points collected each second). Previously reported optimized

conditions for H2O2 oxidation on Pt [17,18,19,20] were used for

this assay (100 mM sodium phosphate buffer, pH 6.8, and

+700 mV vs. Ag/AgCl electrode polarization).

A hydrogen peroxide calibration curve was obtained by

measuring the current response for eleven different concentrations

of peroxide. Runs were randomized and 3 replicates were

performed. A highly reproducible linear current response was

observed for concentrations of 1 mM through 1 mM peroxide

(Figure 4A; R2 = 0.9980). The assay sensitivity of 84.3 nA/

mmolar H2O2 was similar to the 84.5 nA/mmolar H2O2 value

reported in an earlier work [21].

Experimental conditions for the GOx activity assay were

identical to those described above for the peroxide current

response with the exception that glucose at various concentrations

was included in the electrolyte solution, instead of hydrogen

peroxide. Following application of the positive bias to the rotating

Pt electrode and allowing the current to stabilize, 25 mL of

a solution containing GOx was injected into the electrochemical

cell. Upon sample injection, the solution was instantly mixed with

the buffer solution via the rapidly rotating working electrode and

an immediate increase in current was measured. The initial rate

velocity, v ([H2O2]/min), was obtained from the slope of this

current response over the first second (or less) from injection. A

detection limit of 1.7 mUnit GOx/mL was achieved, and was

adequate for assaying GOx expressed in the yeast system of this

work.

Validation of the electrochemical initial rate assay was obtained

by performing initial rate velocity measurements at several

different glucose concentrations using commercially available

GOx from A. niger (Biozyme Labs, South Wales, UK). Initial rate

velocities were used to calculate the enzymatic activity kinetic

parameters. Measured turnover (kcat) of the commercial GOx was

2.796104 (mmol product/mmol active subunit/min) compared

with 2.756104 reported by the manufacturer. The Michaels-

Menten constant, KM, was measured to be 14.6 mM. This value

was not reported by Biozyme, but is within the range of 3.5–

38 mM published for native GOx from A. niger under similar

conditions [22]. Activity assay positive controls using Biozyme

GOx were performed daily prior to assaying the parental or

mutant GOx strains.

Enzymatic activity assays of the parental GOx strain and

mutant GOx strains were performed using filtered, concentrated,

and buffer exchanged spent S. cerevisiae culture medium. To ensure

that potential interferants that may remain following sample

concentration and purification do not contribute to the electro-

chemical assay response, a sample from a yeast culture in which

GOx expression was induced was compared to an uninduced

culture sample. While the induced culture sample (+glucose,
+protein) showed an immediate increase in current upon injection

(Figure 4B, red trace), the uninduced culture sample (+glucose, –
protein) showed no increase in current response throughout the

course of the experiment (Figure 4B, blue grey trace). No

Table 1. Kinetic rate parameters of parental and mutant GOx stains for D (+) glucose oxidation as determined via initial rate
electrochemical measurements.

Improvement over Parent

GOx Strain KM (mM)1 kcat (s
21)1,2 kcat/KM (s21 ? mM21) (% KM)

3 (6kcat)

– –

P. amag.4 6.4 1085 170

T132S 34.566.8 821652 23.8 +3.6 2.9

T132S/T56V 20.866.0 670654 32.2 238 2.4

T132S/V42Y 26.366.9 838667 31.8 221 3.0

V42Y 40.268.3 1264687 31.5 +21 4.5

16 values are 95% confidence intervals from a non-linear least squares regression fit of initial rate data to the Michaelis-Menton equation.
2kcat defined per mol native GOx.
3Negative change in KM denotes higher affinity for substrate.
4Values taken from reference 14.
doi:10.1371/journal.pone.0037924.t001

Table 2. Thermal stability of parental and mutant GOx stains
incubated at 50 uC.

