

Genotoxic Effect of *Salmonella* Paratyphi A Infection on Human Primary Gallbladder Cells

[®]Ludovico P. Sepe,^{a*} [®]Kimberly Hartl,^{a,b,c} [®]Amina Iftekhar,^a [®]Hilmar Berger,^a Naveen Kumar,^a Christian Goosmann,^a Sascha Chopra,^d Sven Christian Schmidt,^{d,e} [®]Rajendra Kumar Gurumurthy,^a [®]Thomas F. Meyer,^a [®]Francesco Boccellato^{a,f}

^aDepartment of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany

^bTechnische Universität Berlin, Institute of Biotechnology, Berlin, Germany

^cMedical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany

^dDepartment of Surgery, Campus Charité Mitte and Campus Virchow Clinics, Charité University Medicine, Berlin, Germany

eDepartment of General and Visceral Surgery, Ernst von Bergmann Clinics, Potsdam, Germany

^fLudwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

Ludovico P. Sepe and Kimberly Hartl contributed equally to this article. Author order was decided based on the strength, the amount, and the importance of the contributions to the manuscript.

ABSTRACT Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC.

IMPORTANCE Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking *Helicobacter pylori* infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. *Salmonella enterica* serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ *in vitro* and used these cultures to model *S*. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation.

Citation Sepe LP, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, Chopra S, Schmidt SC, Gurumurthy RK, Meyer TF, Boccellato F. 2020. Genotoxic effect of *Salmonella* Paratyphi A infection on human primary gallbladder cells. mBio 11:e01911-20. https://doi.org/10.1128/ mBio.01911-20.

Editor Bruce A. McClane, University of Pittsburgh School of Medecine

Copyright © 2020 Sepe, Hartl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Thomas F. Meyer, meyer@mpiib-berlin.mpg.de, or Francesco Boccellato,

francesco.boccellato@ludwig.ox.ac.uk. * Present address: Ludovico P. Sepe, German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Berlin, Germany.

Received 20 July 2020 Accepted 12 August 2020 Published 22 September 2020

KEYWORDS DNA damage, gallbladder, mucosoid cultures, organoid cultures, *Salmonella*, typhoid toxin, gallbladder cancer

Gallbladder cancer (GBC) is an adenocarcinoma with very poor prognosis because early stages are often asymptomatic and few patients can be cured with surgery at initial presentation (1). Although uncommon in Western countries, it has relatively high incidence in the western parts of South America and in the northern part of the Indian subcontinent (2). An intriguing aspect is its putative link to chronic carriage of *Salmonella enterica* serovar Typhi/Paratyphi A. In these patients, *Salmonella* resides in the gallbladder (GB) both intracellularly and extracellularly by forming biofilms on gallstones (3–5), which serve as a reservoir from where bacteria are intermittently shed into the duodenum (6). A higher incidence of GBC in chronic carriers was first observed after an outbreak of *Salmonella enterica* in Aberdeen, Scotland (7), an observation confirmed by subsequent epidemiological studies (8, 9).

Epidemiological associations with cancer have also been shown for several other bacterial pathogens. However, studies that illuminate the underlying mechanisms are only just emerging and suggest that infection can lead to genomic instability, which may contribute to the development of cancer (10). *Helicobacter pylori, Escherichia coli*, and *Chlamydia trachomatis* have been shown to induce DNA double-strand breaks (DSBs) in host cells (11–15). Evidence suggests that infection with some species not only causes the production of reactive oxygen species (ROS) that induce DNA damage in the host, but can also modify the DNA damage response and thereby induce error-prone mechanisms of repair (10).

Salmonella enterica provokes direct genotoxicity through the action of a crucial effector, the typhoid toxin (16), which is only expressed by the human-specific serovars Typhi (17) and Paratyphi A (18). It has been hypothesized that *Salmonella enterica* delivers the typhoid toxin through secreted outer membrane vesicles after internalization into the host cell (19, 20). More recently, it has been found that a specific interaction of a subunit of the typhoid toxin (PtIB) with luminal receptors allows the loading of the toxin from the *Salmonella*-containing vacuoles into vesicle carriers (21).

Typhoid toxin is able to induce direct DNA DSBs via its CdtB subunit, a DNase that is translocated into the nucleus of the intoxicated cell (19, 20, 22). CdtB also exists as part of another bacterial toxin: the cytolethal distending toxin (CDT), which is produced by multiple Gram-negative bacterial species, including *Helicobacter hepaticus* (23). Here, as well, it has been directly linked to tumor development *in vivo* and *in vitro* (24, 25).

Commonly used cell lines in infection biology are mostly derived from cancerous tissues, limiting their utility for studies of early carcinogenic events, since they are already transformed and have alterations in key cellular signaling pathways. Since the epithelium is the prime target of infections and toxins, the development of organoid-based human primary cell models is an invaluable means for illuminating the molecular mechanisms by which bacteria could promote cancer. While organoid or derivative models of human gastrointestinal epithelia from the small intestine (26), colon (27), stomach (28, 29), and intrahepatic duct (30) are available, such a system was developed for murine (31) and human (32) gallbladders only very recently and has not yet been utilized for infection studies (33, 34). A robust *in vitro* model that recapitulates the infection dynamics in healthy human gallbladder epithelium would be of immense value in this regard.

Developing from the foregut, the outer lining of the gallbladder consists of a simple columnar epithelium without any gland or crypt structures. The cells tend to moderately produce mucins (35) and transport bile and organic ions (36–38). They share many similarities with the cholangiocytes of the intrahepatic bile duct (39), and therefore the stem cells of the adult gallbladder might express similar markers, such as CD44, CD13, and LGR5 (40, 41) and also depend on activation of the Wnt/ β -catenin pathway for their maintenance (30).

Here, we describe the establishment of human gallbladder organoids and their

TABLE 1 Cultivation medium composition

Reagenta	Supplier	Catalog no	Working
Human medium	Supplier	catalog no.	concentration
Advanced/DMEM/E-12	Invitrogen	12634-010	
B-spondin 1 conditioned medium	In house	12034 010	25%
B27	Invitrogen	17504-044	1×
N2	Invitrogen	17502-048	1×
Human enidermal growth factor (EGE)	Invitrogen	PHG0311	20 ng/ml
Human poggin	Penrotech	120-100	150 ng/ml
Human fibroblast growth factor (EGE)-10	Peprotech	100-26	150 ng/ml
Nicotinamido (NIC)	Sigma	N0636	10 mM
Λ 93.01 (TCE β type L recentor ALK 5 inhibitor)	Calbiochom	2020	1M
Earstalin (ESK)	Tocris	1000	1 μινι 10 μΜ
Human hapatocita growth factor (HCE)	Poprotoch	1099	$\frac{10 \mu \text{M}}{25 \text{pg/ml}}$
V_27622 (POCK inhibitor)*	Sigma	V0503	25 Hg/IIII 7.5M
Panicillin strantomycin**	Joyina	10303	7.5 μινι 1 μ/ml
	Morek Millinoro	691671	10/mi
IVVP-2		081071	
whtsa conditioned medium	in nouse		25%
Murine medium			
Advanced/DMEM/F-12	Invitrogen	12634-010	
R-spondin 1 conditioned medium	In house		25%
B27	Invitrogen	17504-044	1×
N2	Invitrogen	17502-048	1×
Murine epidermal growth factor (mEGF)	Invitrogen	PMG8044	50 ng/ml
Murine noggin	Peprotech	250-38	100 ng/ml
Nicotinamide (NIC)	Sigma	N0636	10 mM
A 83-01 (TGF- β type receptor ALK-5 inhibitor)	Calbiochem	2939	1 μM
Y-27632 (ROCK inhibitor)*	Sigma	Y0503	7.5 μM
Penicillin-streptomycin**	Invitrogen	15140122	1 U/ml

mBio

^{a*}, Added only for the first 4 days after seeding; **, not added in infection experiments; ***, only if mentioned.

adaptation into more physiological polarized monolayers. We use these systems to study the human-restricted, GBC-associated *Salmonella enterica* serovar Paratyphi A and, specifically, the effect of the typhoid toxin on healthy cells. These new models will serve as a useful resource to investigate the interaction of *Salmonella* and its toxin with authentic human tissue.

RESULTS

Maintenance of adult gallbladder epithelial stem cells depends on activation of the Wnt/ β -catenin pathway. Primary epithelial cells from human and murine gallbladder (GB) were isolated and grown in Matrigel supplemented with defined medium (Table 1). After 3 to 5 days, the cells started to form hollow spheres, reaching up to 1 mm in diameter (Fig. 1A for humans; see Fig. S1A in the supplemental material for mice). Organoids were passaged every 7 to 10 days by enzymatic and mechanical shearing, and the resulting cells were seeded in fresh Matrigel for further expansion. Cultures expanded indefinitely for murine cells and for human cells. Fluorescence immunohistochemistry for the proliferation markers Ki67 and PCNA showed randomly distributed positive cells at early and late passages (Fig. 1B for humans; see Fig. S1B in the supplemental material for mice). Since only a small fraction of the cells has the ability to form organoids, we assumed that growing organoids accumulate mainly differentiated cells. We therefore analyzed the transcriptome profile of early (4-day-old) versus late (14-day-old) organoids, which confirmed that only the former were enriched in stem cell markers (42) (Fig. 1C and Table 2), indicating their undifferentiated state.

We next tested whether the activation of the Wnt/ β -catenin pathway is essential for maintenance of GB epithelial stem cells since they are phenotypically similar to adult cholangiocytes of the intrahepatic duct, which require activation of the LGR5 receptor by the Wnt agonist R-spondin for long-term culture (30). The fraction of cells able to give rise to new organoids remained at 3 to 4% for at least 10 passages for human cells only if R-spondin was added, irrespective of the presence of Wnt3A in the culture medium (Fig. 1D), and at 7 to 9% for 19 passages for murine organoids (see Fig. S1C)

FIG 1 Cultivation of human gallbladder organoids and dependence on the Wnt/β-catenin pathway activation. (A) Gallbladder epithelial cells were isolated and grown as described in Materials and Methods. Pictures were taken 0, 4, and 8 days after seeding and at passages 1, 3, 5, 8, and 10. Scale (Continued on next page)

(30). Since R-spondins usually act synergistically with Wnt ligands, we next tested whether the epithelial cells themselves produce such ligands. Blocking Wnt ligand secretion through addition of the porcupine inhibitor IWP2 inhibited organoid formation from single cells (Fig. 1E). Organoid formation was partially rescued by the addition of exogenous Wnt3a, suggesting that GB epithelial cells or a subset of them might secrete Wnt agonists. Such a mechanism has been shown in mouse small intestinal organoids, where Paneth cells produce Wnt ligands, supporting organoid growth in the absence of exogenous Wnt agonists (43). Whether a similar subpopulation of cells is responsible for Wnt ligand production in the gallbladder is currently not known.

We next found that WNT3, -4, -7A, -7B, and -11 were expressed in GB organoids, but only WNT7A and WNT7B were significantly overexpressed in the stem cell-enriched early organoids, whereas late organoids were enriched in WNT4 (Fig. 1F). This indicates that different types of cells are secreting specific Wnt proteins and that WNT7A and B might play a specific role in stem cell maintenance, since they are abundantly expressed in early organoids (Fig. 1F).

Since the activation of the Wnt/ β -catenin pathway is essential for stem cell maintenance we expected to find higher levels of target gene transcription in stem cells. We compared a published list of β -catenin target genes (44) with the results of our microarray (Table 3) and observed a dramatic enrichment of such genes in early organoids compared to older, more differentiated organoids (Fig. 1G). The most relevant differentially regulated genes were the secreted Wnt inhibitors Dickkopf-1 (*DKK1*) and *DKK4*, the transcription factor binding to nuclear β -catenin *LEF1*, and *LGR5*. In differentiated organoids, we observed upregulated expression of the intracellular Wnt inhibitor *AXIN2*, which may play a role in inhibiting the pathway in more differentiated cells (Table 3).

Finally, to verify that expansion of GB organoids is driven by Lgr5⁺ cells, we took advantage of a Lgr5⁻EGFP-IRES-creERT2:ROSA-mTmG-floxed reporter mouse. In the gallbladder cells of this mouse, Cre-ERT2 is under the control of the *Lgr5* promoter. After induction with 4-hydroxytamoxifen (4HT), Lgr5⁺ cells switch from red-Tomato to green-GFP expression. Induction with 4HT during culture of organoids derived from GBs of the reporter mice resulted in the generation of two distinct organoid populations. The majority derived from Lgr5⁻ cells expressing mTomato, while 8.6% originated from Lgr5⁺ cells expressing mGFP (Fig. 1H; see also Fig. S1D in the supplemental material). The proportion of organoids derived from Lgr5⁺ cells steadily increased after the first passage, making up >90% by passage 4, confirming the crucial role of Wnt/ β -catenin signaling through the Lgr5 receptor in the long-term maintenance of GB cells *in vitro*.

Gallbladder organoids are stable and resemble the cell structure and function of the organ *in situ*. To confirm that GB organoids maintain their epithelial identity, we examined expression of the epithelial marker E-cadherin by Western blot (Fig. 2A). The levels of the GB markers claudin-2 and cytokeratin-19 did not change between early (passage 1) and late (passage 10 for human, 19 for mouse) passages (see Fig. 2A for

FIG 1 Legend (Continued)

bar, 1 mm. (B) Gallbladder organoids were fixed 7 days after seeding. Organoids were paraffinized, sectioned, and immunostained for the proliferation marker Ki67 (green), β -catenin (red). DRAQ5 was used to stain the nuclei (blue). (C) Gene set enrichment analysis of human pluripotent stem cell genes published by Mallon et al. (42) among genes regulated in early versus late organoids, as identified by microarray. Adjusted *P* value = 0.00039, enrichment score = 0.6, normalized enrichment score = 1.9. (D) Organoids at passage 1 were split to single cells and seeded, and the number of resulting organoids was counted 5 to 7 days later (i.e., at passage 2), in media + or - Wnt3A and + or - Rspo1. The organoids were kept in culture and the procedure was repeated after 8 passages (i.e., at passage 10). *, P < 0.05 (t test). (E) Organoids were split to single cells which were seeded in Matrigel and provided with media + or - the Wnt inhibitor IWP-2 and + or - 25% of Wnt3a conditioned medium. The number of resulting organoids was counted 5 to 7 days later. *, P < 0.05; ****, P < 0.0005. (F) Change in expression levels of Wnt family members observed in a microarray comparing early versus late organoids. Only transcripts with an average log₂ expression of >6 are shown. *, P < 0.05 (t test). (G) Gene set enrichment analysis of β -catenin targets published by Herbst et al. (44) among genes regulated in early versus late organoids as identified by microarray. Adjusted P value = 0.0015, enrichment score = 0.61, normalized enrichment score = 1.8. (H) Lineage tracing of murine organoids derived from tLgr5- cells (red) was counted at each passage 5 to 7 days after seeding. The plot shows the percentage of each population compared to the total number of organoids. Bars indicate the standard deviations (SD).

FABLE 2 List of differentially regulated stem	cell related genes in early	/ organoids versus la	ate organoids
--	-----------------------------	-----------------------	---------------

Probe	Gene symbol	RefSeq	Entrez ID	logFC	Avg expression	t score	Р
A_23_P374844	GAL	NM_015973	51083	5.55	9.38	23.45	0.00
A_24_P225616	RRM2	NM_001034	6241	4.23	9.90	26.43	0.00
A 24 P397107	CDC25A	NM 001789	993	3.39	10.26	23.07	0.00
A 32 P194264	CHAC2	NM_001008708	494143	2.75	10.21	9.17	0.01
A 33 P3286208	LRR1	NM 203467	122769	2.61	8.83	20.53	0.00
A 33 P3332126	SCLY	ENST00000409736	51540	2.45	9.74	17.13	0.00
A 33 P3387856	CENPN	NM 001100625	55839	2.42	6.42	6.88	0.01
A 23 P88740	CENPN	NM 018455	55839	2.22	12.96	12.74	0.00
A 24 P83678	MMS22I	NM 198468	253714	2.14	8.86	8.09	0.01
A 23 P325040	TMPO	NM 003276	7112	2.14	8.95	13.02	0.00
A 23 P56553	METTL8	NM 024770	79828	2.07	10.98	12.13	0.00
A 33 P3253707	I RR1	NM 152329	122769	2.06	12.60	14.00	0.00
A 33 P3379886	FGF2	NM_002006	2247	1.99	6.35	3.18	0.07
A 23 P217637	TIMM8A	NM_004085	1678	1.94	11.61	11.10	0.00
A 33 P3419696	FGF2	NM_002006	2247	1 92	7 69	4 99	0.03
A 24 P49747	HMGB3P24	ENST00000433260	NA ^a	1.89	6.61	15 70	0.00
A 33 P3489737	NIN	NM 020726	57486	1.86	10.59	5.83	0.02
A 24 P244699	NUDT15	NM 018283	55270	1.81	9 55	6.06	0.02
A 24 P178093	TOMM40	NM_006114	10452	1.01	8.62	10.80	0.02
A 32 P95914	MMS22I	NM 198468	253714	1.75	9.70	6 71	0.00
Δ 23 P1//3058	RPI 221 1	NM_001099645	200916	1.75	16 39	8.01	0.01
A_25_F145950	DNO1	NM 020143	56002	1.00	10.39	12.46	0.01
A_24_F350055	METTIQ	NM 024770	70828	1.01	0.10	12.40	0.00
A_33_F3537002	DINIV1	NM 017994	54094	1.59	10 /1	10.40	0.00
A_23_P02023		NM 145290	24904 151104	1.57	10.41	6 70	0.00
A_23_F209557	TIC2	ENIST00000270606	7547	1.50	10.07	0.70	0.01
A_33_F3230001		EN3100000370000	7547	1.29	4.02	6.00	0.24
A_25_P144557	LCRIV4L	NM 002156	22019	1.29	5.20	0.09	0.02
A_32_P23273		NM 012247	2229	1.24	17.11	11.51	0.00
A_25_P150092		NM_001120017	22929	1.21	12.00	7.52	0.01
A_21_P0000000	TOIVIIVI40	NM_001022202	10452	1.21	13.80	9.57	0.01
A_33_P3412013	TIVIPO	NM_004741	/112	1.18	5.82	0.27	0.02
A_23_P202143	NULC I	NM_004741	9221	1.13	12.02	4.96	0.03
A_33_P3019171	PINIAIP I	NM_021127	2300	1.09	10.98	4.95	0.03
A_24_P253215	EIVIGI	NM_002014	10430	1.07	12.98	0.10	0.02
A_32_P/1/88	FKBP4	NM_005214	2288	1.06	8.90	9.26	0.01
A_24_P357266	GKPK	NM_005314	2925	1.01	4.42	1.66	0.22
A_23_P136504	SLC2SA21	NM_030631	89874	1.01	5.54	3.14	0.07
A_24_P297888	MIAP DCD1	NM_001714	4507	1.00	9.97	7.12	0.01
A_33_P3250425	BICDI	NM_01(510	030	0.94	0.25	2.98	0.08
A_23_P345005	SULY		21240	0.93	10.96	3.47	0.06
A_23_P100881	SIVIPUL3B	NM_002026	27293	0.93	9.95	2.62	0.10
A_23_P2/16/	KINASEH I	NM_002936	246243	0.93	(20	5.67	0.02
A_23_P365060	MDNT	NM_014611	23195	0.92	0.39	7.63	0.01
A_33_P3388135	IVIKKS	NM_170062	8195	0.92	13.58	3.97	0.04
A_23_P164141	PSIVIE3	NM_1/6863	10197	0.89	10.79	7.38	0.01
A_23_P156842	EEFIEI	NM_004280	9521	0.89	13.42	7.96	0.01
A_33_P328/815	DDX21	NM_004728	9188	0.87	13.48	8.11	0.01
A_23_P43726	NUP160	NM_01125650	23279	0.86	11.39	6.96	0.01
A_21_P0011842	EEFIEI	NM_001135650	9521	0.86	13.35	5.47	0.02
A_23_P131954	SNX5	NM_014426	2/131	0.86	15.01	4.18	0.04
A_23_P148484	RLIM	NM_016120	51132	0.86	10.97	3.37	0.06
A_23_P252362	MRPS30	NM_016640	10884	0.86	10.49	6.46	0.01
A_24_P134/2/	IFAM	NM_003201	/019	0.83	9.21	7.42	0.01
A_23_P214907	MIHFDIL	NM_015440	25902	0.82	9.75	2.11	0.15
A_23_P256148	AKIRIN1	NM_024595	/964/	0.81	11.04	3.58	0.05
A_33_P328/502	MSH2	NM_000251	4436	0.77	11.49	5.50	0.02
A_23_P128991	SLIKP	NM_031210	81892	0.77	14.35	2.63	0.10
A_33_P3285444	TERF1	NM_017489	7013	0.76	4.75	1.48	0.26
A_24_P50458	TERF1	NM_017489	7013	0.76	12.20	3.75	0.05
A_33_P3242659	KIF13A	NM_022113	63971	0.70	5.56	3.56	0.05
A_33_P3329108	MTAP	NM_002451	4507	0.69	11.71	3.99	0.04
A_23_P333951	DNAH14	NM_144989	127602	0.67	9.74	2.67	0.10
A_23_P137484	L1TD1	NM_019079	54596	0.67	5.12	5.21	0.02
A_23_P128372	FKBP4	NM_002014	2288	0.65	12.78	4.38	0.04

Probe	Gene symbol	RefSeq	Entrez ID	logFC	Avg expression	t score	Р
A_33_P3294404	AKIRIN1	NM_024595	79647	0.64	10.32	3.56	0.05
A_23_P216149	TERF1	NM_017489	7013	0.64	11.57	1.77	0.20
A_23_P102471	MSH2	NM_000251	4436	0.59	12.22	5.40	0.02
A_24_P854913	METTL21A	NM_001127395	151194	0.56	11.08	1.39	0.28
A_23_P54540	EIF2AK4	NM_001013703	440275	0.55	11.76	3.94	0.04
A_23_P94636	RC3H2	NM_018835	54542	0.49	9.40	4.46	0.03
A_23_P146997	TXLNG	NM_018360	55/8/	0.48	9.65	1.61	0.23
A_33_P3389188		NW_003201	7019	0.47	12./4	1.88	0.18
A_33_P3283006	AKIRINI NIP7	NM 016101	79047 51388	0.47	17.01	3.21	0.07
A 33 P3345504	RC3H2	NM_018835	54542	0.45	7 47	4 19	0.00
A 33 P3299776	NODAL	NM 018055	4838	0.45	3.81	1.54	0.25
A 32 P220696	TERF1	NM 017489	7013	0.45	10.55	1.81	0.19
A_23_P213908	PHAX	NM_032177	51808	0.44	13.19	3.43	0.06
A_24_P192434	TERF1	NM_017489	7013	0.44	10.44	1.56	0.24
A_33_P3241786	ADD2	NM_017482	119	0.40	3.31	1.34	0.29
A_32_P87531	DNAH14	NM_001145154	127602	0.35	8.81	1.17	0.35
A_33_P3269453	BPTF	ENST00000342579	2186	0.34	10.51	1.74	0.20
A_21_P0000013	TIMM8A	NM_001145951	1678	0.34	10.14	2.88	0.08
A_33_P32/8118	CASP3	NM_004346	836	0.32	8.43	0.86	0.47
A_23_P134008	USP45	ENS100000472914	85015	0.31	9.59	1.34	0.29
A_33_P329/9/8		NIN_004998 ENST00000405456	4043	0.30	14.27	2.24	0.13
A_24_F127091 A 33 P3280006	LISPA5	NM 001080481	85015	0.29	7 74	2.52	0.18
A 24 P281975	GNPTAR	NM 024312	79158	0.27	11.60	1 16	0.11
A 24 P215407	DDX6	NM 004397	1656	0.25	8.91	2.20	0.14
A 33 P3289995	USP45	ENST0000369232	85015	0.24	4.91	2.23	0.14
A_33_P3409506	C9orf85	NM_182505	138241	0.20	8.88	1.66	0.22
A_32_P104478	FGD6	NM_018351	55785	0.17	11.00	0.86	0.47
A_33_P3418294	DNAH14	NM_001373	127602	0.15	3.15	1.24	0.32
A_24_P51118	MTAP	NM_002451	4507	0.14	10.15	0.28	0.80
A_23_P214354	EXOC2	NM_018303	55770	0.11	8.27	0.33	0.77
A_33_P3235340	DDX18	NM_006773	8886	0.11	13.07	0.98	0.42
A_33_P3269976	GAL	ENST00000538401	51083	0.10	2.93	0.84	0.48
A_23_P86504	CIUOIT/6	NM_024541	79591	0.10	11.60	0.74	0.53
A_33_P3291970	IEKFI CASD2	EINST00000518095	7013	0.07	5.55 14.40	0.40	0.69
A_23_F92410 A_32_P44775	CASES C9orf85	NM 182505	138241	0.00	9 97	0.32	0.05
A 33 P3414669	RLIM	NM 183353	51132	0.05	6.26	0.30	0.75
A 23 P351215	SKIL	NM 005414	6498	0.04	7.47	0.34	0.76
A_24_P152404	C10orf76	ENST00000311122	79591	0.03	10.23	0.16	0.89
A_32_P135243	MTHFD1L	NM_015440	25902	0.03	10.60	0.11	0.92
A_32_P80255	DDX6	NM_004397	1656	0.03	10.53	0.15	0.89
A_32_P528967	RTP1	NM_153708	132112	0.02	3.05	0.18	0.87
A_21_P0013574	MTHFD1L	NM_001242767	25902	0.02	11.20	0.10	0.93
A_33_P3378972	UNC5D	NM_080872	137970	0.01	3.02	0.12	0.92
A_32_P741851	GLB1L3	NM_001080407	112937	0.01	2.96	0.11	0.92
A_23_P140362	VRIN	NM_018228	55237	0.01	2.86	0.11	0.92
A_33_P3241782	ADD2 CDE2	NM 020624	0572	0.01	2.70	0.08	0.94
A_23_F/2017	GDF5 CEP1	NM 005454	9373	0.01	2.91	0.03	0.90
A_23_P5370	RPRM	NM 019845	56475	0.00	2.07	0.04	0.97
A 23 P327910	ZIC3	NM 003413	7547	0.00	2.83	0.03	0.98
A 33 P3419632	GLB1L3	ENST00000389887	112937	0.00	3.57	0.01	1.00
A_23_P216118	UNC5D	NM_080872	137970	0.00	2.95	0.02	0.99
A_21_P0014207	LOC100506507	XR_108853	NA	0.00	2.66	0.01	0.99
A_23_P380526	DPPA4	NM_018189	55211	0.00	2.81	-0.04	0.97
A_23_P421436	ADD2	NM_017488	119	-0.01	2.84	-0.05	0.96
A_19_P00318232	SHISA9	NM_001145205	729993	-0.01	2.81	-0.06	0.96
A_33_P3280729	SHISA9	NM_001145204	729993	-0.01	2.88	-0.06	0.96
A_23_P137573	LEFTY2	NM_003240	7044	-0.01	2.87	-0.06	0.96
A_24_P235049	MIHEDIL	NM_01145205	25902	-0.02	11.42	-0.10	0.93
A_32_P213091	RC3H2	INIVI_UUT145205 ENISTOOOO0372670	129993 51510	-0.03	4.30 11 16	-0.26 -0.19	0.82
A 24 P380132	G3BP2	NM 203505	9908	-0.06	14 44	-0.10	0.07 0.20
	55012	200000	2200	0.00	1-1-1-1	0.20	0.00

Probe	Gene symbol	RefSeq	Entrez ID	logFC	Avg expression	t score	Р
A_23_P70168	TARS	NM_152295	6897	-0.11	14.69	-0.58	0.61
A_23_P79962	MKKS	NM_170784	8195	-0.11	12.65	-0.85	0.47
A_23_P84070	LARP7	NM_016648	51574	-0.11	12.56	-0.98	0.42
A_33_P3297245	RRAS2	NM_012250	22800	-0.12	14.04	-1.06	0.38
A_24_P332230	LARP7	NM_016648	51574	-0.12	13.09	-0.72	0.54
A_24_P943922	CACHD1	NM_020925	57685	-0.14	4.65	-0.18	0.87
A_33_P3307775	DENR	NM_003677	8562	-0.14	7.10	-0.44	0.69
A_33_P3862375	USP45	NM_001080481	85015	-0.14	9.20	-0.32	0.78
A_33_P3234317	RRAS2	NM_012250	22800	-0.15	13.91	-1.31	0.30
A_33_P3378644	PHC1	NM_004426	1911	-0.19	7.01	-1.11	0.37
A_23_P47058	CUZD1	NM_022034	50624	-0.22	8.19	-1.04	0.39
A_23_P215484	CCL26	NM_006072	10344	-0.26	4.06	-1.35	0.29
A_23_P427217	JMJD1C	NM_032776	221037	-0.46	9.97	-3.89	0.05
A_23_P346265	GNPTAB	NM_024312	79158	-0.47	9.02	-1.41	0.28
A_24_P940125	CNOT6	NM_015455	57472	-0.50	11.75	-4.61	0.03
A_33_P3295523	RAC3	NM_005052	5881	-0.50	12.37	-3.43	0.06
A_23_P25587	LECT1	NM_007015	11061	-0.51	4.69	-1.91	0.18
A_24_P347624	SNURF	NM_022804	8926	-0.52	13.32	-1.90	0.18
A_23_P204246	PHC1	NM_004426	1911	-0.55	4.48	-0.98	0.42
A_23_P259127	ESRP1	NM_017697	54845	-0.60	11.38	-1.91	0.18
A_23_P366376	TDGF1	NM_003212	6997	-0.65	7.90	-2.86	0.08
A_24_P144601	POU5F1	NM_002701	5460	-0.66	7.98	-2.07	0.15
A_23_P156809	METTL21A	NM_001127395	151194	-0.66	11.71	-5.71	0.02
A_24_P104538	BPTF	ENST0000342579	2186	-0.67	9.15	-2.77	0.09
A_21_P0000084	SLC25A21	NM_030631	89874	-0.68	3.26	-1.42	0.27
A_23_P72770	USP44	NM_032147	84101	-0.79	7.71	-7.30	0.01
A_33_P3309206	GABRB3	ENST00000556166	2562	-0.87	4.56	-7.79	0.01
A_23_P59138	POU5F1	NM_002701	5460	-0.99	12.96	-6.27	0.02
A_33_P3227506	BPTF	NM_182641	2186	-1.01	9.64	-6.30	0.02
A_33_P3277075	GABRB3	NM_000814	2562	-1.04	8.28	-9.63	0.01
A_24_P52921	BCAT1	NM_005504	586	-1.06	3.48	-4.10	0.04
A_24_P314477	TUBB2B	NM_178012	347733	-1.14	7.23	-10.24	0.01
A_23_P323094	PHC1	NM_004426	1911	-1.24	6.06	-4.36	0.04
A_33_P3242014	PHC1	NM_004426	1911	-1.26	10.65	-9.28	0.01
A_23_P204640	NANOG	NM_024865	79923	-1.66	7.94	-7.10	0.01
A_24_P935986	BCAT1	NM_005504	586	-1.77	9.14	-9.18	0.01
A_23_P160336	LEFTY1	NM_020997	10637	-2.93	4.40	-21.49	0.00

^aNA, not applicable.

humans and see Fig. S2A for mice). Previous attempts to cultivate epithelial primary cells were frustrated by fibroblast outgrowth (45, 46). In our system, we observed that fibroblasts do not grow in Matrigel, and at the end of passage 1 we could not detect the mesenchymal marker Vimentin (Fig. 2B and Fig. S2B). In order to assess the GB identity of organoids, we used fluorescence immunohistochemistry to examine a GB-specific combination of markers and compared their expression to that of GB tissue. The luminal mucosa of the GB consists of a simple columnar epithelium expressing cytokeratin-19 (47). Similarly, the GB organoids consist of an E-cadherin-positive cell monolayer, with apical cytokeratin-19 expression (Fig. 2C for humans and Fig. S2C for mice, left panel) and eccentric nuclei (Fig. 2C for humans and Fig. S2C for mice). These organoids also show luminal junctional expression of claudin-2 (Fig. 2C for humans and Fig. S2C for mice), a tight-junction protein expressed at higher levels in the gallbladder compared to other organs including the cholangiocytes of the bile duct (48). GB epithelial cells also produce mucins, with MUC5B being one of the most abundant (49, 50). As expected, we detected MUC5B expression in both the tissue sample and the organoids (Fig. 2C for humans and Fig. S2C for mice).

One of the functions of the GB is to concentrate bile in the lumen (37, 38). The gallbladder expresses the ATP-dependent multidrug transporter MDR1, which transports organic cations back into the lumen (51–53), protecting the organ from high concentrations of potentially toxic organic ions. To test whether gallbladder organoids functionally recapitulate this physiological feature, we added rhodamine-123, a chem-

TABLE 3 List of differential	y regulated	β -catenin ta	arget genes i	n early o	rganoids v	ersus late	organoids
------------------------------	-------------	---------------------	---------------	-----------	------------	------------	-----------

Probe	Gene symbol	RefSeq	Entrez ID	logFC	Avg expression	t score	Р
A_23_P118815	BIRC5	NM_001012271	332	4.68	13.18	42.25	0.00
A_23_P94275	DKK4	NM_014420	27121	3.40	6.21	16.98	0.00
A_23_P24129	DKK1	NM_012242	22943	3.17	14.38	19.03	0.00
A_24_P20630	LEF1	NM_016269	51176	2.02	5.96	14.91	0.00
A_33_P3329187	DNMT1	NM_001130823	1786	1.69	12.38	10.55	0.00
A_23_P159191	GAST	NM_000805	2520	1.58	7.69	5.45	0.02
A_23_P98974	LGR5	NM_003667	8549	1.54	5.41	8.18	0.01
A_33_P3258392	EDN1	NM_001955	1906	1.49	12.07	3.21	0.07
A_23_P214821	EDN1	NM_001955	1906	1.48	14.90	7.19	0.01
A_23_P202837	CCND1	NM_053056	595	1.44	11.40	3.97	0.04
A_33_P3232828	SRSF3	NM_003017	6428	1.44	13.02	6.81	0.01
A_23_P215956	МҮС	NM_002467	4609	1.37	14.06	6.25	0.02
A_23_P24104	PLAU	NM_002658	5328	1.16	14.30	6.33	0.02
A_33_P3306146	PLAU	NM_001145031	5328	1.10	9.48	2.68	0.10
A_23_P160968	LAMC2	NM_018891	3918	1.08	10.17	3.70	0.05
A_23_P413761	SRSF3	NM_003017	6428	1.03	15.83	8.66	0.01
A_33_P3411075	FSCN1	NM_003088	6624	0.99	15.10	7.56	0.01
A_23_P19673	SGK1	NM_005627	6446	0.94	12.66	4.51	0.03
A_23_P135381	SP5	NM_001003845	389058	0.87	13.23	7.77	0.01
A_33_P3381751	TIAM1	NM_003253	/0/4	0.86	11.85	6.00	0.02
A_33_P3301514	NRCAM	NM_001193582	4897	0.85	6.8/	3.//	0.05
A_23_P201636	LAMC2	NM_005562	3918	0.83	15.34	6.35	0.02
A_23_P94800	S100A4	NM_002961	6275	0.81	12.16	7.43	0.01
A_32_P69368	ID2	NM_002166	3398	0.72	12.89	2.62	0.10
A_23_P54144	BMP4	NM_001202	652	0.71	11.68	2.37	0.12
A_23_P201711	STUUA6	NM_014624	62//	0.71	17.59	4.76	0.03
A_23_P143143		NM_002166	3398	0.64	12.84	5.39	0.02
A_23_P10409	PLAUK CD44	NM_000610	5329	0.64	11.83	2./5	0.09
A_33_P3294309	CD44	NM_000345	900	0.01	15.41	5.07	0.05
A_23_P359245		NM_001804	4233	0.60	15./5	4.42	0.03
A_25_P50/00		NM_000027	1044 5242	0.56	0.19	4.50	0.05
A_33_F3332414		NM 021101	0076	0.55	12 / 2	4.30	0.04
A_25_F57764	NRCAM	NM 001037132	9070 4807	0.32	10.93	4.70	0.03
Δ 24 Ρ303080	RMI1	NM 005180	648	0.49	8.43	3.63	0.22
A 23 P201655	MYCRP	NM 012333	26292	0.39	13 57	2.96	0.05
A 23 P412389	FGF18	NM 003862	8817	0.35	10.37	2.50	0.00
A 23 P210763	IAG1	NM 000214	182	0.35	11.81	3.07	0.07
A 23 P344555	NFDD9	NM 006403	4739	0.34	8.83	1.21	0.33
A 23 P314115	BMI1	NM 005180	648	0.31	10.15	1.20	0.34
A 23 P214681	PPARD	NM_006238	5467	0.31	5.70	1.13	0.36
A 33 P3374443	L1CAM	NM_024003	3897	0.31	4.29	1.05	0.39
A_23_P100883	SUZ12	NM_015355	23512	0.30	13.86	1.12	0.36
A_33_P3323298	JUN	NM_002228	3725	0.28	12.78	2.51	0.11
A_23_P138631	SMC3	NM_005445	9126	0.27	12.56	1.97	0.17
A_23_P82523	ABCB1	NM_000927	5243	0.27	12.31	2.01	0.16
A_24_P207995	L1CAM	NM_000425	3897	0.26	3.50	0.58	0.61
A_32_P171061	ASCL2	NM_005170	430	0.23	9.18	1.38	0.28
A_21_P0000152	CD44	NM_001202557	960	0.21	6.02	0.65	0.57
A_33_P3243857	ADAM10	NM_001110	102	0.19	11.61	1.42	0.27
A_23_P31073	МҮВ	NM_005375	4602	0.19	12.36	1.03	0.40
A_23_P26847	SOX9	NM_000346	6662	0.16	10.69	1.17	0.35
A_24_P69095	ENC1	NM_003633	8507	0.13	13.73	0.20	0.86
A_33_P3289848	CDX1	NM_001804	1044	0.11	8.23	0.72	0.54
A_23_P402751	COX2	ENST00000361739	4513	0.08	15.40	0.28	0.80
A_33_P3880302	EPHB2	NM_004442	2048	0.06	7.27	0.28	0.80
A_24_P252130	PPARD	NM_006238	5467	0.06	11.98	0.50	0.66
A_33_P3245163	MYC	M13930	4609	0.05	3.06	0.42	0.71
A_33_P3311795	MYB	ENST00000531845	4602	0.02	2.96	0.19	0.86
A_24_P365807	EFNB1	NM_004429	1947	-0.03	15.21	-0.29	0.80
A_24_P82106	MMP14	NM_004995	4323	-0.05	10.03	-0.36	0.75
A_23_P48886	ADAMIO	NM_001110	102	-0.06	10.76	-0.55	0.63
A_33_P3370787	EPHB2	NM_004442	2048	-0.18	8.02	-1.69	0.21
A_23_P6596	HEST	NM_004442	3280	-0.19	/.93	-1./4	0.20
A_23_P95060	EPHB3	NIVI_004443	2049	-0.19	11.52	-0.99	0.41
A_33_P33313/6	EPHB2	NM_004442	2048	-0.22	5.58	-1.61	0.23

	,						
Probe	Gene symbol	RefSeq	Entrez ID	logFC	Avg expression	t score	Р
A_33_P3411628	CDKN2A	NM_000077	1029	-0.33	10.69	-3.01	0.08
A_23_P52207	BAMBI	NM_012342	25805	-0.40	14.60	-3.50	0.06
A_21_P0014167	NEDD9	ENST0000379433	4739	-0.41	4.24	-2.81	0.09
A_23_P27332	TCF4	NM_003199	6925	-0.50	7.67	-3.83	0.05
A_33_P3258824	NOTCH2	NM_001200001	4853	-0.54	12.30	-2.72	0.09
A_24_P298027	AXIN2	NM_004655	8313	-0.56	7.02	-2.16	0.14
A_23_P43490	CDKN2A	NM_058197	1029	-0.60	12.54	-4.48	0.03
A_33_P3368358	NEDD9	NM_182966	4739	-0.64	8.82	-4.65	0.03
A_23_P418373	BCL2L2	NM_004050	599	-0.68	12.42	-6.26	0.02
A_23_P148015	AXIN2	NM_004655	8313	-0.71	10.85	-4.42	0.03
A_23_P200792	NOTCH2	NM_024408	4853	-1.06	13.84	-8.94	0.01
A_23_P52761	MMP7	NM_002423	4316	-1.10	16.35	-5.16	0.02
A_23_P502464	NOS2	NM_000625	4843	-2.40	4.30	-9.83	0.01

TABLE 3 (Continued)

ical dye substrate of MDR1 often used to monitor organoid function, to the medium (54). Gallbladder organoids actively transported the dye into the lumen, resulting in increased concentration of luminal fluorescence relative to the medium on the outside (Fig. 2D, top panel). Pretreating organoids with the MDR1 inhibitor verapamil prevented luminal dye accumulation (Fig. 2D, middle panel), confirming dependence on MDR1. In contrast, gastric organoids did not accumulate the dye (Fig. 2D, bottom panel).

Salmonella enterica serovar Paratyphi A induces paracrine CdtB-dependent DNA damage in GB organoids. Since the gallbladder organoids accurately recapitulate the main molecular features of the epithelium of origin, we used them to model infection with *S. enterica* using the human restricted pathogenic serovar Paratyphi A, which has been epidemiologically linked to gallbladder cancer (7, 55). Previous observations of the genotoxic effects of *S.* Typhi/Paratyphi A were based on experiments in cell lines, using mostly ectopic expression of recombinant typhoid toxin (19, 20).

Since the genotoxicity of the bacterium resides in the CdtB subunit of the typhoid toxin, we generated a *cdtB* knockout. Organoids were mechanically sheared to expose the luminal side and cocultured with *Salmonella enterica* serovar Paratyphi A or with its isogenic *cdtB* knockout strain, before reseeding in Matrigel, with gentamicin-supplemented medium to eliminate extracellular bacteria. At 3 days post infection, organoids showed foci of infection with intracellular *Salmonella* (Fig. 3A). After verifying that the $\Delta cdtB$ mutant is capable of invading epithelial cells at a rate similar to the wild-type (w.t.) bacteria (Fig. 3B), we examined the induction of DNA damage.

To this end, we tested organoids for phosphorylation of H2AX at serine 139 (γ H2AX), a histone variant involved in detection of DSBs and recruitment of repair factors (56), and we quantified and mapped the number of γ H2AX-positive cells after infection with the wild type and the $\Delta cdtB$ strain. The number of cells experiencing DNA damage was generally higher in the organoids infected with the wild-type strain compared to the $\Delta cdtB$ mutant (Fig. 3C). Quantification of the number of γ H2AX-positive cells that are infected (defined in the map of Fig. 3D as position 0) revealed that both cells infected with the w.t. or $\Delta cdtB$ strain experience DNA damage (Fig. 3E, position 0). However, there is a significantly reduced number of γ H2AX-positive cells among the ones infected with the mutant strain (Fig. 3E, position 0, $\Delta cdtB$).

In addition, we noticed that in organoids infected with the wild-type strain, a number of uninfected neighboring cells also contained γ H2AX foci (Fig. 3C to E). To quantify this paracrine genotoxic effect, uninfected cells were divided into two groups depending on the distance from the infected cell (Fig. 3D): Positions 1 to 3 include the first three rings of uninfected cells surrounding the infected focus, whereas positions 4 to 6 represent the rings 4 to 6 of the uninfected cells. The proportion of γ H2AX-positive cells was higher in positions 1 to 3 than in positions 4 to 6 (Fig. 3E), but only for the organoids infected with wild-type bacteria. This confirms that the typhoid toxin is secreted from infected cells also in the primary polarized cells of the organoids (17) and

FIG 2 Characterization of human organoids. (A) Western blot analysis of epithelial and gallbladder markers at early (P1) and late (P10) passages. Relative densitometry values, normalized to P1 (=1), are shown above the bands. (B) Western blot analysis as in panel A of the fibroblast marker Vimentin compared to HeLa cells. (C) Immunofluorescence analysis of human gallbladder tissue and organoids 7 days after seeding for the gallbladder markers cytokeratin-19, claudin-2, or mucin5B (red); the epithelial marker E-cadherin (green); and DRAQ5 (blue). Scale bar, 25 μ m. (D) Transport assay of rhodamine-123 (green) in gallbladder organoids treated with the multidrug transporter inhibitor verapamil (middle row), and gastric organoids. Scale bar, 100 μ m.

FIG 3 Infection and paracrine genotoxic effect of CdtB. (A) Reconstruction of whole-mount immunofluorescence labeling of organoids infected with *Salmonella* Paratyphi A carrying the mCherry-expressing plasmid pLS002 (red) at 3 days post infection, with phalloidin to detect F-actin (white) and Hoechst for DNA (blue). Scale bar, 10 μ m. (B) Proportion of cells invaded after infection of organoids with wild-type *Salmonella* or a *cdtB* deletion mutant. (C) Whole-mount immunofluorescence labeling of organoids 3 days after infection with *Salmonella* Paratyphi A w.t. or $\Delta cdtB$ carrying the mCherry-expressing plasmid pLS002 using antibodies against γ H2AX (green), phalloidin (white), and Hoechst (blue). Scale bar, 20 μ m. (D) Model for categorization of uninfected cells according to the distance from the infected cell at position 0 (red). Orange represents the first three rings of non-infected cells (positions 1 to 3), and green represents the next three rings (positions 4 to 6). (E) Percentage of cells positive for the DNA damage marker γ H2AX opending on their distance from the infected organoids (SD = 0.97). *, P < 0.05; **, P < 0.01 (compared to uninfected cells). Infected cells are defined as cells with >5 bacteria, and γ H2AX-positive cells are cells with >3 foci.

that its genotoxic effects extend to the neighboring cells in a paracrine manner. In our system, this paracrine effect was limited to the first three rings of cells surrounding the infected one. Since γ H2AX is also highly expressed during mitosis, cells that displayed chromosome condensation were excluded from the analysis. Our experiments suggest that infection with *Salmonella* Paratyphi A causes DNA damage and that a functional typhoid toxin increases the extent of damage in the infected cells and extends it to the neighboring uninfected cells.

Infection with Salmonella Paratyphi A activates transcription programs associated with cell cycle arrest. The risk of developing gallbladder cancer is higher in patients who are chronic carriers of typhoid Salmonella serovars. Therefore, to understand the fate of the infected cells, we sought to extend the duration of the infection using a more physiological model that mimics chronic infection *in vitro*. For the infection of the organoids, the cells must be disaggregated, and after 3 days we usually observed an overgrowth of bacteria or of cells, which impaired longer-term analysis. To understand the effect of the infection on a homeostatic gallbladder epithelial barrier and to allow longer term infection, we adapted the gallbladder organoids into mucosoid cultures, as previously done for the human stomach (34). Single cells derived from organoids were seeded on a collagen-coated polycarbonate filter in a standing cell culture insert (Fig. 4A). The cultivation cocktail was identical to that used for organoids and applied both below and above the filter. After 3 days, the apical medium was removed to start air-liquid interface cultivation (Fig. 4A). Primary gallbladder cells can be expanded on a monthly basis by deriving single cells from mucosoid cultures and restarting from the seeding procedure. Gallbladder mucosoids can be infected by applying a suspension of bacteria on top of the filter after removing excess mucus (Fig. 4A). The progress of the infection can be monitored using fluorescent transgenic *Salmonella*. Presence of intracellular *Salmonella* was detectable equally for both wildtype and $\Delta cdtB$ strains (Fig. 4B), and electron microscopy analysis of non-infected and infected mucosoid cultures revealed that the monolayer and the cell gross morphology remain intact during infection (Fig. 4C).

Similar to what we observed with organoids, in the infected mucosoid cultures, we found that established colonies of w.t. Salmonella induce more DNA damage than the isogenic $\Delta cdtB$ strain, as measured using gH2AX staining (Fig. 4D). We performed a microarray analysis to compare the short versus the long-term effect of the infection on the gallbladder epithelial cells. We used gene set enrichment analysis (GSEA) to investigate any statistically significant consistent differences between gene set expression in the culture after infection with the w.t. strain versus infection with the $\Delta cdtB$ isogenic mutant. Infection with both strains induced similar expression of NF-KB target genes at 2 days post infection, indicating the expected initiation of an inflammatory response (Fig. 4E). Interestingly, in the cultures infected with the w.t. strain, NF- κ Bcontrolled cytokines and chemokine genes continued to be highly expressed at 7 days, suggesting a role of the typhoid toxin in maintaining inflammation. It has previously been observed that the typhoid toxin reduces inflammation in mice infected with a transgenic Salmonella Typhimurium strain expressing the typhoid toxin (57). Inflammation is the result of a complex interaction between immune cells and the epithelium in the mucosa, and we observed here that typhoid toxin directly or indirectly maintains high transcription of NF-*k*B target genes in epithelial cells.

Analysis of the cell-cycle related gene sets (58) during infection (Table 4) revealed a strong underrepresentation of transcriptional programs related to each cell cycle phase (G_1/S , S, G_2 , and G_2/M) (Fig. 4F). As those genes are usually accumulated only in a specific phase of the cell cycle, the downregulation of all the G_1/S , S, G_2 , and G_2/M transcription programs implies that a proportion of cells in the infected mucosoids are not replicating (58, 59). This effect of the infection in stopping cell replication is particularly strong at 2 days after infection, but is attenuated after 1 week, indicating that an increasing number of cells are cycling again (Fig. 4F). The effect of the infection on the cell cycle was either independent from a functional typhoid toxin or any effect of the typhoid toxin on the infected culture was masked by other bacterial effectors.

Intoxication with Salmonella supernatant containing CdtB induces DNA damage not coupled with cell cycle arrest. The majority of chronically infected carriers of typhoid Salmonella are usually diagnosed with gallstones and it has been found that Salmonella is able to grow on them forming biofilms. Salmonella covered gallstones might represent a reservoir for the bacteria but also a potential source of typhoid toxin (60). To understand the effect of the typhoid toxin on primary gallbladder cells, we sought to achieve a homogeneous typhoid toxin intoxication. To this aim, we seeded organoid-derived cells as 2D monolayers on collagen-coated plastic wells and supplemented them for 24 h with supernatant from Salmonella grown in MM5.8 medium, which is known to stimulate the production of typhoid toxin (19). Western blot analysis confirmed that only treatment with wild-type supernatant and etoposide, a chemical inducer of DSBs (61), resulted in an increased phosphorylation of H2AX, which is indicative of the presence of DSBs (Fig. 5A). The amount of DSBs was guantified using a neutral comet assay, which showed a significant increase in DNA in the tail of the comet analyzed from cells treated with supernatant from wild-type bacteria compared to supernatant from the $\Delta cdtB$ Salmonella or sterile medium (Fig. 5B, quantified in

FIG 4 Generation of gallbladder mucosoids and long-term infection experiments. (A) Schematic of gallbladder mucosoid cultivation and infection procedure. (From left to right) After seeding, a polarized cell layer of gallbladder cells begins to form on the collagen-coated polycarbonate filter in the transwell insert. (Continued on next page)

Fig. 5C). Cells treated with a genotoxic agent normally respond by arresting the cell cycle, and this was also reported for cells treated with recombinant CDT, a bacterial toxin that shares the CdtB subunit with the typhoid toxin (62). To examine whether cell cycle arrest was also induced in our intoxication model, we fluorescently labeled cells with antibodies against yH2AX and Ki67, a marker of proliferating cells. There was no difference in the percentage of Ki67⁺ cells in cultures treated with sterile, deletion mutant or wild-type supernatants (Fig. 5D, quantified in Fig. 5E). In stark contrast, cultures treated with etoposide contained little to no Ki67⁺ cells, although etoposide caused an amount of damage similar to that caused by the supernatant conditioned with wild-type typhoid toxin (Fig. 5A to C). Analysis of the γ H2AX signal intensity in Ki67⁺ versus Ki67⁻ cells showed that supernatant conditioned with typhoid toxin induced more DNA damage, especially in proliferating cells (Fig. 5D and F). Cells intoxicated with $\Delta cdtB$ supernatant showed non-significant differences in the distribution of γ H2AX intensities compared to sterile medium, both in proliferating and nonproliferating cells. The presence of cells positive for both γ H2AX and Ki67 was detected only after intoxication with the wild-type typhoid toxin, and this observation occurred up to 48 h after intoxication started (see Fig. S3A and B). Finally, not only intoxicated cells but also rare infected cells were positive for γ H2AX but still in an active state of proliferation, as indicated by double labeling with a Ki67 antibody (Fig. 5G). Our data show that human primary gallbladder cells are subjected to a low but persistent level of DNA damage caused by the CdtB subunit of the S. Paratyphi A-encoded typhoid toxin. The DNA damage caused by the genotoxin does not induce cell cycle arrest but particularly affects proliferating cells.

DISCUSSION

Here, we present a long-lived organoid model for human and murine GB. We found that long-term maintenance of GB organoid cultures depends on the presence of R-spondin, which mediates the activation of the Wnt/ β -catenin signaling pathway and the regeneration of the gallbladder epithelium from Lgr5⁺ cells. These results confirm a recent report from a murine organoid model, which showed that the addition of R-spondin and Noggin, but not of Wnt ligands, was necessary for the expansion of GB stem cells *in vitro* (31). Since Wnt ligands are crucial for the activation of the Wnt/ β -catenin pathway, we have found that the epithelium is itself the source of secreted WNT7A/7B. Our data suggest, in addition, that the organoids are able to transport organic ions, emulating the concentration of bile typical of this organ, and that GB epithelial features are stable over time in culture.

Resembling the architecture of the organ *in situ*, this organoid model provides an advanced platform for investigating GB pathology in primary, non-transformed cells. We therefore used GB organoids to develop a novel infection model for the human-specific, cancer-associated bacterium *S*. Paratyphi A, focusing on the genotoxic effect of the typhoid toxin. Previous data have suggested that bacterial internalization is essential for the secretion of the typhoid toxin by the host cell (17, 19–21). Here, we confirm that by infecting healthy human GB cells with a wild-type strain that produces the

FIG 4 Legend (Continued)

Primary cell medium is provided around the cell culture insert and on top of the cells. At day 3, the upper medium is withdrawn, and cells start to produce mucus. From day 10 onward, the culture is stable, and infection experiments can be performed by administering *Salmonella* on the cell layer. (B) Detailed view of long-term infection of human gallbladder mucosoids with *S. enterica* Paratyphi A and transmission electron microscopy. Stable long-term infection can be reached with both the wild type and the *cdtB* deletion mutant by applying gentamicin for 24 h and then withdrawing it again from the medium. Internalization and perinuclear localization of the bacteria within lysosomal structures is visible. Two zoomed-in images of intracellular bacteria are shown. b, bacterium; n, nucleus. Scale bar, 1 μ m. (C) Establishment of mucosoids. The development of a polarized monolayer of gallbladder cells in an air-liquid cultivation ("mucosoids") and transmission electron microscopy images of non-infected control (NI) and infected with *S.* Paratyphi A w.t. and isogenic *ΔcdtB* KO strains for 2 days are shown. Scale bar, 10 μ m. (D) Top view of infected for 6 days show DNA damage, whereas there is no damage visible in the non-infected control. Scale bar, 20 μ m. (E) Heat map of manually selected NF- κ B target genes. A comparison of w.t. and *ΔcdtB* infections at 2 and 7 days post infection is shown. The heatmap was plotted using the normalized expression values (log-normalized intensity) relative to the non-infected control at each time point (logFC). (F) Heatmap of normalized enrichment scores from GSEA for genes preferentially expressed in distinct cell cycle phases (58) for comparisons of mucosoid cultures with w.t. or *ΔcdtB* strain infections at 2 and 7 days post infection relative to non-infected controls.