GOx Strain T70% (hrs)1 T1/2 (hrs)1 Corr. Coeff. (R2)2

Biozyme 10.460.5 20.160.9 0.990

Parent 14.861.1 28.861.9 0.992

T132S 19.861.3 38.562.4 0.986

T132S/T56V 20.461.0 39.662.4 0.981

T132S/V42Y 17.460.7 33.862.5 0.974

V42Y 20.761.1 40.362.3 0.991

1Error corresponds to the standard deviation of GOx kinetic rate measurements
performed in triplicate.
2Correlation coefficients obtained from an exponential least squares regression
fit of GOx kinetic rates measured in triplicate vs. time.
doi:10.1371/journal.pone.0037924.t002
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increase in current was recorded upon injection of samples

prepared from induced cultures in the absence of glucose (–

glucose, +protein, Figure 4B, green trace) showing that galactose

metabolism, as opposed to glucose metabolism, did not contribute

a response during assay. Therefore, the current response measured

from filtered, concentrated, and buffer exchanged culture media

samples can be attributed solely to H2O2 produced from GOx

turnover with no contribution from remaining components of the

spent media.

Catalytic Activity of GOx Mutants
As detailed in the Introduction, 15 dissimilar amino acids in the

FAD- and substrate-binding sites of A. niger were selected for

either site-directed mutagenesis to mirror the comparable residues

from Penicillium, or for saturation mutagenesis. An initial library of

nearly 1200 mutants with single point mutations was created.

Although the electrochemical assay proved more reliable for

collecting kinetic rate data for mutants, the assay time was lengthy

and could not be used for high-throughput screening. With the

large number of mutants generated, it became necessary to use the

more high-throughput colormetric assay as a pre-screen of mutant

activity followed by electrochemical analysis of promising mutants.

For this pre-screen the ABTS assay was utilized.

Of the 200 mutants colorimetrically screened from the first

round of saturation mutagenesis, 14% reported activity compara-

ble to or greater than the parent enzyme, 25% reported activity

less than the parental enzyme, and 61% showed no measurable

activity. These results are similar to that reported by other directed

evolution enzyme studies [9,10]. Mutants with 2.5 fold higher

activity over the parental GOx were selected for sequencing and

subsequent kinetic analysis using the electrochemical assay. Due to

project budget and time constraints, the remaining mutants were

not characterized beyond the initial ABTS activity assay.

However, we expect that by comparing kinetic and sequencing

data from these less-successful mutants with that obtained from

mutants with improved performance, new insights may be

obtained that would be useful for future modifications to the

GOx active site.

Figure 5. Structural comparison of the GOx FAD adduct (1cf3) with the FAD-peroxy adduct of choline oxidase (2jbv). Panel A has
illustrations of GOx at two different angles. Panel B illustrates the choline oxidase FAD-peroxy adduct at two different angles. Thr 132 (GOx) and its
homologous amino acid Ile 103 (choline oxidase) are labeled. The peroxy adduct is colored green. Other oxygens are red, carbons are teal, nitrogens
are blue, and phosphorous atoms are tan.
doi:10.1371/journal.pone.0037924.g005
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Of the mutants assayed following the first round of saturation

mutagenesis, the mutant with the greatest increase in specific

activity, as determined by electrochemical assay, had a specific

activity of 328620.6 s21. This represents a 3-fold improvement in

specific activity over the parental A. niger GOx activity of

112610.5 s21 (per monomer). The KM and specificity constant

for this mutant and the parental strain are reported in Table 1.

Sequencing of this mutant revealed that it contained a single point

mutation from threonine to serine at amino acid 132 (mutant

T132S). Both recombinant parental GOx and mutant T132S

GOx genes were subjected to two further rounds of site-directed

saturation mutagenesis at other targeted residues generating

approximately 3500 additional mutants. Of these mutants, 1200

were screened with the ABTS colorimetric assay.

Ultimately, three additional unique mutants with significantly

improved catalytic activity over the parent enzyme were identified.

The kinetic parameters for these mutants are also reported in

Table 1. The mutant strain with the most improved kcat (V42Y)

showed a 4.5-fold improvement over the parental A. niger GOx and

a slight improvement over GOx from P.amag. However, this

mutant had the lowest substrate affinity, 21% lower than the

parental stain. Interestingly, a double mutant containing both

T132S and V42Y mutations was identified and showed a signif-

icant improvement in KM over the parental strain with a similar

kcat to mutant T132S. An additional double mutant was identified

(T132S/T56V) which showed the most improved KM, 38% better

than the parental enzyme, but the lowest improvement in kcat.