TABLE 4 List of differentially regulated genes^a

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P39481	ABCA7	NM_019112	10347	-0.22	-0.02	0.20	-0.66	G1_S
A_23_P26375	ACD	NM_022914	65057	-0.11	-0.01	0.10	-0.48	G1_S
A_23_P163143	ACYP1	NM_203488	97	0.05	-0.13	-0.18	0.71	G1_S
A_23_P211039	ADAMTS1	NM_006988	9510	0.46	0.38	-0.08	0.45	G1_S
A_23_P342275	ADAMTS1	NM_006988	9510	0.37	0.16	-0.22	0.48	G1_S
A_24_P283395	ADCK2	NM_052853	90956	-0.25	-0.29	-0.03	-0.55	G1_S
A_24_P291978	ADCK2	NM_052853	90956	0.23	-0.02	-0.26	-0.10	G1_S
A 23 P501547	ADCY6	NM 015270	112	-0.21	0.10	0.31	-0.73	G1 S
A 24 P298077	ANKRD10	NM 017664	55608	0.75	-0.03	-0.78	0.94	G1 S
A 23 P205046	ANKRD10	NM 017664	55608	0.03	0.56	0.53	-0.36	G1 S
A 23 P170331	AP3M2	NM 006803	10947	0.34	0.04	-0.30	0.60	G1 S
A 24 P64039	AP3M2	NM_006803	10947	-0.02	-0.32	-0.30	0.47	G1 S
A 23 P160729	APAR1	NM_006594	10717	0.31	0.28	-0.03	0.46	G1 S
A 23 P256682	APFX2	NM_014481	27301	-0.22	0.20	0.42	-0.34	G1 S
Δ 23 P162782	ARGUUI	NM_018011	55082	0.17	-0.09	-0.25	0.74	G1 S
A 24 D150649	PAIADO	NM_006240	10459	-0.22	-0.02	0.20	0	
A_24_F139040	DAIAFZ RAIADO	NM 017451	10450	-0.55	0.05	-0.06	-0.93	
A_23_F313030	DAIAFZ	NM 017451	10450	0.10	0.11	-0.00	1.21	
A_25_POIOIU	DAIAP2	NW_017450	10456	-0.07	0.54	0.41	-1.21	
A_23_P6///I	BARDI	NM_000465	580	-1.44	-1.07	0.37	-0.47	G1_S
A_32_P18824	BRD7	NM_013263	29117	0.04	-0.13	-0.17	0.07	GI_S
A_23_P381378	CAPN/	NM_014296	23473	0.00	-0.06	-0.06	0.20	GI_S
A_23_P58898	CASP8AP2	NM_012115	9994	-0.42	-0.45	-0.03	0.12	G1_S
A_32_P180315	CCDC180	NM_020893	1E+08	-0.65	-0.98	-0.33	-0.36	G1_S
A_24_P280706	CCDC180	NM_020893	1E+08	0.27	0.28	0.01	0.50	G1_S
A_23_P209200	CCNE1	NM_001238	898	-0.40	-0.33	0.08	0.17	G1_S
A_23_P215976	CCNE2	NM_057749	9134	-1.03	-0.94	0.10	-0.63	G1_S
A_24_P397107	CDC25A	NM_001789	993	-1.34	-1.13	0.21	-0.75	G1_S
A_23_P121423	CDC25A	NM_001789	993	-0.57	-0.96	-0.38	0.06	G1_S
A_23_P49972	CDC6	NM_001254	990	-1.14	-1.40	-0.26	0.39	G1_S
A_23_P251421	CDCA7	NM_031942	83879	-1.06	-0.35	0.72	-0.88	G1_S
A_24_P171549	CDCA7	NM_031942	83879	-1.00	-0.16	0.84	-1.13	G1_S
A_24_P274795	CDCA7L	NM_018719	55536	-1.39	-0.68	0.71	-0.92	G1_S
A_23_P20752	CDK20	NM_001039803	23552	0.20	0.17	-0.02	-0.03	G1_S
A_24_P53519	CHAF1A	NM_005483	10036	-0.37	-0.42	-0.05	-0.71	G1_S
A_23_P57306	CHAF1B	NM_005441	8208	-0.81	-0.45	0.37	-0.54	G1_S
A_23_P126212	CLSPN	NM_022111	63967	-0.82	-1.06	-0.24	-0.08	G1_S
A_23_P52556	CTSD	NM_001909	1509	-0.32	-0.47	-0.15	-0.61	G1_S
A 23 P139312	DHFR2	NM 176815	200895	-0.54	-0.71	-0.17	0.09	G1 S
A_24_P186065	DHFR2	NM_176815	200895	-0.05	0.11	0.16	-0.33	G1_S
A 24 P219024	DIS3	NM 014953	22894	0.08	0.00	-0.08	0.31	G1 S
A 23 P48416	DIS3	NM 014953	22894	0.05	0.17	0.12	-0.27	G1 S
A 24 P395317	DIS3	NM 014953	22894	0.01	-0.06	-0.07	-0.29	G1 S
A 23 P36962	DNAJC3	NM 006260	5611	0.10	0.13	0.03	0.34	G1 S
A 23 P10385	DTL	NM 016448	51514	-2.06	-1.93	0.13	-1.18	G1 S
A 23 P80032	E2F1	NM 005225	1869	-1.89	-1.24	0.65	-1.39	G1 S
A 23 P408955	F2F2	NM 004091	1870	-2.73	-1.92	0.80	-2.19	G1 S
A 23 P125000	F2F2	NM_004091	1870	-0.11	-0.52	-0.40	0.71	G1 S
Δ 23 ΡΔΛΟ22	EIE2A	NM 032025	83930	0.33	0.14	-0.19	0.46	G1 S
A 20 D107504	EIE2A	NIM 032025	03232	0.55	_0.19	-035	0.70	G1 S
A 22 D07064	EIFZA	NIM_001094	8000 2000	_0.22	-0.10	0.55	0.52	G1 S
A_23_F0/904	ESD	NIVI_UU1984	2090	-0.53	-0.25	0.11	0.29	د_ان د1 د
A_24_P841662	ESD	ANU93043	2098	-0.38	-0.21	0.17	-0.17	G1 C
A_24_P332314	FAMILIB	NM_198947	3/4393	-2.21	-2.52	-0.31	-0.18	G1_S
A_23_P409516	FAMI 22A	NM_138333	116224	0.03	-0.28	-0.31	0.34	G1_S
A_23_P/1644	FANCG	NM_004629	2189	-0.62	-0.62	-0.01	-0.03	61_5
A_23_P141146	FBXL20	NM_032875	84961	0.56	0.06	-0.49	0.23	G1_S

-0.30

-0.18

-0.05

-2.76

-0.65

-0.85

0.26

-0.63

-0.68

-0.67

-3.12

-0.67

-0.77

0.12

(Continued on next page)

G1_S

G1_S

G1_S

G1_S

G1_S

G1_S

G1_S

-0.11

-0.18

-1.06

-0.05

0.02

0.09

0.45

0.33

0.50

0.62

0.36

0.02

0.14

-0.08

FLAD1

FLAD1

FLAD1

GINS2

GINS3

GINS3

GMNN

NM_025207

NM_025207

NM_025207

NM_016095

NM_022770

NM_022770

NM_015895

80308

80308

80308

51659

64785

64785

51053

A_32_P318086

A_32_P6917

A_23_P34527

A_23_P118246

A_23_P152136

A_24_P159323

A_23_P19712

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P99579	GON7	NM_032490	84520	-0.62	-0.44	0.18	0.05	G1_S
A_24_P567952	HCG18	NR_024052	414777	-0.54	-0.06	0.48	-0.46	G1_S
A_24_P934162	HCG18	A_24_P934162	NA	0.28	-0.15	-0.43	0.48	G1_S
A_32_P181722	HCG18	NR_024052	414777	-0.15	0.07	0.22	-0.19	G1_S
A_24_P567944	HCG18	NR_024052	414777	-0.07	0.23	0.30	-0.14	G1_S
A_32_P199884	HORMAD1	NM_032132	84072	0.28	0.03	-0.25	0.24	G1_S
A_24_P416370	HOXB4	NM_024015	3214	-0.84	-0.78	0.06	-0.48	GI_S
A_24_P305067	HUXB4 LIDAC	NM 005242	3214	-0.09	0.18	0.27	-0.62	
A_23_F90103		NM 004506	3203	0.32	-0.09	-0.37	-0.12	
A_32_F9903 Δ 23 P111360	HSF2	NM_004506	3290	0.20	-0.23	-0.44	0.60	G1 S
A 23 P43079	INTS8	NM_017864	55656	0.04	0.25	0.21	0.62	G1 S
A 23 P391506	IVNS1ABP	NM 006469	10625	-0.60	-0.45	0.15	-0.49	G1 S
A 23 P137514	IVNS1ABP	NM 006469	10625	-0.36	-0.18	0.18	0.63	G1 S
A_24_P324787	KANK2	NM_015493	25959	-0.33	0.05	0.38	-0.90	G1_S
A_23_P50426	KANK2	NM_015493	25959	-0.35	0.16	0.51	-1.00	G1_S
A_23_P55897	KANK2	NM_015493	25959	-0.05	0.24	0.29	-0.50	G1_S
A_23_P12079	KCNC4	NM_153763	3749	-0.37	-0.04	0.33	-0.43	G1_S
A_23_P404821	KIAA1147	NM_001080392	57189	-0.25	0.09	0.34	-0.52	G1_S
A_24_P101047	KIAA1586	NM_020931	57691	-0.24	0.03	0.27	-0.25	G1_S
A_24_P230965	KIAA1586	NM_020931	57691	-0.20	-0.22	-0.02	0.24	G1_S
A_24_P237559	LNPEP	AK096804	4012	0.41	0.10	-0.31	0.64	G1_S
A_23_P144677	LNPEP	ENST00000231368	4012	-0.29	-0.02	0.27	-0.56	G1_S
A_24_P132019	LNPEP	ENST00000231368	4012	0.21	0.36	0.15	-0.16	G1_S
A_23_P156061	LNPEP	NM_005575	4012	-0.09	-0.07	0.02	0.24	G1_S
A_32_P69475	LNPEP	ENS100000231368	4012	0.03	0.05	0.02	-0.30	GI_S
A_23_P207445	MAP2KO	NM 001080480	2008 154141	-2.10	-0.61	1.49	- 1.44	
A_23_P408990	MCM2	NM_004526	154141	-0.45	-0.03	0.42	-0.57	
A_32_F103033 A 33 P133377	MCM5	NM 006739	4171	-1.85	-1.50	0.00	-1.32 -1.36	G1_S
A 23 P90612	MCM6	NM_005915	4175	-1.05	-1 79	-0.52	0.06	G1_S
A 23 P204782	MDM1	NM 020128	56890	-0.85	-0.55	0.29	-0.15	G1 S
A 23 P413180	MDM1	NM 017440	56890	-0.66	-0.11	0.55	-0.69	G1 S
A 23 P105730	MDM1	NM 020128	56890	-0.14	-0.02	0.12	0.24	G1 S
A_24_P313678	MED31	NM_016060	51003	0.18	0.08	-0.11	0.78	G1_S
A_23_P341443	MNT	NM_020310	4335	0.68	0.66	-0.02	-0.28	G1_S
A_24_P350969	MNT	AF318360	4335	0.08	-0.20	-0.28	0.56	G1_S
A_32_P6015	MNX1	NM_005515	3110	-0.33	-0.42	-0.10	-0.36	G1_S
A_23_P253331	MNX1	NM_005515	3110	-0.07	-0.33	-0.26	0.05	G1_S
A_24_P279797	MRI1	NM_001031727	84245	0.01	0.11	0.10	0.38	G1_S
A_23_P102471	MSH2	NM_000251	4436	-0.38	-0.39	-0.02	-0.28	G1_S
A_23_P34800	NASP	NM_172164	4678	-0.92	-0.57	0.34	-0.26	G1_S
A_32_P28365	NASP	NM_1/2164	4678	-0./0	-0.46	0.24	-0.15	G1_S
A_24_P926760	NKIK	NM_005385	4820	0.53	0.36	-0.17	0.78	
A_23_P212002		NM 005385	4820	0.38	0.32	-0.06	0.47	
A_24_F171001 A 23 P203013	ΝΓΙΓ	NM 002519	4020	-0.59	-0.36	0.10	-0.18	G1 S
A_23_F203013 A 24 P273823	NPAT	NM 002519	4863	-0.22	-0.30	-0.09	0.18	G1 S
A 24 P29641	NSLIN5P2	NM 148936	260294	0.05	0.12	0.07	0.46	G1 S
A 23 P161324	NUDT13	NM 015901	25961	-0.39	-0.32	0.07	-0.01	G1 S
A 32 P41471	NUDT13	NM 015901	25961	-0.19	-0.31	-0.11	0.29	G1 S
A 24 P200761	NUP43	NM 198887	348995	-0.37	-0.10	0.27	-0.24	G1S
A_23_P31055	NUP43	NM_198887	348995	-0.21	0.02	0.22	0.16	G1_S
A_23_P45799	ORC1	NM_004153	4998	-0.91	-0.95	-0.04	-0.48	G1_S
A_24_P371053	ORMDL1	NM_016467	94101	-0.59	-0.20	0.39	-0.10	G1_S
A_23_P120194	ORMDL1	NM_016467	94101	-0.01	0.07	0.08	0.25	G1_S
A_32_P220762	OSBPL6	ENST00000190611	114880	0.10	-0.19	-0.29	0.11	G1_S
A_23_P108823	OSBPL6	NM_032523	114880	0.00	-0.27	-0.28	0.17	G1_S
A_24_P414446	OTULIN	NM_138348	90268	-0.16	-0.55	-0.39	0.09	G1_S
A_23_P353106	OTULIN	NM_138348	90268	0.13	-0.25	-0.38	0.12	G1_S
A_24_P142885	PANK2	ENS100000497424	80025	-0.56	-0.16	0.41	-0.45	61_5
A_23_P/9942	PANK2	NM_153638	80025	-0.12	0.06	0.17	-0.25	د_ای

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_24_P299911	PASK	NM_015148	23178	-0.45	-0.28	0.18	-0.39	G1_S
A_23_P28886	PCNA	NM_002592	5111	-1.10	-0.88	0.22	-0.11	G1_S
A_24_P280029	PDXP	NM_020315	57026	0.09	-0.20	-0.28	0.81	G1_S
A_23_P61180	PLCXD1	NM_018390	55344	0.64	0.69	0.06	0.14	G1_S
A_23_P99582	PNN	NM_002687	5411	0.46	0.30	-0.16	1.13	G1_S
A_32_P182439	POLD3	NM_006591	10714	-0.43	-0.01	0.42	-0.26	G1_S
A_24_P75056	POLD3	NM_006591	10714	-0.26	0.19	0.45	-0.45	G1_S
A_23_P70794	RAB23	NM_016277	51715	-0.48	-0.19	0.29	-0.27	G1_S
A_23_P71558	RECQL4	NM_004260	9401	-1.56	-0.91	0.65	-0.90	G1_S
A_23_P353717	RMI2	NM_152308	116028	-1.49	-1.51	-0.02	-1.39	G1_S
A_23_P258071	RNF113A	NM_006978	//3/	0.21	-0.05	-0.26	0.49	GI_S
A_23_P254970	RNPC3	AKU57799	55599	-0.24	-0.35	-0.11	0.31	GI_S
A_24_P341504	KNPC3	NM_01/019	55599	0.23	0.13	-0.10	0.71	
A_23_F34390	DI INIY1	NM_001122607	37033 861	1.03	0.09	-0.37	0.97	G1_5
A_24_F34133		NM_001001800	861	-0.68	0.55	0.27	-1.35	G1_5
Δ 23 P16044	SDC1	NM_001006946	6382	-0.69	-0.50	0.19	-1.07	G1_5
A 24 P97129	SDC1	NM_001006946	6382	-0.35	-0.44	-0.08	0.50	G1_5
A 23 P357856	SEC62	NM_003262	7095	-0.55	-0.28	0.28	-0.71	G1_5
A 23 P144224	SEC02 SEC62	NM_003262	7095	0.50	0.20	-0.47	0.48	G1_5
A 24 P285880	SEC02 SEC62	NM_003262	7095	-0.35	-0.26	0.10	0.05	G1_5
A 23 P357860	SEC62	NM_003262	7095	-0.52	0.04	0.56	-1.67	G1_S
A 24 P251704	SEC62	NM 003262	7095	-0.05	0.04	0.09	-0.96	G1 S
A 23 P55632	SERPINB3	NM 006919	6317	1.00	1.78	0.78	1.52	G1 S
A 23 P156310	SKP2	NM 032637	6502	-0.38	-0.75	-0.37	0.37	G1 S
A_23_P7101	SLBP	NM_006527	7884	0.21	0.00	-0.21	0.23	G1_S
A_23_P40896	SLC25A36	NM_018155	55186	0.27	-0.15	-0.42	0.91	G1_S
A_23_P408455	SLC25A36	NM_001104647	55186	0.24	-0.37	-0.61	0.85	G1_S
A_24_P136725	SPIN3	NR_027139	169981	-0.07	0.34	0.40	0.01	G1_S
A_24_P494454	SPIN3	NM_001010862	169981	0.01	0.06	0.05	1.15	G1_S
A_32_P222961	SPIN4	NM_001012968	139886	0.33	0.38	0.06	0.30	G1_S
A_24_P467371	SPIN4	NM_001012968	139886	0.29	0.10	-0.19	-0.42	G1_S
A_24_P222911	SRSF7	NM_001031684	6432	-0.81	-0.73	0.08	-0.35	G1_S
A_23_P39704	SRSF7	NM_001031684	6432	-0.58	-0.60	-0.02	-0.01	G1_S
A_23_P155229	SSR3	NM_007107	6747	0.53	-0.06	-0.58	0.94	G1_S
A_24_P319942	SSR3	NM_007107	6747	-0.06	-0.23	-0.18	-0.01	G1_S
A_24_P928068	TAF15	DB509819	NA	0.46	0.45	0.00	0.02	G1_S
A_23_P159305	TAF15	NM_139215	8148	0.11	0.26	0.15	-0.66	G1_S
A_32_P56525	TCAFT	NM_014719	9747	0.28	0.46	0.18	-1.13	GI_S
A_24_P380628	TCAFT	NM_014/19	9747	-0.08	0.10	0.18	-0.69	GI_S
A_24_P368023	TCAFT	ENST000004/98/0	9/4/	-0.03	0.26	0.29	- 1.42	
A_25_P99950	TATENADAD	NM 024215	5490Z	0.17	-0.40	-0.05	0.00	
A_23_F137263		NM_007027	11073	-0.46	-0.26	0.14	-0.37	G1_5
A 23 P31389	TRAZA	NM_013293	29896	-0.67	-0.32	0.21	-0.04	G1_5
A 23 P218879	TRFX1	NM_016381	11277	-0.44	-0.10	0.34	-0.38	G1_5
A 24 P339858	TSPFAR-AS2	NR 026547	114043	0.36	0.72	0.36	-0.13	G1_5
A 24 P910854	TTC14	NM 001042601	151613	0.51	0.21	-0.30	-0.10	G1 S
A 23 P212511	TTC14	NM 001042601	151613	-0.10	-0.25	-0.14	0.52	G1 S
A 24 P159094	UBR7	NM 175748	55148	-0.97	-0.65	0.33	-0.45	G1 S
A 23 P205393	UBR7	NM 175748	55148	-0.43	-0.63	-0.21	0.41	G1 S
A_23_P208880	UHRF1	NM_013282	29128	-2.52	-1.75	0.77	-1.77	G1_S
A_32_P101235	UHRF1	NM_013282	29128	-0.47	-0.43	0.04	-0.15	G1_S
A_24_P398585	UNG	NM_003362	7374	-0.28	0.01	0.29	-0.27	G1_S
A_24_P137522	USP53	NM_019050	54532	0.46	0.26	-0.20	0.60	G1_S
A_32_P128701	USP53	NM_019050	54532	0.40	0.15	-0.25	0.38	G1_S
A_23_P115215	VPS72	NM_005997	6944	-0.35	-0.10	0.25	0.01	G1_S
A_23_P129075	WDR76	NM_024908	79968	-0.19	-0.48	-0.29	-0.09	G1_S
A_24_P158385	ZMYND19	NM_138462	116225	-0.29	-0.28	0.01	-0.38	G1_S
A_32_P183218	ZNF367	NM_153695	195828	-1.12	-0.76	0.35	-0.53	G1_S
A_23_P410625	ZNF367	NM_153695	195828	-0.41	-0.50	-0.09	-0.08	G1_S

			logFC at:					
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P340922	ZNF414	NM_032370	84330	-0.35	0.32	0.68	-0.93	G1_S
A_32_P85978	ZNF414	NM_001146175	84330	0.21	0.26	0.05	-0.48	G1_S
A_23_P85521	ZRANB2	NM_203350	9406	0.36	0.09	-0.27	0.81	G1_S
A_24_P242299	ZRANB2	NM_005455	9406	0.30	0.10	-0.20	0.57	G1_S
A_23_P120784	TRMT2A	NM_022727	27037	-0.61	-0.27	0.34	-0.58	G1_S,G2
A_24_P305662	TRMT2A	NM_022727	27037	-0.33	-0.12	0.21	-0.20	G1_S,G2
A_23_P370989	MCM4	NM_005914	4173	-1.44	-1.07	0.36	-0.90	G1_S,G2_M
A_24_P59596	ATAD2	NM_014109	29028	-1.00	-1.55	-0.55	0.22	G1_S,S
A_23_P216068	ATAD2	NM_014109	29028	-0.82	-0.97	-0.15	-0.21	G1_5,5
A_23_P38/943	CASP2	INIVI_032982	835	-0.26	0.15	0.41	-0.75	GI_3,5
A_24_F209398 Δ 23 P215701	CASP2	NM 032982	835	-0.17	0.04	0.21	-0.43	G1 S S
A_23_P203645	CRERZE	NM 001039618	58487	0.15	0.16	-0.63	0.40	G1_5,5 G1_5,5
A 23 P252740	DSCC1	NM 024094	79075	-1.22	-1.25	-0.04	-0.64	G1_5,5
A 23 P162579	HSPB8	NM 014365	26353	1.38	0.02	-1.35	1.06	G1_5,5
A 23 P170110	NEAT1	AW806882	NA	0.73	0.39	-0.34	1.00	G1 S.S
A 24 P290999	NEAT1	NR 028272	283131	0.77	-0.15	-0.92	1.04	G1 S,S
A_24_P566916	NEAT1	NR_028272	283131	0.38	0.03	-0.34	0.03	G1_S,S
A_23_P160518	TRIM45	NM_025188	80263	-0.40	-0.18	0.22	-0.16	G1_S,S
A_23_P160523	TRIM45	NM_025188	80263	-0.22	-0.20	0.02	-0.47	G1_S,S
A_23_P14543	ALKBH1	NM_006020	8846	0.21	0.05	-0.16	0.40	G2
A_23_P108135	AP3D1	NM_003938	8943	0.58	0.63	0.05	-0.50	G2
A_23_P119526	AP3D1	NM_003938	8943	0.46	0.51	0.05	-0.18	G2
A_24_P30034	ARHGEF39	NM_032818	84904	-0.48	-0.49	-0.01	0.19	G2
A_23_P216517	ARHGEF39	NM_032818	84904	-0.48	-0.91	-0.43	0.45	G2
A_32_P234827	ARMC1	NM_018120	55156	0.00	-0.04	-0.05	0.23	G2
A_23_P415015	ATL2	NM_022374	64225	0.40	0.35	-0.05	0.17	G2
A_23_P209619	AIL2	NM_022374	64225	0.07	0.40	0.33	-0.17	G2
A_23_P130182	AUKKB BCLAF1	NW_004217	9212	-1.55	-1.32	0.24	-0.60	G2
A_24_P09512	DCLAFI DCLAE1	NM 014720	9774	-0.94	-0.52	0.45	-0.39	G2 G2
A_24_F00913 Δ 23 P111343	BCLAFT BCLAFT	NM 014739	9774	-0.85	-0.89	0.04	0.05	62
A 23 P25626	BORA	NM 024808	79866	-1.02	-0.89	0.22	0.28	G2 G2
A 23 P145016	BRD8	NM_006696	10902	-0.13	0.02	0.12	-0.28	G2 G2
A 23 P81280	BTNL9	NM 152547	153579	0.42	0.29	-0.14	0.18	G2
A 32 P187951	BTNL9	NM 152547	153579	-0.29	-0.38	-0.09	-0.48	G2
A_23_P46924	BUB3	NM_001007793	9184	-0.66	-0.53	0.13	-0.08	G2
A_23_P202316	BUB3	NM_001007793	9184	-0.63	-0.34	0.29	-0.25	G2
A_23_P320658	BUB3	NM_004725	9184	0.20	-0.10	-0.29	0.52	G2
A_24_P413941	C2orf69	NM_153689	205327	-0.24	-0.07	0.17	-0.37	G2
A_23_P142918	C2orf69	NM_153689	205327	0.10	0.06	-0.04	-0.04	G2
A_23_P92410	CASP3	NM_004346	836	-0.51	-0.13	0.38	-0.08	G2
A_24_P664995	CBX5	NM_001127322	23468	-0.34	0.24	0.57	-1.23	G2
A_24_P620621	CBX5	NM_001127322	23468	-0.15	-0.02	0.13	-0.14	G2
A_23_P2355	CBX5	NM_012117	23468	-0.17	-0.29	-0.12	0.49	G2
A_24_P193592	CCNF	NM_001761	899	-0.89	-0.41	0.48	-0.46	G2
A_23_P3/954	COC16		899 0001	-0.74	-0.22	0.52	-0.94	G2 G2
A_23_F00003	CDC10	NM 001700	005	-0.30	-0.15	0.25	0.02	G2
A_23_F70249	CDC23C	NM 152562	157313	-1.95	-1.77	0.41	-0.24	G2
A 24 P323434	CDCA2	NM_152562	157313	-1.36	-1.32	0.04	-0.07	G2 G2
A 23 P375	CDCA8	NM 018101	55143	-2.04	-1.76	0.29	-0.84	G2
A 23 P138507	CDK1	NM 001786	983	-2.95	-2.22	0.73	-0.84	G2
A 24 P282343	CDKL5	NM 003159	6792	0.14	-0.06	-0.20	-0.28	G2
A_24_P81841	CDKN1B	NM_004064	1027	-0.70	-0.55	0.15	-0.73	G2
A_23_P204696	CDKN1B	NM_004064	1027	-0.41	-0.54	-0.13	0.24	G2
A_23_P85460	CDKN2C	NM_078626	1031	-0.61	-1.44	-0.82	-0.04	G2
A_23_P126120	CENPL	NM_033319	91687	-0.75	-0.56	0.19	-0.24	G2
A_24_P930100	CENPL	AK056348	91687	0.01	-0.68	-0.69	0.61	G2
A_23_P201816	CEP350	NM_014810	9857	-0.25	-0.13	0.12	-0.12	G2
A_23_P119562	CFD	NM_001928	1675	-0.36	-0.22	0.13	-0.26	G2
A_23_P109452	CHEK2	NM_001005735	11200	-0.96	-0.67	0.28	0.01	G2

2 days 7 days	
Probe Gene symbol RefSeq Entrez ID w.t. vs NI dCdtB vs NI w.t. vs NI dCdtB	vs NI Cell cycle phase ^b
A_23_P250313 CIP2A NM_020890 57650 -0.85 -0.77 0.08 0.01	G2
A_24_P351466 CIP2A NM_020890 57650 0.02 -0.40 -0.42 0.14	G2
A_23_P388812 CKAP2L NM_152515 150468 -2.34 -2.03 0.31 -0.35	G2
A_23_P213745 CXCL14 NM_004887 9547 -2.26 -1.16 1.10 -2.35	G2
A_23_P2181 CYB5R2 NM_016229 51700 0.31 -0.19 -0.49 1.01	G2
A_23_P119377 CYTH2 NM_004228 9266 -0.42 -0.11 0.31 -0.64	G2
A_23_P422268 DCAF7 NM_005828 10238 0.32 0.42 0.10 -0.21	G2
A_24_P916141 DCAF7 NM_005828 10238 -0.20 0.23 0.44 -1.47	G2
A_24_P91222 DCAF/ NM_005828 10238 0.13 0.10 -0.02 -0.15	G2
A_23_P26836 DCAF/ NM_005828 10238 0.10 0.41 0.31 -1.19	G2
A_32_P450/45 DETI NM 017006 55070 0.04 0.07 0.03 0.02	62
A_23_F20164 DETT NM_01799 35070 0.04 0.07 0.05 0.09	62
A_{23}^{-25} 124224 $D1A6$ $NW_{004}^{-004941}$ 1039 0.03 0.04 0.02 0.10	62
R_{222}^{-1107} R_{23}^{-1107} $R_{$	62
A 23 P117580 ENTPD5 NM 001249 957 012 0.09 -0.03 0.16	62
$A_{23} P_{32707} F_{5P 1} NM 01291 9700 -0.40 -1.11 -0.70 0.46$	62
A 32 P119007 ESPL1 NM 012291 9700 0.48 1.80 1.33 -0.18	G2
A 24 P278637 FADD NM 003824 8772 -0.41 -0.08 0.33 -0.18	G2
A 23 P86917 FADD NM 003824 8772 -0.33 0.05 0.37 -0.32	G2
A 23 P386241 FAM110A NM 001042353 83541 0.01 0.38 0.37 -0.66	G2
A_23_P323751 FAM83D NM_030919 81610 -1.23 -1.77 -0.54 0.09	G2
A_23_P377888 FAN1 NM_014967 22909 0.24 0.15 -0.09 0.33	G2
A_23_P345678 FANCD2 NM_033084 2177 -0.61 -1.11 -0.50 -0.17	G2
A_32_P24165 FANCD2 NM_001018115 2177 -0.59 -0.68 -0.09 -0.10	G2
A_23_P143994 FANCD2 NM_001018115 2177 -0.59 -0.56 0.03 -0.90	G2
A_23_P142333 FZR1 NM_016263 51343 0.40 0.18 -0.22 0.12	G2
A_23_P142325 FZR1 NM_001136198 51343 0.41 0.05 -0.35 0.11	G2
A_24_P944291 FZR1 ENST00000395095 51343 0.04 0.25 0.21 -0.49	G2
A_24_P318836 FZR1 NM_016263 51343 -0.04 0.02 0.06 -0.53	G2
A_23_P106280 GABPB1 NR_026891 55056 -0.85 -0.42 0.43 -0.95	G2
A_23_P205789 GABPB1 NM_002041 2553 1.27 0.43 -0.84 1.47	G2
A_24_P1/6255 GABPB/ NM_005254 2553 -0.14 -0.02 0.12 0.16	G2
A_23_P83134 GA51 NM_002048 2619 0.50 -0.71 -1.21 0.26	G2
$A_224_{-153695} = \frac{1}{12474} = \frac{1}{100} = \frac{1}{100$	62
A_22_P141903 INV_035417 95223 -0.41 -0.43 -0.04 0.16	62
$A_{23} = 111106$ $HCP5$ 106175 10866 0.55 0.24 -0.31 0.80	62
$A_{24} = 17870$ $HCP5$ NM 006674 10866 0.52 0.14 -0.37 0.70	62
A 24 P38609 HCP5 NM 006674 10866 0.28 0.09 -0.19 0.40	62
A 23 P145574 HINT3 NM 138571 135114 0.38 0.18 -0.20 0.80	62
A 24 P681011 HIPK2 NM 022740 28996 0.20 0.72 0.52 -2.31	G2
A 23 P169756 HIPK2 NM 022740 28996 0.20 0.39 0.19 -1.41	G2
A_24_P500621 HIPK2 NM_022740 28996 0.10 0.39 0.29 -1.71	G2
A_23_P169766 HIPK2 NM_022740 28996 -0.02 0.20 0.22 -1.50	G2
A_23_P149301 <i>HIST3H2A</i> NM_033445 92815 0.15 0.07 -0.08 0.79	G2
A_24_P257099 HJURP NM_018410 55355 -2.18 -1.32 0.86 -1.01	G2
A_23_P155765 HMGB2 NM_002129 3148 -0.77 -2.05 -1.29 0.90	G2
A_23_P88303 HSPA2 NM_021979 3306 1.00 0.29 -0.71 0.23	G2
A_23_P17633 IFNAR1 NM_000629 3454 0.54 0.11 -0.43 0.40	G2
A_23_P113803 KATNA1 NM_007044 11104 0.17 -0.33 -0.50 0.62	G2
A_23_P77286 KATNBL1 NM_024713 79768 -0.55 -0.37 0.18 -0.19	G2
A_32_P58163 KA/NBL1 NM_024713 79768 -0.34 -0.15 0.20 -0.11	G2
A_24_P12539 KBIBD2 NM_015483 25948 0.20 -0.15 -0.35 0.37	G2
A_23_P70951 KBIBD2 NM_014662 25948 0.06 0.00 -0.07 0.06	G2
A_25_7/4440 AU/W4A INW_014003 9082 -0.20 0.0/ 0.2/ -0.48	62
A 22 DE2279 KIETT NIM 004E22 2022 1.24 0.02 0.21 0.77	62
A 23 D54622 K/E22 NM 007217 2025 -1.44 -0.93 0.31 -0.76	62
A 23 P133956 KIFC1 NM 002263 3833 -2.20 -1.40 -1.13 0.33 -0.79	62
A 24 P252739 K/F6 NM 001300 1316 -1.45 -1.02 0.42 -0.06	62
A_24_P932981 <i>KLF6</i> NM_001300 1316 0.59 -0.18 -0.77 -0.30	G2

ProbeGene symbolRefSeqEntrez IDw.t. vs NIdCdtB vs NIw.t. vs NIdCdtB vs NICell cycle phase A_{23} P69598KLF6NM_00130013160.81 -0.29 -1.10 0.00G2 A_{23} P15265KPMA2NM_0022663838 -1.25 -0.63 0.62 -0.25 G2 A_{23} P15265KPMA2NM_0022663838 -1.25 -0.63 0.62 -0.25 G2 A_{23} P15265KPMA2NM_00256734001 -1.90 -1.59 0.31 -1.26 G2 A_{24} P687594L/X1LENST00003693081280770.36 -0.57 0.28 -0.36 G2 A_{24} P264790LTBP3NM_0210704054 -0.85 -0.57 0.28 -0.36 G2 A_{24} P2938360LTBP3NM_0210704054 -0.85 -0.57 0.28 -0.36 G2 A_{24} P294300LTBP3NM_0210704054 -0.85 -0.57 0.28 -0.36 G2 A_{24} P2928360LTBP3NM_02110704054 -0.85 -0.57 0.28 -0.36 G2 A_{24} P292841MAD2L1NM_0023584085 -1.86 -1.58 0.28 -0.36 G2 A_{24} P292840MALAT1NR_002819378938 0.11 0.33 -0.44 -0.25 0.80G2 A_{24} P29241MALAT1NR_002819378938 -1.19 -0.32 -0.40 1.05 G2 A_{24} P497244					logFC at:					
Probe Gene symbol RefSeq Entrez ID w.t. vs NI dCdtB vs NI w.t. vs NI dCdtB vs NI Cell cycle phase A_23_P63798 KLF6 NM_001300 1316 0.81 -0.29 -1.10 0.00 62 A_23_P132265 KPMA2 NM_001266 3838 -1.25 -0.63 0.62 -0.25 62 A_23_P132744 LIX1L NM_02266 3838 -1.25 -0.63 0.62 -0.25 62 A_24_P687594 LIX1L ENST0000369308 128077 0.56 0.04 -0.52 0.40 62 A_24_P264790 LIBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 62 A_24_P298360 LIBP3 NM_021070 4054 -1.86 -1.58 0.28 -0.36 62 A_24_P873659 MALAT1 NR_002819 378938 0.11 0.03 -0.069 1.76 62 A_24_P829281 MALAT1 NR_002819 378938 0.11 <td< th=""><th></th><th></th><th></th><th></th><th>2 days</th><th></th><th>7 days</th><th></th><th></th></td<>					2 days		7 days			
A.24_P69654 KLF6 NM_001300 1316 0.81 -0.29 -1.10 0.00 G2 A.23_P63798 KLF6 NM_001300 1316 0.57 -0.29 -0.86 -0.26 G2 A.23_P12525 KPNA2 NM_002266 3838 -1.25 -0.63 0.62 -0.25 G2 A.23_P12545 KNMA2 NM_002666 3838 -1.25 -0.63 0.62 -0.40 G2 A.24_P687594 LIX1L ENTO000369308 128077 0.30 -0.02 -0.31 -1.26 G2 A.24_P264790 LTBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A.24_P28559 MLA11 NM_002358 4085 -1.86 -1.58 0.28 -0.36 G2 A.24_P87559 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A.24_P87954 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A.24_P829261 MALAT1 NR_002819 378938	Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b	
A_23_P63798 KLF6 NM_001300 1316 0.57 -0.29 -0.86 -0.26 G2 A_23_P125265 KPNA2 NM_002266 3838 -1.25 -0.63 0.62 -0.25 G2 A_23_P342744 LIX1L ENST00000369308 128077 0.30 -0.02 -0.31 -0.45 G2 A_24_P264790 LIX1L ENST00000369308 128077 0.30 -0.02 -0.31 -0.45 G2 A_24_P284790 LIBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A_24_P28360 LTBP3 NM_021070 4054 0.36 -0.16 -0.51 -0.64 G2 A_24_P873659 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A_24_P873659 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_24_P497244 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_23_P42626 MEPCE NM_014791 <td< td=""><td>A_24_P69654</td><td>KLF6</td><td>NM_001300</td><td>1316</td><td>0.81</td><td>-0.29</td><td>-1.10</td><td>0.00</td><td>G2</td></td<>	A_24_P69654	KLF6	NM_001300	1316	0.81	-0.29	-1.10	0.00	G2	
A_23_P125265 KPNA2 NM_002266 3838 -1.25 -0.63 0.62 -0.25 G2 A_23_P342744 LIX1L NM_153713 128077 0.56 0.04 -0.52 0.40 G2 A_24_P687594 LIX1L ENST00000369308 128077 0.30 -0.02 -0.31 -0.45 G2 A_24_P264790 LTBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A_24_P284800 LTBP3 NM_021070 4054 -0.86 -1.58 0.28 -0.36 G2 A_24_P873659 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A_24_P873659 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_24_P87244 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_24_P873251 MALAT1 NR_002819 378938 0.11 0.33 -0.20 1.07 G2 A_24_P87244 MALAT1 NR_002819 37	A_23_P63798	KLF6	NM_001300	1316	0.57	-0.29	-0.86	-0.26	G2	
A_23_P342744 LIX1L NM_153713 128077 0.56 0.04 -0.52 0.40 G2 A_24_P687594 LIX1L ENST00000369308 128077 0.30 -0.02 -0.31 -0.45 G2 A_23_P28493 LMNB1 NM_005573 4001 -1.90 -1.59 0.31 -1.26 G2 A_24_P28490 LTBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A_24_P28360 LTBP3 NM_021070 4054 0.36 -0.16 -0.51 -0.64 G2 A_24_P83559 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A_24_P83559 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_24_P849242 MELK NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P44262 MELK NM_000245 4233 0.27 0.00 0.71	A_23_P125265	KPNA2	NM_002266	3838	-1.25	-0.63	0.62	-0.25	G2	
A_24_P687594 LX1L ENST00000369308 128077 0.30 -0.02 -0.31 -0.45 G2 A_23_P258493 LMNB1 NM_005573 4001 -1.90 -1.59 0.31 -1.26 G2 A_24_P264790 LTBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A_24_P298360 LTBP3 NM_021070 4054 0.36 -0.16 -0.51 -0.64 G2 A_24_P873659 MALATI NR_002819 378938 -0.19 -0.44 -0.25 0.80 G2 A_24_P829261 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_24_P497244 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_23_P1454 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_23_P4626 MEPCE NM_019606 56257 -0.16 0.24 0.40 <td>A_23_P342744</td> <td>LIX1L</td> <td>NM_153713</td> <td>128077</td> <td>0.56</td> <td>0.04</td> <td>-0.52</td> <td>0.40</td> <td>G2</td>	A_23_P342744	LIX1L	NM_153713	128077	0.56	0.04	-0.52	0.40	G2	
A_23_P258493 LMNB1 NM_005573 4001 -1.90 -1.59 0.31 -1.26 G2 A_24_P264790 LTBP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A_24_P284900 LTBP3 NM_0021070 4054 0.36 -0.16 -0.51 -0.64 G2 A_23_P92441 MAD211 NM_002358 4085 -1.86 -1.58 0.28 -0.36 G2 A_24_P873659 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A_24_P829261 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_24_P829261 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_23_P94422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_23_P44266 MEPCE NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145844 MET NM_000245 4233	A_24_P687594	LIX1L	ENST0000369308	128077	0.30	-0.02	-0.31	-0.45	G2	
A_24_P264790 L1BP3 NM_021070 4054 -0.85 -0.57 0.28 -0.36 G2 A_24_P298800 LTBP3 NM_021070 4054 0.36 -0.16 -0.51 -0.64 G2 A_24_P298300 LTBP3 NM_021070 4054 0.36 -0.16 -0.51 -0.64 G2 A_24_P892941 MAD2L1 NM_002358 4085 -1.86 -1.58 0.28 -0.36 G2 A_24_P829261 MALAT1 NR_002819 378938 0.19 -0.44 -0.25 0.80 G2 A_24_P829261 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_24_P497244 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_23_P94422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_24_P312189 MEPCE NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P14584 MET NM_000245 4233	A_23_P258493	LMNB1	NM_005573	4001	-1.90	-1.59	0.31	-1.26	G2	
A_24_P298360 LIBP3 NM_021070 4054 0.56 -0.16 -0.51 -0.64 62 A_23_P92441 MAD2L1 NM_002358 4085 -1.86 -1.58 0.28 -0.36 62 A_24_P83659 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 62 A_24_P83261 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 62 A_24_P497244 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 62 A_23_P4422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_24_P312189 MEPCE NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P145844 MET NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145846 MET NM_00245 4233 0.22 0.30 0.08 0.11 G2 A_23_P15558 MGAT2 NM_002408 4247 -0.19<	A_24_P264790	LIBP3	NM_021070	4054	-0.85	-0.57	0.28	-0.36	G2	
A_23_P92441 MAL211 NM_002358 4085 -1.86 -1.86 -0.28 -0.36 G2 A_24_P873659 MALAT1 NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A_24_P829261 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_24_P497244 MALAT1 NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_23_P4422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_23_P44266 MEPCE NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P145844 MET NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145844 MET NM_000245 4233 0.27 0.20 0.00 0.71 G2 A_23_P145846 MET NM_002455 4233 0.27 0.20 1.27 G2 A_23_P145846 MET NM_002408 4247 -0.19 -0.39 <td>A_24_P298360</td> <td></td> <td>NM_02259</td> <td>4054</td> <td>0.36</td> <td>-0.16</td> <td>-0.51</td> <td>-0.64</td> <td>G2</td>	A_24_P298360		NM_02259	4054	0.36	-0.16	-0.51	-0.64	G2	
A_24_Por 3659 MMLATT NR_002819 378938 0.29 -0.40 -0.69 1.76 G2 A_23_P21143 MALATT NR_002819 378938 -0.19 -0.44 -0.25 0.80 G2 A_24_P829261 MALAT1 NR_002819 378938 0.11 0.03 -0.08 0.27 G2 A_23_P94422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_23_P42626 MEPCE NM_019606 56257 -0.16 0.24 0.40 -0.71 G2 A_23_P145844 MET NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145846 MET NM_000245 4233 0.27 0.20 0.00 0.71 G2 A_23_P359245 MET NM_000245 4233 0.22 0.30 0.08 0.11 G2 A_23_P359245 MET NM_00245 4233 0.22 0.30 0.08 0.11 G2 A_23_P128656 MID1 NM_002408 4247 -0.19	A_25_P92441		NIVI_002556	4000	-1.00	-1.56	0.26	-0.50	G2 C2	
A_221_211163MALATINR_0028193789380.110.03-0.080.27G2A_24_P829261MALATINR_0028193789380.07-0.32-0.401.05G2A_23_P4422MELKNM_0147919833-3.11-2.071.04-1.29G2A_23_P42626MEPCENM_01960656257-0.180.150.32-0.74G2A_23_P145844METNM_00024542330.510.41-0.100.86G2A_23_P145846METNM_00024542330.270.270.000.71G2A_23_P359245METNM_00024542330.220.300.080.11G2A_23_P128666MID1NM_00024542330.220.300.080.11G2A_23_P128656MID1NM_0024084247-0.19-0.39-0.201.27G2A_23_P170037MID1NM_003814281-0.310.140.46-0.59G2A_23_P13856MID1NM_003211784057-2.67-2.060.61-1.08G2A_23_P137856MUC1NM_02152023255-1.12-0.380.74-1.41G2A_33_P11847NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P14543NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A_24_F673039 Δ 23 P21143	ΜΔΙΔΤ1	NR_002819	378938	-0.19	-0.40	-0.09	0.80	62	
A_24_P497244 MALATI NR_002819 378938 0.07 -0.32 -0.40 1.05 G2 A_23_P4422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_23_P42626 MEPCE NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P145844 MET NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145846 MET NM_000245 4233 0.27 0.27 0.00 0.71 G2 A_23_P145846 MET NM_000245 4233 0.22 0.30 0.08 0.11 G2 A_23_P145846 MET NM_000245 4233 0.22 0.30 0.08 0.11 G2 A_23_P65558 MGAT2 NM_002408 4247 -0.19 -0.39 -0.20 1.27 G2 A_23_P128656 MID1 NM_0033290 4281 -0.01 0.50 0.50 -0.87 G2 A_23_P130312 MND1 NM_032117 84057 -2.67 <	A 24 P829261	MALATI	NR_002819	378938	0.15	0.03	-0.08	0.00	G2 G2	
A_23_P94422 MELK NM_014791 9833 -3.11 -2.07 1.04 -1.29 G2 A_23_P44226 MEPCE NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P142626 MEPCE NM_019606 56257 -0.16 0.24 0.40 -0.71 G2 A_23_P145844 MET NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145846 MET NM_000245 4233 0.27 0.27 0.00 0.71 G2 A_23_P145846 MET NM_000245 4233 0.22 0.30 0.08 0.11 G2 A_23_P145846 MET NM_002408 4247 -0.19 -0.39 -0.20 1.27 G2 A_23_P128656 MID1 NM_002381 4281 -0.01 0.50 0.50 -0.87 G2 A_23_P170037 MID1 NM_033290 4281 -0.01 0.50 0.50 -0.87 G2 A_23_P1303123 MND1 NM_032117 8057 -2.67 <	A 24 P497244	MALAT1	NR_002819	378938	0.07	-0.32	-0.40	1.05	G2	
A_23_P42626 MEPCE NM_019606 56257 -0.18 0.15 0.32 -0.74 G2 A_23_P42626 MEPCE NM_019606 56257 -0.16 0.24 0.40 -0.71 G2 A_23_P145844 MET NM_000245 4233 0.51 0.41 -0.10 0.86 G2 A_23_P145846 MET NM_000245 4233 0.27 0.27 0.00 0.71 G2 A_23_P359245 MET NM_000245 4233 0.22 0.30 0.08 0.11 G2 A_23_P65558 MGAT2 NM_002408 4247 -0.19 -0.39 -0.20 1.27 G2 A_32_P128656 MID1 NM_00381 4281 -0.31 0.14 0.46 -0.59 G2 A_23_P133123 MND1 NM_033290 4281 -0.01 0.50 0.50 -0.87 G2 A_23_P133123 MND1 NM_032117 84057 -2.67 -2.06 0.61 -1.08 G2 A_23_P137856 MUC1 NM_015210 23255 -1.12	A 23 P94422	MFLK	NM 014791	9833	-3.11	-2.07	1.04	-1.29	G2	
A_24_P312189MEPCENM_01060656257-0.160.240.40-0.71G2A_23_P145844METNM_00024542330.510.41-0.100.86G2A_23_P145846METNM_00024542330.270.270.000.71G2A_23_P359245METNM_00024542330.220.300.080.11G2A_23_P65558MGAT2NM_0024084247-0.19-0.39-0.201.27G2A_32_P128656MID1NM_003814281-0.310.140.46-0.59G2A_23_P13037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A 23 P42626	MEPCE	NM 019606	56257	-0.18	0.15	0.32	-0.74	G2	
A_23_P145844METNM_00024542330.510.41-0.100.86G2A_23_P145846METNM_00024542330.270.270.000.71G2A_23_P359245METNM_00024542330.220.300.080.11G2A_23_P65558MGAT2NM_0024084247-0.19-0.39-0.201.27G2A_32_P128656MID1NM_003814281-0.310.140.46-0.59G2A_23_P170037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P360605MTCL1NM_01521023255-1.12-0.380.74-1.41G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A 24 P312189	MEPCE	NM 019606	56257	-0.16	0.24	0.40	-0.71	G2	
A_23_P145846METNM_00024542330.270.270.000.71G2A_23_P359245METNM_00024542330.220.300.080.11G2A_23_P65558MGAT2NM_0024084247-0.19-0.39-0.201.27G2A_32_P128656MID1NM_0003814281-0.310.140.46-0.59G2A_23_P170037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P360605MTCL1NM_01521023255-1.12-0.380.74-1.41G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A_23_P145844	MET	NM_000245	4233	0.51	0.41	-0.10	0.86	G2	
A_23_P359245METNM_00024542330.220.300.080.11G2A_23_P65558MGAT2NM_0024084247-0.19-0.39-0.201.27G2A_32_P128656MID1NM_0003814281-0.310.140.46-0.59G2A_23_P170037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P360605MTCL1NM_01521023255-1.12-0.380.74-1.41G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A_23_P145846	MET	NM_000245	4233	0.27	0.27	0.00	0.71	G2	
A_23_P65558MGA72NM_0024084247-0.19-0.39-0.201.27G2A_32_P128656MID1NM_0003814281-0.310.140.46-0.59G2A_23_P170037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P360605MTCL1NM_01521023255-1.12-0.380.74-1.41G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A_23_P359245	MET	NM_000245	4233	0.22	0.30	0.08	0.11	G2	
A_32_P128656MID1NM_0003814281-0.310.140.46-0.59G2A_23_P170037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P360605MTCL1NM_01521023255-1.12-0.380.74-1.41G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A_23_P65558	MGAT2	NM_002408	4247	-0.19	-0.39	-0.20	1.27	G2	
A_23_P170037MID1NM_0332904281-0.010.500.50-0.87G2A_23_P133123MND1NM_03211784057-2.67-2.060.61-1.08G2A_23_P360605MTCL1NM_01521023255-1.12-0.380.74-1.41G2A_23_P137856MUC1NM_0024564582-0.290.170.46-1.61G2A_32_P71447NCAPD3NM_01526123310-0.92-0.590.32-0.53G2A_23_P415443NCAPHNM_01534123397-2.82-2.150.67-1.02G2	A_32_P128656	MID1	NM_000381	4281	-0.31	0.14	0.46	-0.59	G2	
A_23_P133123 MND1 NM_032117 84057 -2.67 -2.06 0.61 -1.08 G2 A_23_P360605 MTCL1 NM_015210 23255 -1.12 -0.38 0.74 -1.41 G2 A_23_P137856 MUC1 NM_002456 4582 -0.29 0.17 0.46 -1.61 G2 A_32_P71447 NCAPD3 NM_015261 23310 -0.92 -0.59 0.32 -0.53 G2 A_23_P415443 NCAPH NM_015341 23397 -2.82 -2.15 0.67 -1.02 G2	A_23_P170037	MID1	NM_033290	4281	-0.01	0.50	0.50	-0.87	G2	
A_23_P360605 MTCL1 NM_015210 23255 -1.12 -0.38 0.74 -1.41 G2 A_23_P137856 MUC1 NM_002456 4582 -0.29 0.17 0.46 -1.61 G2 A_32_P71447 NCAPD3 NM_015261 23310 -0.92 -0.59 0.32 -0.53 G2 A_23_P415443 NCAPH NM_015341 23397 -2.82 -2.15 0.67 -1.02 G2	A_23_P133123	MND1	NM_032117	84057	-2.67	-2.06	0.61	-1.08	G2	
A_23_P137856 MUC1 NM_002456 4582 -0.29 0.17 0.46 -1.61 G2 A_32_P71447 NCAPD3 NM_015261 23310 -0.92 -0.59 0.32 -0.53 G2 A_23_P415443 NCAPH NM_015341 23397 -2.82 -2.15 0.67 -1.02 G2	A_23_P360605	MTCL1	NM_015210	23255	-1.12	-0.38	0.74	-1.41	G2	
A_32_P71447 NCAPD3 NM_015261 23310 -0.92 -0.59 0.32 -0.53 G2 A_23_P415443 NCAPH NM_015341 23397 -2.82 -2.15 0.67 -1.02 G2	A_23_P137856	MUC1	NM_002456	4582	-0.29	0.17	0.46	-1.61	G2	
A_23_P415443 NCAPH NM_015341 23397 -2.82 -2.15 0.67 -1.02 G2	A_32_P71447	NCAPD3	NM_015261	23310	-0.92	-0.59	0.32	-0.53	G2	
	A_23_P415443	NCAPH	NM_015341	23397	-2.82	-2.15	0.67	-1.02	G2	
A_23_P50108 NDC80 NM_006101 10403 -3.12 -2.49 0.64 -0.69 G2	A_23_P50108	NDC80	NM_006101	10403	-3.12	-2.49	0.64	-0.69	G2	
A_24_P14156 NDC80 NM_006101 10403 -1.90 -1.59 0.31 -0.41 G2	A_24_P14156	NDC80	NM_006101	10403	-1.90	-1.59	0.31	-0.41	G2	
A_23_P155711 NELL3 NM_018248 55247 -0.52 -0.51 0.02 0.19 G2	A_23_P155711	NEIL3	NM_018248	55247	-0.52	-0.51	0.02	0.19	G2	
A_24_P356830 NF/C AK129956 4/82 0.20 0.15 -0.06 -0.83 G2	A_24_P356830	NFIC	AK129956	4/82	0.20	0.15	-0.06	-0.83	G2	
A_23_P131115 NFIC NM_005597 4782 -0.18 0.31 0.49 -0.92 G2	A_23_P131115	NFIC	NM_005597	4/82	-0.18	0.31	0.49	-0.92	G2	
A_24_F100365 VIFDL VIM_013564 2360 -U.12 U.22 U.33 -U.40 U2	A_24_P100303		NIVI_01004	20000	-0.12	0.22	0.55	-0.40	G2 C2	
A_25_F213665 NIPPL NIM_153435 23650 0.09 -0.04 -0.15 -0.15 G2	A_25_P215005	NIPDL NIDRI	NM 015384	25050	0.09	-0.04	-0.15	-0.15	G2 G2	
A_24_D13161 M/BD2 NM 017852 55655 -0.78 -0.17 0.61 -1.33 G2	A_24_F357066 A 24 P213161	NI RD2	NM 017852	23630	-0.78	-0.03	-0.10	-1.33	62	
A 23 P88522 NMR NM 021077 4828 135 0.91 -0.44 212 G2	A 23 P88522	NMR	NM_021077	4828	1 35	0.91	-0.44	2 1 2	G2 G2	
A 23 P127584 NNMT NM 006169 4837 -0.01 0.25 0.27 -0.30 G2	A 23 P127584	NNMT	NM_006169	4837	-0.01	0.25	0.27	-0.30	G2 G2	
A 24 P787914 NR3C1 U25029 2908 1.13 0.58 -0.55 1.02 G2	A 24 P787914	NR3C1	U25029	2908	1.13	0.58	-0.55	1.02	G2	
A 23 P214059 NB3C1 NM 001018077 2908 0.83 0.19 -0.64 0.56 G2	A 23 P214059	NR3C1	NM 001018077	2908	0.83	0.19	-0.64	0.56	G2	
A 24 P214754 NR3C1 NM 001018077 2908 0.80 0.04 -0.76 1.23 G2	A 24 P214754	NR3C1	NM 001018077	2908	0.80	0.04	-0.76	1.23	G2	
A_24_P216968 NUCKS1 NM_022731 64710 -0.40 -0.39 0.01 -0.04 G2	A_24_P216968	NUCKS1	NM_022731	64710	-0.40	-0.39	0.01	-0.04	G2	
A_24_P145122 NUCKS1 NM_022731 64710 -0.35 -0.36 -0.01 -0.07 G2	A_24_P145122	NUCKS1	NM_022731	64710	-0.35	-0.36	-0.01	-0.07	G2	
A_24_P216964 NUCKS1 NM_022731 64710 -0.23 -0.48 -0.25 -0.15 G2	A_24_P216964	NUCKS1	NM_022731	64710	-0.23	-0.48	-0.25	-0.15	G2	
A_24_P374652 NUCKS1 NM_022731 64710 0.09 -0.04 -0.14 0.21 G2	A_24_P374652	NUCKS1	NM_022731	64710	0.09	-0.04	-0.14	0.21	G2	
A_23_P149724 NUCKS1 NM_022731 64710 -0.02 -0.24 -0.22 0.07 G2	A_23_P149724	NUCKS1	NM_022731	64710	-0.02	-0.24	-0.22	0.07	G2	
A_23_P162120 NUMA1 NM_006185 4926 0.11 0.39 0.28 -0.38 G2	A_23_P162120	NUMA1	NM_006185	4926	0.11	0.39	0.28	-0.38	G2	
A_23_P17471 PCED1A NM_022760 64773 -0.13 -0.27 -0.14 0.08 G2	A_23_P17471	PCED1A	NM_022760	64773	-0.13	-0.27	-0.14	0.08	G2	
A_23_P416468 PIF1 NM_025049 80119 -2.16 -1.63 0.53 -0.08 G2	A_23_P416468	PIF1	NM_025049	80119	-2.16	-1.63	0.53	-0.08	G2	
A_23_P323749 PIF1 NM_025049 80119 -0.37 0.19 0.56 -0.14 G2	A_23_P323749	PIF1	NM_025049	80119	-0.37	0.19	0.56	-0.14	G2	
A_23_P323743 PIF1 NM_025049 80119 -0.19 -0.27 -0.08 0.04 G2	A_23_P323743	PIF1	NM_025049	80119	-0.19	-0.27	-0.08	0.04	G2	
A_24_P196534 PKNOX1 NM_004571 5316 0.32 0.19 -0.14 0.10 G2	A_24_P196534	PKNOX1	NM_004571	5316	0.32	0.19	-0.14	0.10	G2	
A_23_P211299 PKNOX1 NM_004571 5316 0.20 0.25 0.05 0.49 G2	A_23_P211299	PKNOX1	NM_004571	5316	0.20	0.25	0.05	0.49	G2	
A_24_P3/890/ PKN0X1 NM_0045/1 5316 -0.23 0.25 0.48 -0.15 G2	A_24_P378907	PKNOXI	NM_004571	5316	-0.23	0.25	0.48	-0.15	G2	
A_25_P333998 PULQ AF090919 10/21 -1.90 -1.42 0.48 -1.15 G2	A_23_P333998	POLQ	AF090919	10/21	- 1.90	-1.42	0.48	-1.15	62	
A_22_F21002/ FULQ INIVI_199420 IU/21 -2.19 -1.09 U.49 -1.00 G2	A_23_F21882/	POLQ	NM 006241	10/21	-2.19	- 1.09	-0.49	- 1.00	62	
A 22 P17122 PDP1P2 NIM 0062/1 550/ 0.11 -0.21 0.62 C2	A 27 D17122	DDD1D2	NM 006241	5504	0.30	-0.10	-0.40	0.63	G2	
A 24 P174367 PPP1R2 NIM 006241 5504 -0.06 -0.17 -0.11 0.24 C2		PPD1R2	NM 006241	5504	-0.06	-0.21	-0.31	0.03	62	
A 23 P46539 PSRC1 NM 032636 84722 -0.92 -0.66 0.26 -0.48 C2	A 23 P46530	PSRC1	NM 032636	84722	-0.92	-0.66	0.26	-0.48	G2	
A_23_P106439 RCCD1 NM_033544 91433 -0.52 -0.10 0.41 -0.66 G2	A_23_P106439	RCCD1	NM_033544	91433	-0.52	-0.10	0.41	-0.66	G2	