Thermal Stability of GOx Mutants
As the goal of this study was to improve the specific activity of

a relatively more stable form of GOx, it was important to ascertain

how mutations affected protein stability. A thermal stability assay

Figure 6. View of amino acid mutations that enhanced GOx kinetic activity in relation to the FAD cofactor: T132S, T56V, and V42T.
The monomer protein is shown as ribbons. The FAD group and mutated amino acid residues are shown as space-filling models. The FAD binding
peptide region, containing amino acids T56V and V42T, is colored red.
doi:10.1371/journal.pone.0037924.g006
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monitoring enzyme activity over time at 50 uC was validated using

GOx from Biozyme. A T70% at 50 uC of 10.4 hours was measured.

This is similar to T70% = 11 hours reported by Kalisz et al. under

similar conditions [13], but markedly more stable than P. amag.

under the same conditions [14].The thermal stability of the four

improved mutant GOx strains was also measured and is compared

to the parental strain in Table 2. Interestingly, all identified

mutants showed a modest improvement in thermal stability over

the parental strain. Mutant V42Y, which had the most improved

kcat, also showed the greatest improvement in thermal stability.

Discussion

Site-directed mutagenesis and directed evolution were used to

improve the catalytic activity of recombinant A. niger GOx.

Mutants were initially screened via a high throughput colorimetric

activity assay and further characterized by an electrochemical

initial rate assay allowing quantification of kinetic rate parameters.

Four mutants with improved catalytic properties were identified

out of a library of approximately 4800 mutants, of which only

1400 have so far been screened. These mutants (T132S, T132S/

T56V, T132S/V42Y, and V42Y) showed a 3 to 4 fold

improvement in specificity constant over the parental strain. The

variant with the highest kcat (V24Y) showed a 4.5-fold improve-

ment over the parental A. niger GOx and slight improvement over

GOx from P.amag. at the expense of a 21% lower substrate affinity.

Also in common with all mutants, V42Y showed a modest

improvement in thermal stability (T1/2 = 40.3 hours) compared to

the parental strain (T1/2 = 28.8 hours) and the commercially

available enzyme (T1/2 = 20.1 hours).

A recent report [23] offers some insight into why the first

mutant identified (T132S) may have yielded increased perfor-

mance. The structure for the flavin-oxygen adduct intermediate

was solved for choline oxidase, a closely related GMC oxidore-

ductase, using a combination of visible spectroscopy and X-ray

spectroscopy under cryogenic conditions. In the published

structure, the isoalloxazine ring undergoes a large conformational

change upon addition of the oxygen adduct. By comparing the

crystal structure of GOx (pdb id 1cf3) with the choline oxidase

structure (pdb id 2jbv), it was observed that the threonine 132

residue in GOx (an isoleucine in the choline oxidase structure) is

directly adjacent to this warped region of the isoalloxazine ring, as

shown in Figure 5. Replacement of threonine by the less bulky

serine could reduce the steric hindrance of this rearrangement

while still providing a potential hydrogen bonding donor to the

peroxy adduct. As the rate limiting step for GOx turnover under

physiological conditions is O2 reduction [24], this proposed

mechanism of improved oxygen reduction is deemed a reasonable

explanation for improved GOx activity resulting from this

mutation. However, T132 is also thought to be a ligand for

glucose binding [25], and could also have an impact upon glucose

oxidation. Experiments measuring dependence of the rate of

turnover on O2 concentration in this mutant may clarify the

mechanism responsible for its enhanced activity, and are planned

for future research.

It is less obvious why the modifications at V42Y and T56V have

such large impacts upon enzymatic kinetics. As depicted in

Figure 6, these residues are in the first region of the FAD-binding

domain (residues 20–58), which is the site of ADP-binding and the

most conserved region of the FAD-binding site [15]. However,

they are not directly involved in binding FAD, or glucose. Their

modification must result in more subtle structural rearrangements

which may be difficult to quantify without crystal structures or

computational modeling of these mutants, which is beyond the

scope of this work.

By combining increased catalytic efficiency with modest

improvements in stability, the mutant GOx enzymes produced

in this work may prove useful as alternatives to the wild-type

enzyme in applications ranging from biosensing, the food and

wine industry, to the development of high-power biofuel cells.
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