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P106433	RCCD1	NM_033544	91433	-0.23	-0.05	0.17	-0.62	G2
A_23_P25684	RDH11	NM_016026	51109	-0.39	-0.19	0.20	-0.56	G2
A_24_P377775	RGS3	NM_017790	5998	0.85	0.37	-0.48	0.24	G2
A_23_P219197	RGS3	NM_134427	5998	-0.03	-0.04	-0.01	-0.43	G2
A_23_P134714	RIDA	NM_005836	10247	-0.54	-0.12	0.42	-0.41	G2
A_23_P121602	SAP30	NM_003864	8819	-0.39	-0.22	0.16	0.11	G2
A_23_P147647	SGCD	NM_000337	6444	0.23	-0.19	-0.41	0.51	G2
A_23_P136254	SGCD	NM_172244	6444	0.17	0.37	0.20	-0.63	G2
A_32_P4595	SGCD	NM_000337	6444	0.05	-0.38	-0.43	0.33	G2
A_23_P340909	SKA3	BC013418	221150	-3.76	-2.71	1.05	-1.64	G2
A_23_P327643	SMC4	A_23_P327643	NA	0.61	0.07	-0.53	0.40	G2
A_23_P91900	SMC4	NM_005496	10051	-0.46	-0.37	0.09	-0.62	G2
A_23_P87049	SORL1	NM_003105	6653	0.07	0.31	0.24	-0.86	G2
A_23_P56630	STATT	NM_007315	6//2	0.35	0.58	0.23	-0.36	G2
A_24_P2/42/0	STATT	NM_139266	6//2	0.16	0.43	0.28	-0.09	G2
A_24_P214231	STIL	NM_001048166	6491	-0.73	0.04	0.78	-0.96	G2
A_23_P154367	STK17B	NM_004226	9262	-0.33	-0.57	-0.24	0.27	G2
A_24_P636882	STK1/B	NM_004226	9262	-0.30	0.07	0.37	-0./8	G2
A_23_P100022	SV2B	NM_014848	9899	-0.25	0.02	0.27	0.33	G2
A_23_P431381	TEDCT	NM_001134875	283643	-0.52	-0.16	0.3/	-0.24	G2
A_32_P14187	TFAP2A	NM_001032280	/020	0.71	0.16	-0.56	0.26	G2
A_23_P62115	TIMP1	NM_003254	7076	0.09	0.06	-0.03	0.27	G2
A_23_P24/16	IMEM132A	NM_01/8/0	54972	0.30	0.29	0.00	-0./4	G2
A_24_P210244	IMPO	NM_001032283	7112	-0.85	-0.65	0.20	0.42	G2
A_23_P325040	IMPO	NM_003276	7112	-0.33	-0.59	-0.26	-0.17	G2
A_24_P44891	TNPO2	NM_013433	30000	0.63	0.13	-0.50	1.02	G2
A_23_P354953	TNPO2	NM_013433	30000	-0.43	0.05	0.48	-0.11	G2
A_23_P1/0491	TRAIP	NM_005879	10293	-0.48	-0.61	-0.12	0.31	G2
A_23_P407718	TRINISS	NIVI_173084	280827	-0.89	-0.76	0.13	-0.13	G2 C2
A_32_P/2341	TRINISS	NIVI_173004	200027	-0.44	-0.56	-0.14	0.05	G2 C2
A_23_P48820	TRIVIO9	NIVI_182985	140691	0.42	0.05	-0.38	0.44	G2 C2
A_24_P30343		A_24_P30343	NA 55020	-0.04	-0.01	0.05	-0.76	G2 G2
A_23_F234193	TTC20	NIM 017021	55020	-0.45	0.19	0.04	-0.70	G2 G2
A_24_P150500		NIVI_01/951	55020 04E0	-0.35	0.01	0.50	-0.55	G2 G2
A_32_F100300	TTE2	NM 003504	04J0 9459	0.21	-0.18	-0.28	0.40	G2 G2
A_23_F97101 A 23 D130547	TURAIA	NM 006009	7846	-0.34	-0.17	0.20	0.25	62
Δ 23 P128508	TURARC	NM_006001	7040	0.24	0.17	0.17	-0.22	62
A 23 P154065	TURAAA	NM_006000	7270	0.66	0.00	-0.18	0.22	G2 G2
A 23 P102109	TURAAA	NM_006000	7277	0.56	0.48	-0.09	0.81	G2 G2
A 23 P154070	TUBA4A	NM_006000	7277	-0.45	-0.15	0.05	0.06	G2 G2
A 23 P84448	TUBA4A	NM 006000	7277	0.22	0.14	-0.08	0.52	G2
A 23 P387057	TUBB	NM 178014	203068	-0.46	-0.41	0.05	0.07	G2
A 23 P81912	TUBB	NM 178014	203068	-0.37	-0.37	0.00	0.25	G2
A 32 P78528	TUBB	NM 178014	203068	-0.28	-0.16	0.12	0.07	G2
A 23 P19291	TUBB2A	NM 001069	7280	1.18	-0.07	-1.25	0.79	G2
A 23 P501276	TUBB2A	NM 001069	7280	0.42	-0.32	-0.74	0.72	G2
A 23 P26895	TUBD1	NM 016261	51174	-0.02	0.13	0.15	0.14	G2
A 23 P423480	TYSND1	NM 173555	219743	-0.21	-0.16	0.05	0.11	G2
A 24 P290585	UACA	NM 001008224	55075	0.28	0.01	-0.27	1.38	G2
A_23_P360340	UACA	NM_001008224	55075	0.10	-0.23	-0.33	0.55	G2
A_24_P90774	UACA	NM_001008224	55075	0.03	0.11	0.07	-0.41	G2
A_24_P297539	UBE2C	NM_181803	11065	-2.93	-2.50	0.43	-0.57	G2
A_23_P11936	UBXN11	NM_183008	91544	-0.32	-0.37	-0.06	-0.35	G2
A_24_P239811	UBXN11	NM_183008	91544	-0.03	0.00	0.03	0.00	G2
A_23_P428298	UNC5CL	NM_173561	222643	0.48	0.40	-0.08	-0.09	G2
A_23_P66599	VPS25	NM_032353	84313	-0.33	-0.20	0.13	0.02	G2
A_24_P294982	VTA1	NM_016485	51534	-0.42	-0.42	0.00	0.18	G2
A_23_P42368	VTA1	NM_016485	51534	-0.36	-0.20	0.16	-0.24	G2
A_23_P393766	WDR62	NM_173636	284403	0.15	-0.21	-0.36	0.47	G2
A_23_P339705	WDR62	NM_173636	284403	-0.02	-0.17	-0.15	-0.03	G2

	at:			
2 days	s	7 days		
Probe Gene symbol RefSeq Entrez ID w.t. v	s NI dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P101281 ZNF587 NM_032828 84914 -0.17	-0.06	0.11	0.19	G2
A_24_P313804 ZNF587 NM_032828 84914 -0.19	-0.14	0.05	0.74	G2
A_24_P373726 ZNF587 NM_032828 84914 -0.01	-0.30	-0.28	0.42	G2
A_23_P329286 ZNHIT2 NM_014205 741 -0.25	-0.03	0.22	-0.41	G2
A_23_P356684 ANLN NM_018685 54443 -2.41	-2.24	0.17	-0.42	G2,G2_M
A_23_P334845 ARHGAP19 NM_032900 84986 0.51	0.47	-0.04	0.34	G2,G2_M
A_23_P1387 ARHGAP19 NM_032900 84986 0.00	-0.49	-0.49	0.70	G2,G2_M
A_24_P19337 ASXL1 NM_015338 171023 0.61	0.34	-0.26	0.39	G2,G2_M
A_32_P41021 ASXL1 NM_015338 171023 -0.32	0.00	0.32	-0.65	G2,G2_M
A_23_P58321 CCNA2 NM_001237 890 -2.44	-1.76	0.69	-0.71	G2,G2_M
A_24_P218979 CDCA3 NM_031299 83461 -2.19	-2.02	0.17	-0.56	G2,G2_M
A_23_P162476 CDCA3 NM_031299 83461 -1.69	- 1.43	0.27	-0.36	G2,G2_M
A_23_P209394 CFLAR NM_00112/184 8837 1.55	0.95	-0.60	2.06	G2,G2_M
A_24_P120115 CFLAR NW_003679 0057 0.05	0.80	0.15	0.12	
A_25_F151405 CKAF2 NM_018204 20580 -1.71	-0.85	0.87	-0.82	
A_24_F99090 CKAF2 NW_018204 20380 -0.17	0.05	-0.02	0.04	G2,G2_M
A 24 P941759 G2F3 NM 017769 55632 -0.44	-0.47	-0.04	-0.04	G2 G2 M
A 23 P99604 G2E3 NM 017769 55632 0.22	-0.14	-0.36	0.64	G2 G2 M
A 32 P189204 GAS2/3 NM 174942 283431 -0.76	-0.63	0.13	0.22	G2 G2 M
A 32 P37143 GAS2L3 BX649059 283431 -0.46	-0.60	-0.14	0.25	G2.G2 M
A 24 P944616 HP1BP3 NM 016287 50809 -0.33	-0.08	0.25	-0.95	G2.G2 M
A 23 P137630 HP1BP3 NM 016287 50809 -0.28	-0.26	0.02	0.52	G2,G2 M
A_24_P247660 JPT1 NM_001002033 51155 -0.50	-0.45	0.05	-0.64	G2,G2_M
A_23_P100632 JPT1 NM_001002033 51155 -0.11	0.22	0.33	-0.42	G2,G2_M
A_23_P75071 KIF20B NM_016195 9585 -1.72	-1.70	0.02	-0.31	G2,G2_M
A_23_P86403 KIF5B NM_004521 3799 0.08	-0.01	-0.09	-0.13	G2,G2_M
A_23_P200493 LBR NM_002296 3930 -0.26	-0.23	0.03	0.20	G2,G2_M
A_23_P106162 <i>MIS18BP1</i> NM_018353 55320 -0.89	-0.34	0.55	-0.14	G2,G2_M
A_23_P364107 MIS18BP1 NM_018353 55320 -1.10	-0.59	0.52	-0.69	G2,G2_M
A_23_P315843 NCOA5 NM_020967 57727 -0.63	0.19	0.82	-1.05	G2,G2_M
A_23_P210515 NCOA5 NM_020967 57727 -0.66	0.45	1.12	-1.46	G2,G2_M
A_24_P416079 NUSAP1 NM_016359 51203 -2.70	-2.01	0.69	-0.98	G2,G2_M
A_23_P333420 RANGAP1 NM_002883 5905 0.07	-0.20	-0.27	0.29	G2,G2_M
A_23_P139066 RNF141 NM_016422 50862 0.39	-0.13	-0.53	0.95	G2,G2_M
A_24_P3/2625 KNF141 NM_016422 50862 0.06	-0.02	-0.08	0.14	G2,G2_M
A_23_P100/88 SIAI5B NM_012448 6/// 0.68	0.33	-0.34	0.33	G2,G2_M
A_24_P3421/8 SIAISB BC020868 6/// 0.33	0.08	-0.25	0.46	G2,G2_M
A_32_P10/32/ TUDD4D INIV_000080 10303 -0.20	0.35	0.60	-0.70	
A_23_P/353 W/SR1 NM_015626 26118 1.02	-0.01	-1.03	-0.07	G2,G2_M
A 23 P214756 ADGRG6 NM 198569 57211 0.15	0.01	-0.07	0.85	G2 S
A 24 P942945 ADGRG6 NM 020455 57211 -0.14	-0.28	-0.14	-0.14	G2.S
A 24 P411749 ADGRG6 NM 020455 57211 -0.01	-0.21	-0.21	0.28	G2,S
A 23 P118834 TOP2A NM 001067 7153 -3.63	-2.61	1.02	-1.33	G2,S
A_23_P502314 ADGRE5 NM_078481 976 -0.13	0.18	0.32	-0.67	G2_M
A_23_P502312 ADGRE5 NM_078481 976 0.02	0.39	0.37	-0.76	G2_M
A_23_P30098 ADH4 NM_000670 127 -0.24	0.51	0.75	0.10	G2_M
A_23_P27688 ADM5 NM_001101340 199800 -0.26	-0.26	0.00	0.09	G2_M
A_23_P436353 AFDN NM_001040001 4301 0.39	0.35	-0.04	-0.39	G2_M
A_23_P256603 AFDN NM_005936 4301 0.11	-0.83	-0.93	0.75	G2_M
A_24_P943484 AHI1 NM_017651 54806 0.27	0.29	0.01	0.72	G2_M
A_24_P213710 AHI1 NM_017651 54806 -0.24	0.10	0.34	0.06	G2_M
A_24_P38143 AHI1 NM_017651 54806 -0.19	0.11	0.30	0.14	G2_M
A_23_P/0/46 AHI1 NM_017651 54806 0.07	0.27	0.19	0.16	G2_M
A_25_P428819 AKIKIN2 NM_018064 55122 0.39	0.20	-0.19	-0.0/	G2_M
A_25_P42882/ AKIKINZ NM_018064 55122 0.11	-0.07	-0.18	-0.37	
A_25_P20015 AIVP328 INM_006401 10541 0.43	0.07	-0.36	0.24	
A 22 DI60034 AND22E NMA 020020 81611 -0.32	-0.08	-0.37	0.50	
Δ 23 P151075 ΔRHGDIR NM 001175 307 _0.20	0.39	0.69	0.90	G2_M
A_24_P356218 ARL6IP1 NM_015161 23204 -0.14	-0.27	-0.13	0.08	G2_M

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P118150	ARL6IP1	NM_015161	23204	-0.29	-0.32	-0.03	1.16	G2_M
A_23_P91640	ASPHD2	NM_020437	57168	-0.55	0.19	0.74	-1.23	G2_M
A_24_P245815	ASPHD2	NM_020437	57168	-0.29	0.33	0.62	-1.00	G2_M
A_23_P112950	ATF7IP	NM_018179	55729	0.17	0.54	0.37	-0.51	G2_M
A_24_P923757	ATF7IP	NM_018179	55729	0.26	0.26	0.00	0.25	G2_M
A_23_P48278	ATF7IP	AK001001	55729	-0.01	0.81	0.82	-0.13	G2_M
A_23_P163814	ATXN1L	NM_001137675	342371	0.09	-0.31	-0.40	0.20	G2_M
A_23_P131866	AURKA	NM_198433	6790	-1.56	-1.01	0.56	0.03	G2_M
A_24_P103803	B4GALT1	NM_001497	2683	0.90	0.68	-0.22	-0.45	G2_M
A_23_P1352/1	B4GALI1	NM_001497	2683	0.49	0.22	-0.27	-0.06	G2_M
A_24_P115774	BIRC2	NM_001012271	329	-0.12	-0.28	-0.16	0.32	G2_M
A_25_P110015		NM_001200	552	- 5.41	-2.55	1.00	-1.52	GZ_M
A_25_P145551	DIVIPZ DI ID1	NIM_004226	600	1.44	0.57	-0.87	0.95	GZ_M
A_23_F124417 A 23 D163/01	BUDI RUR1R	NM 001211	701	-3.20	-2.47	0.79	-0.75	G2_M
A_23_F103401	C6	NM_00065	701	_0.19	-0.33	-0.14	-0.46	G2_M
A_23_P28664	CCDC88A	NM_018084	55704	0.19	0.55	-0.49	0.40	G2_M
A 24 P20120	CCDC88A	NM_018084	55704	0.52	0.40	-0.12	0.49	G2_M
A 23 P17269	CCDC88A	NM_018084	55704	0.36	-0.01	-0.37	0.82	G2_M
A 24 P28739	CCDC88A	NM 018084	55704	0.32	-0.17	-0.49	0.41	G2_M
A 23 P122197	CCNB1	NM 031966	891	-2.14	-1.49	0.65	-0.27	G2_M
A 23 P65757	CCNB2	NM 004701	9133	-3.05	-2.42	0.64	-0.70	G2 M
A_32_P72822	CCNB2	AK023404	9133	0.52	0.74	0.22	0.59	G2_M
A_23_P202837	CCND1	NM_053056	595	-0.15	-0.20	-0.05	-0.10	G2_M
A_24_P124550	CCND1	NM_053056	595	-0.03	-0.15	-0.12	-0.75	G2_M
A_24_P193011	CCND1	NM_053056	595	-0.02	0.09	0.11	-1.15	G2_M
A_23_P366908	CCSAP	NM_145257	126731	0.38	-0.19	-0.57	0.18	G2_M
A_24_P930764	CCSAP	BC039241	126731	0.40	-0.35	-0.75	0.71	G2_M
A_32_P83776	CCSAP	NM_145257	126731	0.42	0.13	-0.29	-1.01	G2_M
A_23_P149200	CDC20	NM_001255	991	-1.36	-1.65	-0.28	0.10	G2_M
A_23_P210726	CDC25B	NM_021873	994	-0.75	-0.03	0.72	-0.74	G2_M
A_23_P66777	CDC27	NM_001256	996	0.05	0.25	0.20	0.28	G2_M
A_23_P166453	CDC42EP1	NM_152243	11135	-0.06	0.25	0.31	-0.98	G2_M
A_24_P143032	CDC42EP1	NM_152243	11135	0.06	0.25	0.19	-0.63	G2_M
A_23_P89941	CDKN2D	NM_001800	1032	0.50	-0.51	-1.01	0.79	G2_M
A_24_P413884	CENPA	NM_001809	1058	- 2.99	-2.34	0.65	-1.30	G2_M
A_23_P253524	CENPE	NM_001813	1062	-2.90	- 1.84	1.06	-1.03	G2_M
A_23_P401	CENPF	NM_016343	1063	-3.83	-2.46	1.37	-1.17	G2_M
A_24_P90760	CENPT	NIVI_010343	1005 55165	-1.50	-0.80	0.72	-0.00	GZ_M
A_23_F113672	CEFSS	NM 007174	11112	-2.90	-2.20	0.71	-0.74	G2_M
A 23 P135977	СКАР5	NM_001008938	9793	-0.65	-0.56	0.00	-0.09	G2_M
A 24 P300841	CKAP5	NM_001008938	9793	-0.27	-0.13	0.09	-0.11	G2_M
A 23 P45917	CKS1B	NM 001826	1163	-0.90	-1.00	-0.10	0.48	G2_M
A 32 P206698	CKS1B	NM 001826	1163	-0.79	-0.88	-0.08	0.51	G2 M
A 32 P192430	CKS1B	NM_001826	1163	-0.52	-0.67	-0.15	0.44	G2 M
A_23_P71727	CKS2	NM_001827	1164	-0.85	-1.06	-0.21	0.78	G2_M
A_23_P16673	CNN2	NM_004368	1265	0.34	0.36	0.01	-0.98	G2_M
A_24_P142743	CNN2	NM_004368	1265	0.15	0.29	0.14	0.07	G2_M
A_23_P9768	CNTROB	NM_053051	116840	-0.07	-0.01	0.06	0.00	G2_M
A_23_P9761	CNTROB	NM_001037144	116840	-0.02	0.10	0.12	-0.45	G2_M
A_23_P404606	CREBRF	NM_153607	153222	0.59	-0.30	-0.88	1.08	G2_M
A_23_P134835	CSGALNACT1	NM_018371	55790	1.04	0.75	-0.29	1.04	G2_M
A_24_P406525	CSGALNACT1	NM_018371	55790	0.10	0.31	0.21	0.25	G2_M
A_23_P58647	CTNNA1	NM_001903	1495	0.06	0.36	0.30	-0.44	G2_M
A_24_P80633	CTNNA1	NM_001903	1495	0.03	0.05	0.02	-0.27	G2_M
A_24_P881527	CINND1	NM_001085458	1500	-0.14	0.09	0.23	-0.46	G2_M
A_23_P95080	CINND1	NM_001085461	1500	0.13	-0.15	-0.28	0.76	G2_M
A_23_P251316	CTNND1	NM_001331	1500	-0.12	-0.21	-0.09	-0.15	G2_M
A_24_P38930		NM_017770	1500	0.07	-0.03	-0.10	-0.22	
A_23_P200310		NIVI_U1///9	55035 55625	-2.48	-2.08 -1.41	0.40	-0.16	
H_24_220/2	DEPDCI	INIVI_UT7779	22022	-1.13	-1.41	-0.28	-0.52	G2_IVI

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P361419	DEPDC1B	NM_018369	55789	-1.89	-1.25	0.63	-0.44	G2_M
A_23_P88331	DLGAP5	NM_014750	9787	-3.42	-2.36	1.06	-1.16	G2_M
A_24_P9671	DNAJA1	NM_001539	3301	0.95	0.69	-0.26	1.02	G2_M
A_24_P192586	DNAJA1	ENST00000330899	3301	-0.49	-0.02	0.47	0.14	G2_M
A_23_P604/9	DNAJA1	NM_001539	3301	0.31	0.26	-0.05	0.90	G2_M
A_23_P03205	DR1	NM 001028	1810	0.30	-0.06	-0.36	0.37	GZ_M
A_25_P591725 A 23 P134035	DET	NM 001394	1846	-0.31	-0.20	0.03	-0.96	G2_M
A 23 P144165	DZIP3	NM 014648	9666	0.64	0.20	-0.55	0.75	G2_M
A 24 P102504	DZIP3	NM 014648	9666	-0.14	-0.30	-0.16	0.24	G2 M
A 23 P435051	DZIP3	ENST00000463306	9666	0.06	-0.22	-0.28	0.25	G2 M
A_23_P31721	E2F5	NM_001951	1875	-0.48	-0.02	0.46	-0.36	G2_M
A_23_P9574	ECT2	NM_018098	1894	-0.96	-0.37	0.59	0.16	G2_M
A_23_P44684	ECT2	NM_018098	1894	-1.09	-0.50	0.59	-0.44	G2_M
A_24_P366033	ECT2	NM_018098	1894	-0.29	-0.31	-0.02	0.38	G2_M
A_24_P282251	FGA	NM_021871	2243	0.26	-0.16	-0.42	-0.04	G2_M
A_23_P44274	FGA	NM_000508	2243	-0.08	0.01	0.09	0.24	G2_M
A_23_P375372	FGA	NM_021871	2243	0.07	0.62	0.55	-0.54	G2_M
A_23_P151150	FOXM1	NM_202002	2305	-1.27	-1.19	0.07	-1.05	G2_M
A_23_P363778	FKZB	NW 001463	2487	1.24	0.54	-0.70	1.02	G2_M
A_23_F10902	EVN	NM 002037	2407	-0.54	-0.35	0.04	0.75 _132	G2_M
A_23_F 302142	GADD45A	NM 001924	1647	0.54	0.55	-0.58	-0.01	G2_M
A 23 P146922	GAS6	NM 000820	2621	0.18	0.16	-0.02	-0.78	G2_M
A 23 P105251	GLI1	NM 005269	2735	0.06	0.17	0.12	-0.31	G2 M
A_23_P63825	GOT1	NM_002079	2805	0.29	0.53	0.24	0.44	G2_M
A_24_P81473	GOT1	NM_002079	2805	0.20	0.18	-0.01	0.64	G2_M
A_23_P63402	GPSM2	NM_013296	29899	-1.24	-0.96	0.28	-0.28	G2_M
A_24_P273132	GPSM2	NM_013296	29899	-0.47	-0.69	-0.23	-0.02	G2_M
A_23_P257256	GRK6	NM_002082	2870	-0.18	0.03	0.21	-0.53	G2_M
A_23_P152420	GSE1	NM_014615	23199	0.19	0.03	-0.16	-0.38	G2_M
A_24_P943062	GSE1	NM_014615	23199	-0.11	0.18	0.29	-1.06	G2_M
A_23_P5/588	GISEI	NIVI_016426	51512	-2.01	-1.57	0.43	-0.89	G2_M
A_23_P123771 A_23_P168490		NM 022373	5054 64224	-0.20	0.18	0.45 	-0.02	G2_M
A 23 P119543	HMG20B	NM 006339	10362	-0.82	-0.34	0.48	-0.54	G2_M G2_M
A 23 P217236	HMGB3	NM 005342	3149	-0.75	-0.79	-0.04	-0.06	G2 M
A_23_P70007	HMMR	NM_012484	3161	-3.37	-2.64	0.73	-0.46	G2_M
A_23_P109442	HPS4	NM_022081	89781	0.72	0.36	-0.36	-0.05	G2_M
A_23_P109446	HPS4	NM_022081	89781	0.58	0.44	-0.14	-0.34	G2_M
A_23_P17606	HSPA13	NM_006948	6782	1.40	0.56	-0.85	2.40	G2_M
A_24_P134392	HSPA13	NM_006948	6782	0.30	-0.05	-0.35	0.52	G2_M
A_23_P70547	HSPA1L	NM_005527	3305	1.11	0.14	-0.96	0.90	G2_M
A_32_P13728	HSPA8	NM_006597	3312	0.36	0.40	0.03	0.34	G2_M
A_24_P295/45	HSPA8	NW_006507	3312	0.13	0.12	-0.01	0.78	G2_M
A_24_P26/129 A 23 P24594	ΠΣΡΑΟ Ηςρδα	NM 006597	3312	0.05	0.00	0.02	0.10	G2_M
A 23 P410600	IDI2	NM_033261	91734	0.14	-0.01	-0.16	-0.21	G2_M G2_M
A 23 P112026	ID01	NM 002164	3620	0.69	0.85	0.16	0.41	G2 M
A_23_P55076	INPP5K	NM_130766	51763	0.47	0.28	-0.19	-0.09	G2_M
A_24_P279328	INPP5K	NM_130766	51763	-0.09	-0.12	-0.02	-0.42	G2_M
A_23_P109184	INSM1	NM_002196	3642	1.19	0.87	-0.32	-0.25	G2_M
A_24_P31676	INSM1	NM_002196	3642	-0.05	0.13	0.17	-0.08	G2_M
A_23_P92042	ITPR1	NM_002222	3708	0.17	0.24	0.07	-0.72	G2_M
A_23_P156198	JADE2	NM_015288	23338	1.15	0.18	-0.97	0.77	G2_M
A_24_P226278	JADE2	NM_015288	23338	0.53	-0.07	-0.60	0.28	G2_M
A_23_P416434	JADE2		23338	-0.17	0.47	0.64	-0.91	
A_24_P92/883	JADE2 KCTD2	A_24_P92/883	NA 23510	-0.02	0.29	0.31	-0.10	
A 32 P160693	KCTD2	NM 015353	23510	-0.02	-0.13	-0.11	-0.13	G2_M
A 23 P149668	KIF14	NM 014875	9928	-0.68	-0.91	-0.23	-0.16	G2 M
A_23_P34788	KIF2C	NM_006845	11004	-3.33	-2.53	0.80	-0.82	G2_M

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P415401	KLF9	NM_001206	687	0.04	-0.15	-0.20	-0.41	G2_M
A_23_P86100	KLHDC9	NM_001007255	126823	-0.01	-0.26	-0.25	0.04	G2_M
A_32_P82807	KMT5A	NM_020382	387893	0.38	0.39	0.02	0.29	G2_M
A_24_P238855	KMT5A	NM_020382	387893	-0.22	0.33	0.54	-0.29	G2_M
A_32_P191527	KMT5A	NM_020382	387893	-0.19	0.07	0.26	-0.57	G2_M
A_32_P191859	KMT5A	NM_020382	387893	-0.10	0.11	0.21	-0.39	G2_M
A_23_P217968	KMT5B	NM_016028	51111	1.11	0.43	-0.68	0.99	G2_M
A_23_P326739	KMT5B	NM_017635	51111	-0.60	-0.03	0.57	-0.90	G2_M
A_23_P96688	KMT5B	NM_016028	51111	-0.02	-0.15	-0.13	0.10	G2_M
A_23_P140705	KNSTRN	NM_001142761	90417	-1.55	-1.01	0.54	0.14	G2_M
A_24_P162/18	LMNA	NM_005572	4000	-0.08	-0.12	-0.04	-0.35	G2_M
A_23_P34835	LIVINA	NM_005572	4000	-0.01	-0.01	0.01	-0.44	G2_M
A_23_P251118		NM_005578	4026	0.44	0.47	0.03	0.31	G2_M
A_24_P910515		A_24_P910515	NA 4026	0.33	0.35	0.01	-0.02	
A_32_P70319			4020	0.10	0.10	0.00	-0.40	
A_24_P114551		NIVI_000076	4026	-0.14	0.07	0.21	-0.89	
A_32_F39049		ENST00000312075	4020	-0.13	0.10	0.24	-0.09	
A_32_F193210	LFF	ENST00000312075	4020	0.10	0.10	0.20	-1.09	
A_24_F778741 A 32 P56874	IDD	ENST00000312075	4026	0.10	0.57	0.27	-0.35	G2_M
A 23 P200222	IRPR	NM 033300	7804	0.86	0.00	0.05	0.35	G2_M
A_23_1200222	I RP8	NM_033300	7804	0.00	0.53	0.38	-0.26	G2_M
A 23 P253958	IRRC17	NM_005824	10234	0.43	1.01	0.58	-0.15	G2_M
A 23 P145376	MAPK13	NM_002754	5603	0.22	-0.13	-0.35	0.82	G2_M
A 24 P406132	MAPK13	NM 002754	5603	0.08	-0.03	-0.12	0.20	G2_M
A 23 P71328	MATN2	NM 030583	4147	-0.50	-0.30	0.20	-1.34	G2_M
A 24 P179225	MATN2	NM 030583	4147	0.24	0.06	-0.17	-0.24	G2 M
A 23 P19455	MDC1	NM 014641	9656	-0.14	-0.15	-0.01	-0.40	G2 M
A_23_P105227	ME3	NM_001014811	10873	-0.40	0.15	0.55	-0.26	G2_M
A_23_P116614	ME3	NM_001014811	10873	0.04	0.39	0.35	0.08	G2_M
A_24_P346855	MKI67	NM_002417	4288	-1.66	-1.70	-0.04	-0.93	G2_M
A_32_P9382	MZT1	NM_001071775	440145	-0.33	-0.50	-0.18	0.57	G2_M
A_24_P532589	MZT1	NM_001071775	440145	-0.12	-0.28	-0.16	0.18	G2_M
A_24_P210675	NDE1	NM_017668	54820	-0.60	0.01	0.61	-1.05	G2_M
A_23_P206901	NDE1	NM_017668	54820	0.07	0.63	0.56	-0.46	G2_M
A_23_P35219	NEK2	NM_002497	4751	-1.67	-1.54	0.13	-0.25	G2_M
A_24_P319613	NEK2	NM_002497	4751	-0.86	-0.50	0.36	-0.09	G2_M
A_23_P74349	NUF2	NM_145697	83540	-3.08	-2.39	0.69	-1.08	G2_M
A_23_P102320	NUP35	NM_138285	129401	-0.43	-0.18	0.25	0.55	G2_M
A_23_P203586	NUP98	NM_016320	4928	0.32	0.34	0.02	-0.05	G2_M
A_24_P141522	NUP98	NM_016320	4928	0.29	0.24	-0.06	0.12	G2_M
A_23_P308032	NUP98	NM_005387	4928	-0.12	-0.28	-0.16	0.14	G2_M
A_23_P60488	ODF2	NM_002540	4957	-0.72	-0.22	0.50	-0.90	G2_M
A_23_P/1889	ODF2	NM_153437	4957	-0.21	0.30	0.51	-0.15	G2_M
A_23_P03///	0113	INIVI_152035	170392	-0.28	0.06	0.34	0.06	
A_24_P124024	DATI	NIVI_002543	4973	0.54	-0.05	-0.59	0.51	
A_24_F274072	DATI	NM 176877	10207	0.45	0.00	-0.39	0.74	
A_23_F120100	DATI	NM 176877	10207	0.39	_0.13	-0.33	0.00	
A_32_F00950 A 33 P321034	PATI	NM 176877	10207	0.20	0.15	0.55	-0.25	G2_M
A 24 P942454	PATI	NM 176877	10207	-0.05	0.06	0.17	0.50	G2_M
A 32 P62997	PRK	NM_018492	55872	-4.16	-3.00	1 15	-1.67	G2_M
A 23 P116578	PCF11	NM_015885	51585	-0.41	-0.40	0.01	0.36	G2_M
A 24 P835763	PCF11	A 24 P835763	NA	0.38	-0.66	-1.05	1.16	G2_M
A 23 P33303	PIK3CD	NM 005026	5293	0.56	0.53	-0.03	-0.27	G2 M
A 24 P71244	PIK3CD	NM 005026	5293	0.15	-0.05	-0.20	-0.21	G2 M
A_23_P259833	PIK3CD	NM_005026	5293	0.02	-0.13	-0.15	0.13	G2_M
A 23 P49878	PIMREG	NM 019013	54478	-2.67	-2.40	0.27	-0.54	G2 M
A_23_P411723	PLAG1	NM_002655	5324	0.44	-0.18	-0.62	1.02	G2_M
A_24_P313504	PLK1	NM_005030	5347	-1.32	-1.37	-0.05	-0.17	G2_M
A_23_P118174	PLK1	NM_005030	5347	-0.82	-0.68	0.14	-0.43	G2_M

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_24_P354300	POC1A	NM_015426	25886	-1.21	-0.81	0.40	-0.63	G2_M
A_23_P212284	POC1A	NM_015426	25886	-1.26	-0.82	0.44	-0.77	G2_M
A_24_P349002	POM121	NM_172020	9883	0.32	0.50	0.19	-0.52	G2_M
A_32_P131940	POM121	NM_172020	9883	0.27	0.40	0.13	-0.95	G2_M
A_24_P417784	POM121	NM_172020	9883	0.35	0.57	0.22	-0.86	G2_M
A_24_P266273	POM121	NM_172020	9883	0.03	-0.19	-0.22	0.06	G2_M
A_23_P156667	PPP1R10	NM_002714	5514	-0.93	0.07	1.00	-1.19	G2_M
A_23_P15305	PRPSAP1	NM_002766	5635	-0.51	-0.31	0.20	-0.68	G2_M
A_23_P80382	PKR5	NM_015366	55615	-0.21	0.00	0.21	-0.48	G2_M
A_24_P10890	PKK5	NIVI_015366	55615	0.20	0.06	-0.14	-0.15	G2_M
A_24_F21044 A 23 D103328	PSIVIGS DTGED3	NM 109714	5733	1 30	1.41	0.15	0.01	
A_23_F103320	PTGER3	NM 100715	5733	0.53	0.61	0.08	-0.00	
A 23 P81770	ΡΤΡΔΔ1	NM_003463	7803	0.55	0.28	-0.39	0.32	G2_M
A 24 P294832	PTP4A1	NM_003463	7803	-0.37	-0.01	0.36	-0.57	G2_M
A 24 P252043	PTP4A1	NM 003463	7803	0.50	-0.24	-0.74	0.60	G2 M
A 23 P124486	PTPN9	NM 002833	5780	-0.51	-0.22	0.29	-1.07	G2 M
A_23_P13632	PYM1	NM_032345	84305	-0.42	-0.12	0.30	-0.64	G2_M
A_23_P45106	QRICH1	NM_017730	54870	0.22	0.14	-0.08	-0.53	G2_M
A_23_P45108	QRICH1	NM_017730	54870	0.17	-0.10	-0.27	0.53	G2_M
A_23_P207014	RAD51C	NM_002876	5889	-0.96	-0.75	0.21	0.02	G2_M
A_23_P391344	RASGEF1A	BC022548	221002	0.73	0.39	-0.34	0.62	G2_M
A_32_P223140	RASGEF1A	NM_145313	221002	0.75	0.14	-0.62	1.04	G2_M
A_24_P79955	RBM8A	NM_005105	9939	-0.54	-0.12	0.41	-0.54	G2_M
A_23_P305335	RBM8A	BC017770	9939	1.29	0.20	-1.09	1.74	G2_M
A_32_P62571	RBM8A	NM_005105	9939	-0.41	0.02	0.44	-0.81	G2_M
A_23_P104116	RBM8A	NM_005105	9939	0.09	0.16	0.07	0.49	G2_M
A_23_P166248	RCAN1	NM_004414	1827	-0.18	-0.13	0.05	-0.24	G2_M
A_23_P14105	RCB1B2	NM_001268	1102	-1.53	-0.06	1.4/	-1./4	G2_M
A_24_P342591	RERE	NM_012102	4/3	0.16	0.39	0.23	-1.12	G2_M
A_23_P85414	KEKE	NM_012102	4/3	0.04	0.07	0.04	-0.65	G2_M
A_24_P725050 A 24_P766577	RINPST DNDS1	NM_006711	10921	0.65	0.54	-0.51	0.59	
Δ 23 P152272	RNPS1	NM_006711	10921	0.12	0.02	0.10	-0.38	G2_M
A 23 P80129	RRP1	NM_003683	8568	0.63	0.52	-0.11	0.04	G2_M
A 23 P80136	RRP1	NM 003683	8568	-0.09	0.26	0.34	-0.03	G2 M
A 24 P100517	SAPCD2	NM 178448	89958	-0.91	-0.60	0.31	-0.42	G2 M
A_23_P370625	SELENON	NM_020451	57190	-0.80	-0.26	0.54	-1.75	G2_M
A_24_P231250	SELENON	NM_020451	57190	-0.37	-0.07	0.30	-1.06	G2_M
A_24_P105283	SFPQ	NM_005066	6421	-0.18	-0.09	0.09	-0.28	G2_M
A_23_P411335	SGO2	NM_152524	151246	-1.95	-1.54	0.41	-0.59	G2_M
A_32_P96719	SHCBP1	NM_024745	79801	-1.68	-1.83	-0.14	-0.60	G2_M
A_23_P59051	SLC17A2	NM_005835	10246	0.13	0.43	0.29	-0.36	G2_M
A_24_P10657	SLC44A2	NM_020428	57153	0.24	0.31	0.07	-0.65	G2_M
A_23_P208340	SLC44A2	NM_020428	57153	-0.08	0.15	0.23	-0.96	G2_M
A_23_P68824	SMARCB1	NM_003073	6598	-0.33	0.02	0.35	-0.82	G2_M
A_24_P232696	SMARCD1	NM_139071	6602	-0.23	-0.01	0.22	-0.68	G2_M
A_23_P204/45	SMARCDI	NIVI_139071	6525	0.16	0.05	0.49	-0.24	
A_23_P211428	SIVITIN SOCA1	NIVI_134209	0525	-0.47	-0.31	0.17	- 1.05	G2_M
A_23_F3934 A 23_P5936	SOGA1	AB020090 AB020696	140710	-0.45	-0.12	-0.18	-0.40	G2_M
Δ 23 P5938	SOGA1	AB020090	140710	0.20	0.44	0.10	-0.36	G2_M
A 23 P89509	SPAG5	NM 006461	10615	-2.17	-1 39	0.00	-0.41	G2_M
A 23 P41948	SPDI 1	NM_017785	54908	-1.58	-0.78	0.80	-0.55	G2 M
A 23 P102523	SPTBN1	NM 003128	6711	-0.45	-0.37	0.08	-0.81	G2 M
A_23_P339095	SPTBN1	NM_178313	6711	-0.19	-0.25	-0.07	-0.15	G2_M
A_23_P30223	SRD5A1	NM_001047	6715	-0.15	-0.47	-0.32	-0.08	G2_M
A_23_P413761	SRSF3	NM_003017	6428	-0.31	0.03	0.33	-0.18	G2_M
A_23_P19702	TAB2	NM_015093	23118	0.32	0.20	-0.12	0.03	G2_M
A_24_P245778	TFF3	ENST00000291525	7033	-0.63	-0.48	0.15	-0.45	G2_M
A_23_P393099	TFF3	NM_003226	7033	-0.11	-0.09	0.02	-0.05	G2_M
A_24_P289208	TFF3	NM_003226	7033	0.14	-0.41	-0.54	0.60	G2_M

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P257296	TFF3	NM_003226	7033	0.03	0.03	0.00	0.06	G2_M
A_23_P153197	TGIF1	NM_170695	7050	-0.28	-0.22	0.06	-1.29	G2_M
A_24_P926367	THRAP3	NM_005119	9967	-0.61	-0.46	0.15	-0.71	G2_M
A_24_P256863	THRAP3	NM_005119	9967	-0.19	-0.38	-0.18	0.33	G2_M
A_23_P160367	THRAP3	NM_005119	9967	-0.18	-0.42	-0.24	-0.01	G2_M
A_23_P1582//	TMCO4	NM_181719	255104	-0.15	0.32	0.46	-0.61	G2_M
A_23_P24/23	TNEAIDOL 1	NWI_016464	51524	-0.43	-0.25	0.17	0.17	G2_M
A_23_P420075		NM 002270	120202	-0.70	-0.84	-0.14	-0.55	G2_M
A_23_F130101		NM 002270	3842	-0.17	0.20	0.04	0.49	G2_M
A 24 P260440	TNPO1	NM 002270	3842	0.00	0.10	0.22	0.32	G2_M
A 24 P199097	TOMM34	NM_006809	10953	0.31	0.09	-0.22	1.37	G2_M
A 23 P57033	TOMM34	NM 006809	10953	0.08	-0.19	-0.27	0.78	G2_M
A 23 P68610	TPX2	NM 012112	22974	-2.37	-1.66	0.71	-1.18	G2 M
A_24_P277576	TRIP13	NM_004237	9319	-0.28	-0.08	0.21	-0.37	G2_M
A_23_P75839	TSG101	NM_006292	7251	0.10	0.06	-0.04	1.78	G2_M
A_23_P162142	TSKU	NM_015516	25987	0.51	0.27	-0.24	-0.24	G2_M
A_23_P28105	TSN	NM_004622	7247	-0.28	-0.10	0.18	-0.10	G2_M
A_24_P242820	TSN	NM_004622	7247	-0.19	-0.19	0.00	-0.29	G2_M
A_23_P259586	ΤΤΚ	NM_003318	7272	-2.35	-2.45	-0.10	-0.31	G2_M
A_24_P263524	TXNDC9	NM_005783	10190	-0.65	-0.41	0.24	0.04	G2_M
A_23_P154330	TXNDC9	NM_005783	10190	-0.51	-0.20	0.32	0.23	G2_M
A_24_P362646	TXNDC9	NM_005783	10190	-0.32	-0.08	0.24	0.18	G2_M
A_23_P204581	TXNRD1	NM_003330	7296	0.59	0.55	-0.04	0.70	G2_M
A_23_P40989	USP13	NM_003940	8975	-0.40	-0.38	0.03	-0.37	G2_M
A_23_P257911	USP16	NM_001032410	10600	-0.34	-0.07	0.27	0.58	G2_M
A_24_P199055	VANGLI VANCLI	NM 128050	81839	-0.63	0.04	0.00	-0.93	GZ_M
A_25_P105795	VANGLI VANGLI	NM 138050	01039 91930	-0.30	0.20	0.57	-0.97	G2_M
A_23_P103070	YWHAH	NM 003405	7533	-0.19	-0.35	-0.16	-0.35	G2_M
A 23 P215088	7C3HC1	NM 016478	51530	0.02	0.09	0.07	0.32	G2_M
A 24 P290527	ZEX	NM 003410	7543	-0.28	-0.08	0.21	0.18	G2_M
A 23 P125639	ZFX	NM 003410	7543	0.36	0.08	-0.28	0.75	G2 M
A_24_P940524	ZFX	NM_003410	7543	-0.16	0.13	0.29	-0.31	G2_M
A_23_P161091	ZMYM1	NM_024772	79830	-0.12	-0.30	-0.18	0.27	G2_M
A_24_P53985	ZMYM1	NM_024772	79830	-0.10	-0.25	-0.15	0.38	G2_M
A_23_P159027	ZNF521	NM_015461	25925	-0.33	0.08	0.41	-0.63	G2_M
A_23_P78018	ABCA5	NM_018672	23461	-0.15	-0.02	0.13	-0.05	S
A_24_P67096	ABCA5	NM_018672	23461	-0.15	-0.01	0.14	-0.10	S
A_23_P158976	ABCC2	NM_000392	1244	0.45	0.07	-0.38	0.36	S
A_23_P44569	ABCC2	NM_000392	1244	0.12	0.14	0.02	0.26	S
A_23_P212665	ABCC5	NM_005688	10057	0.29	-0.21	-0.50	-0.14	S
A_23_P258221	ABCC5	NW 018304	10057	-0.08	0.07	0.15	-0.03	S
A_24_P200002	ADHDIU ARHD10	NM 018304	55347	-0.57	0.30	0.75	-0.08	5 C
A_23_F922T3	ABHD10 ARHD10	NM 018394	55347	0.10	-0.07	-0.19	0.04	5
A 23 P23630	ACAP3	NM_030649	116983	-0.69	-0.34	0.15	-0.14	S
A 23 P23625	ACAP3	NM 030649	116983	-0.61	-0.11	0.50	-0.52	S
A 23 P12231	ACAP3	NM 030649	116983	0.26	-0.45	-0.71	-0.20	S
A_24_P281497	ACAP3	NM_030649	116983	-0.15	0.41	0.55	-0.17	S
A_24_P355006	ADAM22	ENST00000398204	53616	-0.54	-0.45	0.09	-0.53	S
A_23_P215625	ADAM22	NM_021723	53616	-0.37	-0.61	-0.24	-0.10	S
A_24_P243741	ADAM22	NM_021721	53616	0.22	0.27	0.06	-0.17	S
A_24_P203630	ANKRD36	NM_001164315	375248	0.93	0.78	-0.15	0.57	S
A_24_P6725	ANKRD36	NM_001164315	375248	0.78	0.66	-0.12	0.32	S
A_24_P686992	ANKRD36	NM_001164315	375248	0.67	0.50	-0.17	0.58	S
A_24_P336931	ANKRD36	NM_001164315	375248	-0.02	-0.39	-0.36	0.53	S
A_23_P119254	ASF1B	NM_018154	55723	-2.77	-2.37	0.40	-1.54	S
A_23_P120629	ASIP	NM_001672	434	0.04	-0.21	-0.25	0.38	5
A_23_P106835	BBS2	INIVI_U31885	583 54941	-0.11	-0.25	-0.14	0.10	2 5
A_23_P103833	BIM	NM 000057	5404 I 641	-0.28	0.14 — 1.89	0.45	-0.75	2 2
/ 00000	DLIVI		JTI	2.20	1.02	0.57	0.05	5

			logFC at:					
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_24_P303989	BMI1	NM_005180	648	-0.26	-0.03	0.23	0.05	S
A_23_P314115	BMI1	NM_005180	648	-0.12	-0.01	0.10	0.02	S
A_23_P207400	BRCA1	NM_007300	672	-1.00	-0.91	0.08	-0.65	S
A_23_P15844	BRIP1	NM_032043	83990	-1.30	-1.16	0.14	0.07	S
A_24_P255524	CALD1	AF247820	800	0.54	0.69	0.15	0.28	S
A_24_P921366	CALD1	NM_033138	800	-0.51	-0.17	0.34	-0.79	S
A_23_P42575	CALD1	NM_033138	800	-0.33	0.02	0.35	-0.35	S
A_24_P313993	CAPS	NM_004058	828	-0.42	0.14	0.56	-0.19	S
A_23_P78958	CAPS	NW1_004058	828	-0.22	0.44	0.66	-0.43	S
A_23_P384056	CCDC14	NWI_022757	64770	-0.59	-0.46	0.13	0.41	S
A_25_P59574	CCDC150	NM 001080539	204992	-0.47	-0.52	0.04	0.15	S
A_24_F137130	CCDC150	A 23 D320100	204992 NA	-0.34	-0.24	0.05	-0.53	2
A_23_F320T90 A_24_P636332	CCDC84	NM 198489	338657	0.17	0.24	0.10	0.55	5
A 24 P693946	CCDC84	A 24 P693946	NA	0.05	-0.01	-0.06	0.62	S
A 23 P57379	CDC45	NM 003504	8318	-3.57	-2.37	1.20	-1.90	S
A 23 P148807	CDC7	NM 003503	8317	-0.70	-0.50	0.20	-0.07	S
A_23_P104651	CDCA5	NM_080668	113130	-2.58	-2.15	0.42	-1.16	S
A_23_P405267	CDH24	AK057922	64403	1.03	-0.05	-1.08	1.04	S
A_23_P25790	CDH24	NM_022478	64403	0.26	-0.37	-0.62	0.19	S
A_23_P258002	CDKN2AIP	NM_017632	55602	0.18	-0.17	-0.35	0.51	S
A_24_P399888	CENPM	NM_001002876	79019	-2.65	-2.27	0.38	-0.97	S
A_23_P70328	CENPQ	NM_018132	55166	-0.18	-0.36	-0.18	0.41	S
A_23_P254733	CENPU	NM_024629	79682	-1.79	-1.85	-0.06	-0.23	S
A_24_P289366	CERS6	NM_203463	253782	0.10	0.18	0.08	-0.46	S
A_32_P5480	CERS6	NM_203463	253782	-0.08	0.35	0.43	-0.45	S
A_23_P144071	COL7A1	NM_000094	1294	-0.17	0.28	0.46	-0.03	S
A_24_P932308	COQ9	AK075438	57017	0.90	0.78	-0.12	1.05	S
A_23_P14928	COQ9	NM_020312	5/01/	-0.08	0.22	0.31	-0.15	S
A_23_P8/556	CPNE8	NW1_153634	144402	-0.23	0.33	0.56	-0.20	S
A_24_P50240	CPINE8	NIVI_153034	144402 54976	0.05	0.58	0.53	0.00	5
A_23_F144436 A 32 P104000	DCAF10 DCUN1D3	NM 173475	123870	-0.18	0.11	0.20	0.31	2
A 23 P429491	DDIAS	NM 145018	220042	-1.24	-1.00	0.24	-0.25	S
A 24 P926543	DDIAS	AK058145	220042	0.41	0.29	-0.12	-0.14	S
A 23 P385126	DEPDC7	NM 139160	91614	0.99	0.06	-0.93	1.16	S
A 24 P320284	DHFR	NM 000791	1719	-1.51	-1.20	0.32	-0.38	S
A_24_P942328	DHFR	NM_000791	1719	-1.91	-1.52	0.39	-1.10	S
A_32_P211045	DHFR	NM_000791	1719	-2.16	-1.40	0.76	-1.27	S
A_23_P167553	DHFR	NM_000791	1719	-1.58	-1.13	0.45	-0.59	S
A_24_P343095	DHFR	NM_000791	1719	-1.26	-0.87	0.39	-0.36	S
A_23_P327361	DMXL2	NM_015263	23312	0.07	-0.14	-0.21	-0.02	S
A_24_P366107	DNA2	NM_001080449	1763	-0.86	-0.69	0.17	-0.56	S
A_23_P51339	DNAJB4	NM_007034	11080	1.16	-0.02	-1.18	0.98	S
A_24_P393958	DNAJB4	NM_00/034	11080	1.11	-0.10	-1.21	1.23	S
A_23_P95359	DNAJC6	NM_014787	9829	-0.44	-0.40	0.03	-0.41	S
A_23_P14/4/9	DINAJCO	NIVI_014/8/	9829	0.35	-0.02	-0.38	0.58	5
A_23_F300390	DONSON	NM 017613	29960	0.32	-0.11	-0.64	0.96	2
A_23_P35871	F2F8	NM_074680	79733	-0.76	-0.35	0.04	-0.23	5
A 23 P214291	FFHC1	NM_018100	114327	-0.37	-0.45	-0.08	0.23	S
A 32 P86245	FFHC1	NM_018100	114327	-0.31	-0.07	0.24	-0.10	S
A 24 P913374	EIF4EBP2	NM 004096	1979	-0.66	-0.29	0.36	-1.22	S
A_24_P4387	EIF4EBP2	NM_004096	1979	-0.42	-0.08	0.34	-0.58	S
A_24_P115621	EIF4EBP2	NM_004096	1979	-0.25	-0.04	0.21	-0.90	S
A_23_P115922	EIF4EBP2	NM_004096	1979	-0.22	0.01	0.24	-0.47	S
A_24_P323598	ESCO2	NM_001017420	157570	-2.00	-1.95	0.05	-0.79	S
A_23_P23303	EXO1	NM_003686	9156	-2.11	-1.68	0.42	-1.23	S
A_23_P259641	EZH2	NM_004456	2146	-0.74	-0.91	-0.16	0.13	S
A_23_P99853	FAM214A	NM_019600	56204	0.25	0.05	-0.20	-0.03	S
A_24_P357576	FAM214A	NM_019600	56204	0.17	0.09	-0.08	-0.27	S
A_23_P206441	FANCA	NM_000135	2175	-0.49	-0.42	0.07	-0.58	S

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_24_P73158	FEN1	NM_004111	2237	-1.16	-1.11	0.04	-0.36	S
A_24_P84898	FEN1	NM_004111	2237	-1.27	-1.29	-0.02	-0.33	S
A_23_P103996	GCLM	NM_002061	2730	0.55	1.42	0.87	-0.32	S
A_32_P177953	GCLM	ENST00000370238	2730	0.05	1.10	1.05	-0.67	S
A_32_P2392	GOLGA8A	NM_181077	23015	0.91	0.31	-0.60	0.66	S
A_23_P37623	GOLGA8A	NM_181077	23015	0.54	0.52	-0.02	-0.12	S
A_24_P910580	GOLGA8A	NR_027409	23015	0.50	0.47	-0.03	0.73	S
A_23_P29257	HIFO	NM_005318	3005	0.40	0.02	-0.39	-0.58	S
A_23_P349771	HAUSS	NM_019062	23354	0.41	0.89	0.48	-0.01	S
A_23_P12810	HELLS LIST1U2AC	NM 002512	3070	-0.95	-1.12	-0.17	-0.02	S
A_23_F372000		ENIST000031/088	8334	-0.38	-0.37	-0.19	-0.03	2
A_23_F107903	HIST1H2AC	NM 003514	8336	-1.05	-1.41	-0.36	0.05	2
A 24 P86389	HIST1H2AM	NM_003514	8336	0.10	-0.07	-0.17	0.83	S
A 23 P93180	HIST1H2BC	NM 003526	8347	-0.04	-0.26	-0.22	0.90	S
A 24 P166407	HIST1H4B	NM 003544	8366	-0.91	-0.89	0.02	-0.16	S
A 23 P214487	HIST1H4C	NM 003542	8364	-1.27	-1.00	0.27	-0.66	S
A_23_P323685	HIST1H4H	NM_003543	8365	-0.31	-0.82	-0.51	0.73	S
A_23_P52266	IFIT1	NM_001548	3434	1.72	0.64	-1.08	1.80	S
A_23_P102454	INSIG2	NM_016133	51141	0.53	0.07	-0.46	1.13	S
A_24_P944458	INSIG2	NM_016133	51141	-0.30	-0.67	-0.37	0.31	S
A_23_P52082	INTS7	NM_015434	25896	-0.49	0.16	0.64	-0.44	S
A_32_P159651	KAT2B	NM_003884	8850	-0.66	-0.62	0.04	-0.51	S
A_23_P41128	KAT2B	NM_003884	8850	-0.38	-0.33	0.05	-0.36	S
A_23_P358542	KIFC2	NM_145754	90990	-0.21	-0.01	0.20	0.33	S
A_23_P165414	KLHL23	NM_144711	151230	-0.63	-0.12	0.51	-1.29	S
A_24_P923102	KLHL23	ENST00000392647	151230	-0.62	-0.02	0.60	-0.81	S
A_23_P165408	KLHL23	NM_144711	151230	-0.70	-0.36	0.34	-1.03	S
A_23_P/4252	LINC00339	NR_023918	29092	-0.41	-0.62	-0.20	0.04	S
A_23_P84219	LIPH	NM_139248	200879	-0.15	-0.11	0.04	0.38	S
A_24_P/99858	LIPH	EINST00000296252	200879	-0.03	0.14	0.17	-0.11	S
A_25_P500101	LIVIO4 I VDM7	NM 181705	00624	-0.50	-0.07	0.50	-0.34	S
A_32_F10139 Δ 32 P211141	LTNN7	NM 181705	90624	0.41	0.17	0.25	0.13	2
A_32_F2TTT4T	LTRM7	NM 181705	90624	0.20	0.44	0.13	0.07	5
A 23 P337464	LYRM7	NM 181705	90624	-0.23	0.02	0.25	-0.66	S
A 24 P926195	MAN1A2	NM 006699	10905	-0.52	-0.01	0.51	-0.55	S
A 23 P103571	MAN1A2	NM 006699	10905	-0.48	0.14	0.62	-0.21	S
A_32_P88603	MAN1A2	ENST00000356554	10905	-0.49	0.09	0.59	-0.78	S
A_32_P88598	MAN1A2	ENST00000356554	10905	-0.42	0.25	0.66	-0.72	S
A_24_P213548	MAN1A2	NM_006699	10905	-0.11	0.41	0.52	0.02	S
A_23_P313640	MAP3K2	NM_006609	10746	0.60	0.45	-0.15	0.16	S
A_32_P98887	MAP3K2	ENST00000409947	10746	0.42	-0.11	-0.53	0.32	S
A_23_P313645	MAP3K2	NM_006609	10746	0.23	0.24	0.01	0.40	S
A_23_P201988	MASTL	NM_032844	84930	-0.45	-0.86	-0.41	0.36	S
A_24_P258051	MASTL	NM_032844	84930	-0.16	-0.38	-0.22	0.06	S
A_23_P92154	MBD4	NM_003925	8930	-0.37	-0.14	0.24	0.14	S
A_23_P68547	MCM8	NM_182802	84515	-0.81	-0.49	0.32	-0.43	S
A_24_P305556	MCM8	NM_182802	84515	-0.50	-0.48	0.03	-0.09	S
A_32_P129894	MITE	NM 109150	1955	-0.12	0.13	0.25	-1.13	S
A_23_P420003	NITE	NM 109150	4200	-0.17	-0.15	0.02	-0.04	S
A_23_F73343	MITE	NM 108177	4200	0.20	-0.39	-0.07	0.72	2
A_24_F910310 A 23 P61945	MITE	NM 198159	4286	-0.03	0.59	0.55	-0.07	5
A 24 P323815	MYCRP2	NM 015057	23077	-0.48	-0.28	0.20	-0.08	S
A 23 P151459	MYCBP2	NM 015057	23077	0.04	0.56	0.52	-0.46	S
A 23 P209805	NAB1	NM 005966	4664	0.67	0.61	-0.06	1.30	S
A 24 P191417	NAB1	NM 005966	4664	0.01	0.29	0.28	0.47	S
A_23_P5761	NFE2L2	NM_006164	4780	0.04	0.26	0.22	-0.14	S
A_23_P23006	NRDC	NM_002525	4898	-0.42	-0.16	0.27	-0.07	S
A_32_P213822	NSUN3	ENST00000314622	63899	-0.66	-0.31	0.36	-0.19	S
A_23_P21785	NSUN3	NM_022072	63899	-0.08	-0.10	-0.01	0.55	S

			logFC at:					
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_23_P382043	NT5DC1	NM_152729	221294	-0.40	-0.15	0.25	-0.31	S
A_23_P219004	NT5DC1	NM_152729	221294	0.14	0.15	0.01	0.37	S
A_24_P922606	NUP160	NM_015231	23279	0.83	0.11	-0.72	0.83	S
A_23_P43726	NUP160	NM_015231	23279	-0.06	0.06	0.12	0.15	S
A_23_P381979	OGT	NM_181672	8473	-0.25	-0.44	-0.19	0.06	S
A_23_P381976	OGT	NM_181672	8473	-0.17	-0.08	0.09	0.12	S
A_23_P42045	ORC3	NM_181837	23595	-0.10	-0.60	-0.50	0.66	S
A_23_P79818	OSER1	NM_016470	51526	0.27	-0.36	-0.63	0.95	S
A_24_P261083	OSGIN2	NM_004337	/34	0.89	0.41	-0.47	0.84	S
A_23_P82859	OSGIN2	NM_004337	/34	-0.01	-0.06	-0.05	0.18	S
A_23_P117852	PCLAF	NIM_014/30	9/08	-3.04	-2.31	0.73	-0.87	5
A_32_P01339	РПІР DUID	DCU30479	55025	-0.37	-0.24	-0.45	-0.08	с с
A_24_F190400 A 23 D145437	DHID	NM 017034	55023	-0.30	-0.04	0.01	0.13	2
A_23_F143437	PHIP	NM 017934	55023	-0.22	-0.03	0.09	-0.13	5
A 24 P931503	PHIP	NM 017934	55023	-0.21	-0.12	0.20	-0.61	5
A 24 P175176	PHTF2	NM 020432	57157	-0.76	-0.05	0.00	-0.58	S
A 32 P409919	PHTF2	NM 020432	57157	0.57	0.05	-0.52	0.50	S
A 24 P323944	PHTF2	NM 020432	57157	0.08	-0.05	-0.13	0.21	S
A 24 P403244	PILRB	NM 013440	29990	-0.31	0.08	0.38	0.15	S
A 23 P19829	PILRB	NM 013440	29990	-0.32	0.06	0.38	0.08	S
A 24 P105102	PKMYT1	NM 182687	9088	-1.77	-1.36	0.41	-1.22	S
A_23_P398515	PKMYT1	NM_004203	9088	0.12	0.19	0.07	-0.19	S
A_23_P25019	PRIM1	NM_000946	5557	-1.04	-1.21	-0.17	-0.32	S
A_23_P44139	PRIM2	NM_000947	5558	-0.53	-0.21	0.32	-0.16	S
A_24_P282237	PRIM2	NM_000947	5558	-0.33	-0.25	0.08	-0.17	S
A_24_P75158	PTAR1	NM_001099666	375743	-0.36	-0.37	0.00	0.26	S
A_23_P121222	RAD18	NM_020165	56852	-0.58	-0.47	0.11	-0.13	S
A_23_P88731	RAD51	NM_002875	5888	-1.73	-1.58	0.15	-1.02	S
A_23_P99292	RAD51AP1	NM_006479	10635	-2.35	-2.26	0.08	-1.01	S
A_23_P74115	RAD54L	NM_003579	8438	-2.14	-1.79	0.34	-0.94	S
A_23_P252371	RBBP8	NM_002894	5932	-0.40	-0.41	-0.01	0.30	S
A_23_P96285	REEP1	NM_022912	65055	-2.14	-1.68	0.45	-1.95	S
A_23_P93823	RFC2	NM_1814/1	5982	-0.45	-0.33	0.12	-0.47	S
A_23_P18196	KFC4	NM_002916	5984	-0.84	-0.88	-0.04	-0.04	S
A_25_P92710		NM_052024	22030	0.42	0.07	-0.00	-0.96	S C
A_25_P515560	RHPNI DHDNI	NM_052924	114022	-0.19	-0.28	-0.09	0.50	S
Δ 23 P87432	RHPN1	NM 052924	114822	-0.14	-0.25	-0.11	-0.38	2
A 23 P86133	RPA2	NM_002946	6118	-0.52	-0.77	-0.25	0.22	S
A 23 P87351	RRM1	NM_001033	6240	-0.73	-0.81	-0.08	0.31	S
A 24 P234196	RRM2	NM 001034	6241	-3.49	-2.56	0.93	-1.85	S
A 24 P225616	RRM2	NM 001034	6241	-1.98	-1.54	0.44	-1.50	S
A_24_P350160	RSRC2	NM_198261	65117	0.43	0.09	-0.34	1.05	S
A_23_P53267	RSRC2	NM_198261	65117	-0.16	-0.52	-0.36	0.70	S
A_24_P304987	SAP30BP	NM_013260	29115	-0.32	-0.05	0.27	-0.13	S
A_23_P54953	SAP30BP	NM_013260	29115	-0.23	-0.44	-0.21	0.26	S
A_23_P169351	SH3GL2	NM_003026	6456	0.07	-0.50	-0.57	-0.13	S
A_23_P200443	SHC1	NM_003029	6464	0.29	0.36	0.07	-0.42	S
A_24_P68585	SHC1	NM_183001	6464	0.06	0.14	0.08	-0.06	S
A_23_P202587	SHTN1	NM_018330	57698	-0.27	0.15	0.42	-0.46	S
A_32_P309404	SLC22A3	NM_021977	6581	-0.45	0.30	0.75	-0.81	S
A_23_P19733	SLC22A3	NM_021977	6581	0.20	0.72	0.52	0.12	S
A_24_P246841	SLC25A27	NM_004277	9481	0.40	0.38	-0.03	0.84	S
A_23_P81/21	SLC25A27	NM_004277	9481	0.26	0.25	-0.01	0.57	5
A_23_P2180/9	SLC38A2	NIVI_018976	54407	0.24	0.33	0.09	1.24	5 C
A 22 D104202	SLCS8A2	NIM 010121	54407	-0.09	0.15	-0.05	0.25	с С
A_23_F104282	SLF2 SLF2	NM 019121	55710	-0.57	-0.42	-0.05	-0.20	с С
A 23 D256120	SLF2 SLF2	NM 018121	55710	-0.14	0.10	0.02	-0.62	5
A 23 P366312	SP1	NM 138473	6667	0.39	0.48	0.09	-0.14	S
A_23_P53397	SP1	NM_138473	6667	0.23	0.09	-0.15	-0.01	S

				logFC at:				
				2 days		7 days		
Probe	Gene symbol	RefSeq	Entrez ID	w.t. vs NI	dCdtB vs NI	w.t. vs NI	dCdtB vs NI	Cell cycle phase ^b
A_32_P45493	SRSF10	NM_006625	10772	-0.79	-0.49	0.30	0.03	S
A_23_P45737	SRSF10	NM_006625	10772	-0.43	-0.30	0.13	0.21	S
A_23_P352291	SRSF10	NM_054016	10772	-0.20	-0.18	0.01	-0.41	S
A_24_P4795	SRSF10	NM_054016	10772	-0.19	-0.09	0.10	0.57	S
A_23_P377819	SRSF5	NM_001039465	6430	-0.29	-0.21	0.08	-0.40	S
A_32_P45894	STAG3L1	NM_018991	54441	0.17	0.06	-0.12	0.53	S
A_24_P374962	STAG3L1	NM_018991	54441	0.05	0.20	0.15	0.21	S
A_24_P111242	SVIP	NM_148893	258010	-0.53	-0.55	-0.03	0.11	S
A_32_P41070	TMCC1	NM_015008	23023	-0.10	0.09	0.20	-0.29	S
A_32_P41065	TMCC1	NM_001017395	23023	-0.08	-0.15	-0.08	-0.17	S
A_24_P922288	TMCC1	NM_001017395	23023	0.08	-0.29	-0.37	0.60	S
A_23_P170986	TMCC1	NM_001017395	23023	-0.01	-0.12	-0.11	0.40	S
A_23_P39813	TTC31	NM_022492	64427	-0.34	0.04	0.38	-0.46	S
A_32_P204169	TTLL7	ENST00000260505	79739	0.29	0.86	0.57	-0.42	S
A_23_P97481	TTLL7	NM_024686	79739	-0.18	-0.38	-0.21	0.08	S
A_24_P165450	TTLL7	NM_024686	79739	0.02	-0.02	-0.03	0.15	S
A_23_P50096	TYMS	NM_001071	7298	-1.55	-1.70	-0.15	-0.34	S
A_23_P115482	UBE2T	NM_014176	29089	-1.18	-0.89	0.29	0.14	S
A_24_P330234	UBL3	NM_007106	5412	-0.30	-0.27	0.03	0.04	S
A_23_P140029	UBL3	NM_007106	5412	0.23	0.04	-0.19	0.04	S
A_23_P11652	USP1	NM_003368	7398	-0.44	-0.67	-0.23	0.22	S
A_23_P98483	ZBED5	NM_021211	58486	-0.41	-0.22	0.19	0.20	S
A_23_P210608	ZNF217	NM_006526	7764	0.02	-0.28	-0.30	0.05	S
A_23_P63789	ZWINT	NM_032997	11130	-2.88	-2.07	0.82	-1.15	S

^aFrom Whitfield et al. (58).

^bPhases: G1, G₁; G2, G₂; G2_M, G₂/M; G2,G2_M, G₂ or G₂/M, etc.

typhoid toxin, the non-infected bystander cells experienced genomic instability. This paracrine DNA damage effect depended on the presence of the CdtB subunit, moving attention to non-infected but intoxicated cells as potential targets of cellular transformation.

It has been shown that *Salmonella* is able to promote cell division through activation of the AKT and mitogen-activated protein kinase (MAPK) pathways. *S.* Typhimurium, which lacks the typhoid toxin, is able to induce tumor growth in a genetically predisposed primary mouse fibroblast model (63). We previously suggested that chronic carriers, subjected to low levels of genotoxicity and DSBs for years, might develop a similar genetic predisposition (64). Together with the anti-apoptotic effects of *Salmonella* on host cells (65, 66) and persistent inflammation, the enhanced damage is likely to contribute to an increased risk of developing malignant mutations observed in chronic carriers.

By using the organoids a source of cells to develop mucosoid cultures (as previously done for the human stomach) (34), we could generate an advanced model for S. Paratyphi A chronic infection in vitro. The gene expression profile of long-term S. Paratyphi A-infected mucosoid revealed that infection induced an initial cell cycle arrest that did not depend on the DNA damage caused by the typhoid toxin. It has been reported that bacteria use particular cell cycle phases for their invasion or replication. For these reasons they are equipped with factors known as cyclomodulins. Salmonella is known to preferentially invade mitotic cells (67) and is equipped with diverse cyclomodulins, including SpvB and PheA, that induce cell cycle arrest at different phases of the cell cycle depending on the type of infected cell (68). The typhoid toxin and other CdtB containing toxins, such as the cytolethal distending toxins (CDT), are also cyclomodulins since the DNA damage that they induce is known to induce cell cycle arrest, typically at the G₂/M checkpoint (69–72). In the physiological settings of the mucosoids and using S. Paratyphi A, a wild-type typhoid toxin-producing strain, we could again detect DNA damage. However, we could not observe any stronger or longer effect due to the typhoid toxin over other effectors in blocking the cell cycle.

w.t.

∆cdtB

sterile

medium

A

FIG 5 Intoxication of primary cell 2D monolayers with typhoid toxin-containing Salmonella supernatant. (A) Western blot analysis of vH2AX levels in primary cells after exposure to Salmonella supernatant or etoposide for 24 h. Relative densitometry values, normalized to the sterile medium condition (=1), are shown above the bands. (B) Comet assay showing that DNA damage, seen as a tail of DNA after electrophoresis, is higher after exposure to supernatant from w.t. Salmonella than from the cdtB deletion mutant. Etoposide served as a positive control. Pictures of two representative nuclei per condition are shown. (C) Quantification of the comet assay, shown as means \pm the SEM. ****, P < 0.0001. (D) Immunofluorescence analysis of cells intoxicated or treated with etoposide for 24 h with antibodies against yH2AX (green) and Ki67 (red); nuclei were stained with Hoechst (blue). Scale bar, $25 \ \mu m$. (E) Quantification of Ki67⁺ cells in intoxicated cells. Unlike cells treated with etoposide, cells intoxicated with w.t. Salmonella supernatant do not stop proliferation despite the presence of DNA DSBs. (F) Quantification of DNA damage in proliferating and non-proliferating cells. The intensity of the γ H2AX signal was quantified for each Ki67 positive and negative nucleus, using ImageJ. Data shown as means \pm the SEM. ***, P < 0.001; ****, P < 0.0001. (G) Primary cell monolayers infected for 3 days with Salmonella Paratyphi A transformed with the mCherry expressing vector pLS002 (red) and fluorescently labeled with antibodies against yH2AX (green) and Ki67 (white); nuclei were labeled with Hoechst (blue). Scale bar, 10 µm.

TABLE 5 Patient information

ID	Age (yr)	Gender	Comments
GB6	66	F	Cholecystectomy due to presence of gallstones and inflammation.
GB10	61	F	Cholecystectomy due to presence of gallstones and inflammation.
GB11	56	М	Cholecystectomy due to presence of gallstones and inflammation.
GB12	37	М	Cholecystectomy due to polyps in the gallbladder; we got a healthy piece
GB13	66	М	Adenocarcinoma of the gastroesophageal junction, type III, otherwise healthy GB; patient received neoadjuvant chemotherapy before surgery and preventive cholecystectomy.
GB16	65	F	Gastric carcinoma, otherwise healthy GB; patient underwent gastrectomy and preventive cholecystectomy.

To distinguish the effect of the typhoid toxin over other bacterial effectors, we intoxicated primary epithelial cells derived from the organoids with a functional typhoid toxin obtained from bacterial supernatants. Our data confirm that the DNA damage is due to the action of the CdtB subunit of the typhoid toxin, but we showed in addition that damaged cells failed to arrest their cell cycle, and cells with higher levels of damage actually maintained proliferation. Chronic exposure to sublethal levels of recombinant CDT was previously found to induce genomic instability and anchorage-independent growth in Big Blue rat fibroblasts (25), suggesting that the duration of the exposure rather than the dose of the toxin is the key element that increases the risk of cellular transformation. In chronic carriers, healthy GB cells might get intoxicated with the typhoid toxin from neighboring infected *Salmonella* Paratyphi A cells or from gallstones coated with the same bacterium. The secretion of the toxin is at such a level that does not impair the cell cycle but still provokes DNA damage.

Future investigations should seek to understand whether the typhoid toxin leaves a genetic mutational signature in the gallbladder, as has been observed for other cancer types that have a signature reflecting the original mutagenic insult (15, 73, 74). Such a signature would provide an important molecular link between *Salmonella* and associated GBC.

MATERIALS AND METHODS

Human organoid culture. Human gallbladder epithelial cells were derived from patients that underwent cholecystectomy (for details, see Table 5). The samples were stored in ice-cold phosphate-buffered saline (PBS) for up to 2 h, and then epithelial cell isolation was performed as described previously (75). Briefly, the tissue was washed with PBS from the residual bile and mucus, and it was then incubated at 37° C with the mucosal side facing a solution of 0.2% collagenase type IV. The mucosa was abraded thoroughly with the end of a glass microscope slide held at an angle of 45° every 5 min four times. The isolated cells were passed through a cell strainer with 70- μ m pores and spun down, and 1 to 3 million cells were resuspended in a drop of 50 μ l of Matrigel. The polymerized Matrigel drop was then supplemented with a medium based on Advanced/DMEM/F-12 (Invitroger; described in Table 1). The medium was replaced twice a week. Every 7 to 10 days, the organoids were split at a ratio 1 to 3 or 4 by treatment with trypsin and then passed 10 times through a heat-narrowed Pasteur pipette. In the experiments in which single cells were seeded, trypsin-treated organoids were also passed through a 40- μ m-pore cell strainer before seeding them in Matrigel.

Murine organoid culture. Murine gallbladders were derived from mice with C57BL/6J genetic background. After sacrificing the mouse, the gallbladder was resected, cut in four pieces, and incubated in a thermal mixer at 37° C in 2 ml of TrypLE (Thermo Scientific) for 45 min. The tissue pieces were pipetted up and down five times to release the cells, big pieces were removed, and isolated cells were centrifuged, washed with Dulbecco modified Eagle medium (DMEM), and then seeded in $50-\mu$ l Matrigel drops. The polymerized Matrigel drop was then supplemented with the medium described in Table 1. The medium was replaced twice a week. The splitting procedure was the same as that described for the human organoids.

Human gallbladder mucosoid culture. The generation of the human gallbladder mucosoids follows a protocol that was previously published for the healthy human stomach (34). Briefly, single cells derived from organoid cultures were seeded on collagen-coated filters of Millicell standing cell culture inserts (Millipore, PIHP01250) at 150,000 cells/insert in primary cell medium (refer to Table 1 for more detail). Cells were incubated at 37°C, and the medium in the surrounding well was changed daily for the first 5 days, followed by twice a week. After 3 days, the medium on the filter was removed, and cells started to produce mucus that was withdrawn during medium change. Once a month, the mucosoids were split at a ratio of 1:3 by incubating the apical and basal sides of the mucosoids with trypsin-EDTA (0.5%). Single cells were reseeded again on new coated cell culture inserts.

Lineage tracing. For lineage tracing experiments, we used murine gallbladder organoids derived from C57BL/6J, Lgr5-EGFP-IRES-CreERT2, ROSA-mTmG^{floxed} mice. At 5 days after seeding, 10 μ M

4-hydroxytamoxifen (4HT; Sigma) was added to the medium, and the mixture was kept for 2 days. The induction was performed only once.

Microarray. Organoids were harvested 4 or 14 days (small and big organoids, respectively) after seeding. The Matrigel drops containing the organoids were dissolved in 1 ml of TRIzol (Life Technologies), and RNA was isolated as described in the manufacturer's protocol using glycogen as a coprecipitant. For mucosoids, filters were cut from the insert and dissolved thoroughly in 1 ml of TRIzol. Quality control and quantification of total RNA was assessed using a 2100 bioanalyzer (Agilent Technologies) and a NanoDrop 1000 UV-Vis spectrophotometer (Kisker).

(i) Organoids. Microarray experiments were performed as independent dual-color dye-reversal color-swap hybridizations using two biological replicates each. Total RNA was amplified and labeled with a dual-color Quick-Amp labeling kit (Agilent Technologies). In brief, mRNA was reverse transcribed and amplified using an oligo-dT-T7 promoter primer and labeled with cyanine 3-CTP or cyanine 5-CTP. After precipitation, purification, and quantification, 0.75 μ g of each labeled cRNA was fragmented and hybridized to custom whole-genome human multipack microarrays (8 × 60k; Agilent, 048908) according to the supplier's protocol (Agilent Technologies). Scanning of microarrays was performed at 3- μ m resolution using a G2565CA high-resolution laser microarray scanner (Agilent Technologies). Microarray image data were processed with Image Analysis/Feature Extraction software G2567AA vA.11.5.1.1 (Agilent Technologies) using default settings and the GE2_1105_Oct12 extraction protocol. The extracted dual-color raw data .txt files were further analyzed using R and the associated BioConductor package limma (76). Microarray data have been deposited in the Gene Expression Omnibus (GEO; www.ncbi.nlm .nih.gov/geo/) of the National Center for Biotechnology Information and can be assessed with the GEO accession number GSE100656.

For GSEA, a gene set of β -catenin target genes published previously (44) and human pluripotent stem cell genes published by Mallon et al. (42) (Tables 2 and 3) were used, and GSEA was performed on genes preranked by gene expression-based *t* score between early and differentiated organoids, using the fgsea R package (77) with 5,000 permutations. Wht family member's average intensities were calculated by global average in all the conditions. They were then filtered for an average intensity of >6. The differentially expressed ones were then identified as having a *P* value of <0.05.

(ii) **Mucosoids.** Single-color hybridizations using two technical replicates each were conducted. Microarrays used had design Agilent-014850 whole human genome microarray 4x44K G4112F (Agilent Technologies) and were read using the machines and software of the same manufacturer. The extracted raw data .txt files were further analyzed using R and the associated BioConductor package limma (76). Since MSigDB gene sets use human gene symbols to map genes to pathways, mouse symbols were translated to homologous human symbols using HomologeneDB from NCBI. GSEA was also performed on gene sets for cell cycle associated genes (58) from MSigDB v7.0 (PMID 21546393) (Table 4) between wild-type (w.t.) and Δ*cdtB* strain-infected mucosoid versus non-infected at 2 and 7 days post infection.

For human gene sets (i.e., MSigDB and those derived from human experiments), the full set of genes in the DGE results after collapsing t scores by gene and ranking was used. To analyze the mouse gene sets, the DGE data were restricted to probe sets that have a homologous gene in mice and humans. For these probe sets, the one with the highest t score and rank in the resulting list was selected and subsequently used for fGSEA analysis.

Expression data were analyzed as follows. For each of the selected comparisons, the replicates of the target condition were compared to the corresponding control using limma, producing differential expression statistics for all genes and comparisons. Analyses were performed as individual two-group unpaired comparisons: 2-day infection, w.t. versus NI; 2-day infection, $\Delta cdtB$ versus NI; 2-day infection, $\Delta cdtB$ versus NI; 2-day infection, $\Delta cdtB$ versus NI; and 7-day infection, $\Delta cdtB$ versus w.t.

The interpreting plotting of the results was done using Microsoft Excel, and the software R/R Studio was used to create the plots for the heatmaps. The heatmaps were plotted by using the normalized expression values (log-normalized intensity) again normalized on the non-infected control of each time point (logFC) when expression data from single genes were plotted and the calculated NES scores, respectively, for pathway analysis.

Immunofluorescence. Organoids were removed from Matrigel at the indicated time point by washing with ice-cold PBS and then fixed with 3.7% paraformaldehyde. Tissue pieces were washed with PBS and fixed. After fixation, organoids and tissue pieces were embedded in paraffin and cut with a microtome to get 5- μ m slices. Cells seeded in 2D (two dimensions) were washed with PBS and fixed. For whole-mount staining, the organoids were fixed directly in the Matrigel drop and then stained. The staining was performed with the antibodies and dyes listed in Table 6. Images were acquired with a Leica TCS SP-8 confocal microscope. For immunofluorescence of the mucosoids, the filters were cut form the insert, and pieces of the filters were blocked in a bovine serum albumin-containing blocking buffer for 3 h for whole-mount staining. Alternatively, the filters were fixed overnight in 4% paraformaldehyde (PFA) at 4°C, washed, embedded orthogonally in Histogel (HG-4000-144) inside a casting mold, and paraffinized overnight in a Leica TP1020 tissue processor. The paraffin blocks were generated inside a casting mold on a Paraffin console (Microm). Next, 5- μ m sections were cut with a paraffin rotation microtome (Microm). For dewaxing and antigen retrieval, sample slides were washed twice with xylene (10 min), followed by a descending series of alcohols (20 s each), followed by two washes with water and 30 min in target retrieval solution (Dako) at 95°C and 20 min at room temperature and 5 min under running water. Primary antibodies were diluted in the blocking solution: in-house-made anti- γ H2AX conjugated to ATTO488 (a green fluorescent dye; 1:500), phalloidin-Alexa 647 (lot 1731699; 1:100), and Hoechst (1:1,000; Sigma, B2261, lot 019K4029). Antibodies were incubated overnight at room tempera-

TABLE 6 Antibodies and dyes

Antibody	Supplier	Catalog no.	Source	Application(s) (dilution) ^a
Anti-β-Actin (AC-15)	Sigma	A5441	Mouse monoclonal	WB (1:10,000)
E-cadherin (clone CD324)	BD	562869	Mouse monoclonal	IF (1:300), WB (1:500)
Ki67 (D2H10)	Cell Signaling	9027	Rabbit monoclonal	IF (1:200)
PCNA (csPC10)	Cell Signaling	2586	Mouse monoclonal	IF (1:100)
Phospho-histone H2A.X (Ser139) (clone JBW301)	Millipore	05-636-l	Mouse monoclonal	WB (1:200)
Phospho-histone H2A.X (Ser139)-conjugated FITCS	In house		Mouse monoclonal	IF (1:500)
β-Catenin	Sigma	C2206	Rabbit polyclonal	IF (1:300), WB (1:500)
Claudin-2	Abcam	ab53032	Rabbit polyclonal	IF (1:200), WB (1:500)
Cytokeratin 19 (EP1580Y)	Abcam	ab52625	Rabbit monoclonal	IF: 1:500), WB (1:5,000)
Muc5B	Abcam	ab87376	Rabbit polyclonal	IF (1:300)
Vimentin (D21H3)	Cell Signaling	5741	Rabbit monoclonal	WB (1:1,000)
Hoechst (bisbenzimide H 33258)	Sigma	H6024		IF (1:1,000)
Draq5	Abcam	ab108410		IF (1:1,000)
Phalloidin 647	Invitrogen	A22287		IF (1:500)

^aWB, Western blotting; IF, immunofluorescence.

ture in the dark. Next, filter pieces were washed three times with blocking solution for 3 h at room temperature in the dark. The stained filters were mounted in Vectashield (Vector Laboratories, H-1500) on a glass slide, and the images were acquired using an SP-8 confocal microscope. The pictures are a result of a projection of multiple z-stacks analyzed with the software ImageJ.

Transmission electron microscopy. Infected and non-infected gallbladder mucosoids were washed in-well with PBS, fixed with 4% PFA for 30 min, and washed twice with PBS. Filters were cut from the insert and cropped into pieces with bacterial patches under visual control. Cropped filter pieces were stored in PBS at 4°C until use. For fine structural analysis, cell layers on filters were fixed with 2.5% glutaraldehyde, postfixed with 0.5% osmium tetroxide, contrasted with uranyl acetate and tannic acid, dehydrated in a graded ethanol series, and infiltrated in Polybed (Polysciences). Cut-out pieces of the filters were stacked in flat embedding molds with Polybed. After polymerization, specimens were cut at 60 nm and contrasted with lead citrate. Specimens were analyzed in a Leo 906E transmission electron microscope (Zeiss, Oberkochen, Germany) equipped with a side-mounted digital camera (Morada, SIS-Olympus, Münster, Germany). Figures were assembled with the help of a FigureJ-Plugin (78).

Western blotting. For the Western blots, organoids and cells seeded in 2D were harvested in Laemmli buffer, and 12% SDS-PAGE gels were run and transferred to a nitrocellulose membrane, which was then blotted with the antibodies listed in Table 6. Densitometry was calculated using ImageJ software.

Functional assay. The functional assay is a modified version of a previously described assay (54). Briefly, 1 week after seeding, the organoids were incubated with DMEM/F-12 (Invitrogen) containing 100 μ M rhodamine-123 (Sigma) for 5 min, washed with three times with PBS, and supplemented with the regular medium. Images were taken every minute with a Leica SP-E confocal microscope for 30 min. Temperature and CO₂ concentration were kept at 37°C and 5%, respectively. To show that transport of rhodamine-123 depends on activity of multidrug-resistant (MDR) gene products, the organoids were incubated with 10 μ M verapamil (Sigma), an MDR inhibitor, for 30 min before rhodamine-123 was added. As a negative control, gastric organoids were used, cultivated as previously described (28).

Bacterial strains. Salmonella enterica serovar Paratyphi A (ATCC 9150) was used for the infection experiments. An isogenic mutant knockout of *cdtB* was generated by interrupting the gene with a kanamycin resistance cassette. Briefly, two sequences were amplified upstream and downstream *cdtB* using the primers TCTATAGTTGTCTCTTTGGTATTAAC and CGCGGATCCACATAAGAATATCC for the region upstream and the primers CGCGGATCCATATAAGATATATCT and ACAGCTTCGTGCCAAAAAGG for the region downstream. After insertion in a pGEM-T Easy vector (Promega), a kanamycin resistance cassette was inserted in between by making use of the BamHI sites included in the primers. The resulting region was PCR amplified and electroporated in *Salmonella*, and the clones where homologous recombination occurred were selected, as described previously (79). If mentioned, to visualize the bacteria, the w.t. and *AcdtB* strains were additionally transformed with pLS002, a plasmid carrying the constitutively expressed mCherry gene and an ampicillin resistance cassette.

Infection experiments. Organoids were removed from Matrigel by washing with ice-cold PBS, mechanically sheared by pipetting them three times through a heat-narrowed Pasteur pipette, and incubated at 37°C with 300 μ l of primary medium containing log-phase *Salmonella* to a multiplicity of infection of 100 for 2 h. The cells were pelleted and washed twice with PBS before reseeding them in Matrigel. The gentamicin protection assay was performed by incubation for 1 h in primary medium supplemented with 100 μ g/ml gentamicin. At this point, the invasion assay was performed. The organoids were removed from Matrigel and washed twice with PBS, the membrane was permeabilized by 2 min of incubation with 1% Triton X-100, and then sequential dilutions were plated on LB agar plates. The following day, colonies were counted as follows: invasion percentage = (CFU recovered from the infected organoids/bacteria used for infection) × 100. In the well with the remaining infected organoids, the concentration of gentamicin was decreased to 10 μ g/ml for the duration of the experiment (80). Infection of mucosoids with *Salmonella* was done accordingly: log-phase mCherry-transformed *Salmonella* was administered on the filter to a multiplicity of infection of 100 for 24 h by using a penicillin

streptomycin-free 3D gallbladder medium (see Table 1). The infection medium was then removed, the filters and wells were washed with 37°C PBS, and the gentamicin protection assay was performed by incubation for 1 h in primary medium supplemented with 100 μ g/ml gentamicin. The gentamicin concentration was then reduced to 10 μ g/ml and withdrawn completely at 48 h post infection. The cells were washed, and the medium was refreshed every 2 days.

Intoxication experiments. Organoids were split to single cells, seeded onto a type I collagen (Thermo Fisher, A10644-0)-coated plastic (10 μ g/cm²) or glass (15 μ g/cm²) surface, supplemented with the conventional 3D medium, and intoxicated when 50% confluence was reached. The typhoid toxin-containing *Salmonella* supernatant was prepared by using a modified version of a previously described protocol (19). Briefly, the bacteria were grown in Luria-Bertani overnight, diluted 1:50 in MM5.8 (19, 81), and then grown overnight until the optical density at 600 nm reached 0.4 to 0.5. The bacteria were then removed by centrifugation and subsequent filtration through 0.4- μ m-pore filters. The supernatamt was then concentrated 20-fold using an Amicon Ultra-15 column. It was then diluted 1 to 20 in primary medium and incubated for 24 h with the cells. As a positive control, the cells received 50 μ M etoposide (Sigma) for 24 h.

Neutral comet assay. The neutral comet assay was performed after intoxication using the kit from Trevigen according to the manufacturer's protocol. Images were acquired using fluorescence microscope (Leica DMR). The percentage of DNA in the tail (which is a measure of DNA damage) was quantified using Comet Score software (TriTek).

Data availability. Microarray data have been deposited in the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/) of the National Center for Biotechnology Information and can be accessed under GEO accession number GSE100656.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only. FIG S1, TIF file, 2 MB. FIG S2, TIF file, 1.2 MB. FIG S3, TIF file, 1.2 MB.

ACKNOWLEDGMENTS

We thank Lothar Wieler and Anton Aebischer for critical revision of the project, Hans-Joachim Mollenkopf and Ina Wagner for support with the microarray experiments, and Rike Zietlow and Mary Muers for editing the manuscript.

Author contributions were as follows: L.P.S., study design, experiments design, generation, analysis and interpretation of data, drafting of the manuscript, statistical analysis, development of experimental procedures; K.H., development of experimental procedures, generation, analysis and interpretation of data, statistical analysis, drafting of the manuscript; A.I., experimental design and development of procedures, generation of data; H.B., statistical analysis of microarray data, bioinformatics support; N.K., generation and analysis of data; C.G., electron microscopy; S.C., preparation and provision of human specimens; S.C.S., preparation and provision of human specimens; R.K.G., conception, contribution to the study design and supervision; T.F.M., conception, design and supervision of the study, revision of manuscript, funding acquisition; and F.B., study conception and design, study supervision, analysis and interpretation of data, writing and revision of the manuscript.

We declare there are no conflicts of interest.

REFERENCES

- Kanthan R, Senger J-L, Ahmed S, Kanthan SC. 2015. Gallbladder cancer in the 21st century. J Oncol 2015:967472–967472. https://doi.org/10.1155/ 2015/967472.
- Randi G, Franceschi S, La Vecchia C. 2006. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer 118:1591–1602. https://doi.org/10.1002/ijc.21683.
- Crawford RW, Gibson DL, Kay WW, Gunn JS. 2008. Identification of a bile-induced exopolysaccharide required for *Salmonella* biofilm formation on gallstone surfaces. Infect Immun 76:5341–5349. https://doi.org/ 10.1128/IAI.00786-08.
- 4. Crawford RW, Rosales-Reyes R, Ramírez-Aguilar ML, Chapa-Azuela O, Alpuche-Aranda C, Gunn JS. 2010. Gallstones play a significant role in *Salmonella* spp. gallbladder colonization and carriage. Proc Natl Acad Sci U S A 107:4353–4358. https://doi.org/10.1073/pnas.1000862107.
- 5. Gonzalez-Escobedo G, Gunn JS. 2013. Gallbladder epithelium as a niche

for chronic salmonella carriage. Infect Immun 81:2920–2930. https://doi .org/10.1128/IAI.00258-13.

- Gonzalez-Escobedo G, Marshall JM, Gunn JS. 2011. Chronic and acute infection of the gall bladder by *Salmonella* Typhi: understanding the carrier state. Nat Rev Microbiol 9:9–14. https://doi.org/10.1038/nrmicro2490.
- Caygill CPJ, Hill MJ, Braddick M, Sharp JCM. 1994. Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet 343:83–84. https://doi .org/10.1016/S0140-6736(94)90816-8.
- Kumar S, Kumar S, Kumar S. 2006. Infection as a risk factor for gallbladder cancer. J Surg Oncol 93:633–639. https://doi.org/10.1002/jso.20530.
- Nagaraja V, Eslick GD. 2014. Systematic review with meta-analysis: the relationship between chronic Salmonella Typhi carrier status and gallbladder cancer. Aliment Pharmacol Ther 39:745–750. https://doi.org/10 .1111/apt.12655.
- 10. Chumduri C, Gurumurthy RK, Zietlow R, Meyer TF. 2016. Subversion of

host genome integrity by bacterial pathogens. Nat Rev Mol Cell Biol 17:659-673. https://doi.org/10.1038/nrm.2016.100.

- Koeppel M, Garcia-Alcalde F, Glowinski F, Schlaermann P, Meyer TF. 2015. *Helicobacter pylori* infection causes characteristic DNA damage patterns in human cells. Cell Rep 11:1703–1713. https://doi.org/10.1016/ j.celrep.2015.05.030.
- Toller IM, Neelsen KJ, Steger M, Hartung ML, Hottiger MO, Stucki M, Kalali B, Gerhard M, Sartori AA, Lopes M, Muller A. 2011. Carcinogenic bacterial pathogen *Helicobacter pylori* triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108:14944–14949. https://doi.org/10.1073/pnas.1100959108.
- Chumduri C, Gurumurthy RK, Zadora PK, Mi Y, Meyer TF. 2013. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe 13:746–758. https://doi.org/ 10.1016/j.chom.2013.05.010.
- Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. 2010. *Escherichia coli* induces DNA damage *in vivo* and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 107:11537–11542. https://doi.org/10.1073/pnas.1001261107.
- Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A, Katainen R, Cajuso T, Crosetto N, Orozco M, Aaltonen LA, Meyer TF. 2020. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 26:1063–1069. https://doi.org/10.1038/s41591 -020-0908-2.
- Song J, Gao X, Galán JE. 2013. Structure and function of the Salmonella Typhi chimeric A(2)B(5) typhoid toxin. Nature 499:350–354. https://doi .org/10.1038/nature12377.
- 17. Spanò S, Ugalde JE, Galán JE. 2008. Delivery of a *Salmonella* Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 3:30–38. https://doi.org/10.1016/j.chom.2007.11.001.
- Rodriguez-Rivera LD, Bowen BM, den Bakker HC, Duhamel GE, Wiedmann M. 2015. Characterization of the cytolethal distending toxin (typhoid toxin) in non-typhoidal Salmonella serovars. Gut Pathog 7:19–19. https://doi.org/10.1186/s13099-015-0065-1.
- Guidi R, Levi L, Rouf SF, Puiac S, Rhen M, Frisan T. 2013. Salmonella enterica delivers its genotoxin through outer membrane vesicles secreted from infected cells. Cell Microbiol 15:2034–2050. https://doi.org/ 10.1111/cmi.12172.
- Haghjoo E, Galan JE. 2004. Salmonella Typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterialinternalization pathway. Proc Natl Acad Sci U S A 101:4614–4619. https://doi.org/10.1073/pnas.0400932101.
- Chang SJ, Song J, Galán JE. 2016. Receptor-mediated sorting of typhoid toxin during its export from *Salmonella* Typhi-infected cells. Cell Host Microbe 20:682–689. https://doi.org/10.1016/j.chom.2016.10.005.
- 22. Grasso F, Frisan T. 2015. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules 5:1762–1782. https://doi .org/10.3390/biom5031762.
- Fox JG, Ge Z, Whary MT, Erdman SE, Horwitz BH. 2011. *Helicobacter hepaticus* infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol 4:22–30. https://doi.org/10.1038/mi.2010.61.
- Ge Z, Feng Y, Ge L, Parry N, Muthupalani S, Fox JG. 2017. Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cell Microbiol 19. https://doi.org/10.1111/cmi .12728.
- Guidi R, Guerra L, Levi L, Stenerlöw B, Fox JG, Josenhans C, Masucci MG, Frisan T. 2013. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol 15:98–113. https://doi.org/10.1111/cmi .12034.
- Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van Den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–1772. https://doi.org/10.1053/j.gastro.2011.07.050.
- Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco M, Sancho E, Clevers H, Batlle E. 2011. Isolation and *in vitro* expansion of human colonic stem cells. Nat Med 17:1225–1227. https://doi.org/10.1038/nm.2470.
- Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF. 2016. A novel human gastric primary cell culture system for modeling *Helicobacter pylori*

infection *in vitro*. Gut 65:202-213. https://doi.org/10.1136/gutjnl-2014 -307949.

- Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters PJ, Clevers H. 2015. *In vitro* expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–136.e6. https://doi.org/10.1053/j.gastro.2014.09.042.
- Huch M, Gehart H, Boxtel RV, Hamer K, Blokzijl F, Verstegen MMa, Ellis E, Wenum MV, Fuchs S, Ligt JD, Wetering MVD, Sasaki N, Boers SJ, Kemperman H, Jonge JD, Ijzermans JNM, Nieuwenhuis EES, Hoekstra R, Strom S, Vries RRG, Laan L, Cuppen E, Clevers H. 2015. Article long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312. https://doi.org/10.1016/j.cell.2014.11.050.
- Lugli N, Kamileri I, Keogh A, Malinka T, Sarris ME, Talianidis I, Schaad O, Candinas D, Stroka D, Halazonetis TD. 2016. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep 17:769–779. https://doi.org/10.15252/embr.201642169.
- 32. Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, Gieseck RL, 3rd, de Brito MC, Berntsen NL, Gómez-Vázquez MJ, Ortmann D, Yiangou L, Ross A, Bargehr J, Bertero A, Zonneveld MCF, Pedersen MT, Pawlowski M, Valestrand L, Madrigal P, Georgakopoulos N, Pirmadjid N, Skeldon GM, Casey J, Shu W, Materek PM, Snijders KE, Brown SE, Rimland CA, Simonic I, Davies SE, Jensen KB, Zilbauer M, Gelson WTH, Alexander GJ, Sinha S, Hannan NRF, Wynn TA, Karlsen TH, Melum E, Markaki AE, Saeb-Parsy K, Vallier L. 2017. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med 23:954–963. https://doi.org/10.1038/nm.4360.
- Bartfeld S. 2016. Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol 420:252–270. https://doi .org/10.1016/j.ydbio.2016.09.014.
- Boccellato F, Woelffling S, Imai-Matsushima A, Sanchez G, Goosmann C, Schmid M, Berger H, Morey P, Denecke C, Ordemann J, Meyer TF. 2019. Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. Gut 68: 400–413. https://doi.org/10.1136/gutjnl-2017-314540.
- Yoo KS, Choi HS, Jun DW, Lee HL, Lee OY, Yoon BC, Lee KG, Paik SS, Kim YS, Lee J. 2016. MUC expression in gallbladder epithelial tissues in cholesterol-associated gallbladder disease. Gut Liver 10:851–858. https:// doi.org/10.5009/gnl15600.
- Hayashi A, Lee SP. 1996. Bidirectional transport of cholesterol between gallbladder epithelial cells and model bile. Am J Physiol 271:G410–G414. https://doi.org/10.1152/ajpgi.1996.271.3.G410.
- Nakanuma Y, Katayanagi K, Kawamura Y, Yoshida K. 1997. Monolayer and three-dimensional cell culture and living tissue culture of gallbladder epithelium. Microsc Res Tech 39:71–84. https://doi.org/10.1002/ (SICI)1097-0029(19971001)39:1<71::AID-JEMT6>3.0.CO;2-2.
- Frizzell RA, Heintze K. 1980. Transport functions of the gallbladder. Int Rev Physiol 21:221–247.
- Yoo KS, Lim WT, Choi HS. 2016. Biology of cholangiocytes: from bench to bedside. Gut Liver 10:687–698. https://doi.org/10.5009/gnl16033.
- Manohar R, Li Y, Fohrer H, Guzik L, Stolz DB, Chandran UR, LaFramboise WA, Lagasse E. 2015. Identification of a candidate stem cell in human gallbladder. Stem Cell Res 14:258–269. https://doi.org/10.1016/j.scr.2014 .12.003.
- Carpino G, Cardinale V, Gentile R, Onori P, Semeraro R, Franchitto A, Wang Y, Bosco D, Iossa A, Napoletano C, Cantafora A, D'Argenio G, Nuti M, Caporaso N, Berloco P, Venere R, Oikawa T, Reid L, Alvaro D, Gaudio E. 2014. Evidence for multipotent endodermal stem/progenitor cell populations in human gallbladder. J Hepatol 60:1194–1202. https://doi .org/10.1016/j.jhep.2014.01.026.
- Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, Tyson LJ, Park K, Chen KG, Fann YC, McKay RD. 2013. StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res 10:57–66. https://doi.org/10.1016/j.scr.2012.09 .002.
- 43. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418. https://doi.org/10.1038/nature09637.
- Herbst A, Jurinovic V, Krebs S, Thieme SE, Blum H, Goke B, Kolligs FT. 2014. Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC Genomics 15:74. https://doi.org/10.1186/1471-2164-15-74.
- 45. Jones JC. 2008. Reduction of contamination of epithelial cultures by

fibroblasts. CSH Protoc 2008:pdb.prot4478. https://doi.org/10.1101/pdb .prot4478.

- Mitra A, Mishra L, Li S. 2013. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol 31: 347–354. https://doi.org/10.1016/j.tibtech.2013.03.006.
- Kuver R, Savard CE, Lee SK, Haigh WG, Lee SP. 2007. Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells *in vitro*. Am J Physiol Gastrointest Liver Physiol 293:G944–G955. https://doi.org/10 .1152/ajpgi.00263.2006.
- Németh Z, Szász AM, Tátrai P, Németh J, Gyorffy H, Somorácz A, Szíjártó A, Kupcsulik P, Kiss A, Schaff Z. 2009. Claudin-1, -2, -3, -4, -7, -8, and -10 protein expression in biliary tract cancers. J Histochem Cytochem 57: 113–121. https://doi.org/10.1369/jhc.2008.952291.
- Kampf C, Mardinoglu A, Fagerberg L, Hallström BM, Danielsson A, Nielsen J, Pontén F, Uhlen M. 2014. Defining the human gallbladder proteome by transcriptomics and affinity proteomics. Proteomics 14: 2498–2507. https://doi.org/10.1002/pmic.201400201.
- van Klinken BJ, Dekker J, van Gool SA, van Marle J, Buller HA, Einerhand AW. 1998. MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am J Physiol 274: G871–G878. https://doi.org/10.1152/ajpgi.1998.274.5.G871.
- Gigliozzi A, Fraioli F, Sundaram P, Lee J, Mennone A, Alvaro D, Boyer JL. 2000. Molecular identification and functional characterization of Mdr1a in rat cholangiocytes. Gastroenterology 119:1113–1122. https://doi.org/ 10.1053/gast.2000.18156.
- 52. Pstrpw JD. 1967. Absorption of bile pigments by the gall bladder. J Clin Invest 46:2035–2052. https://doi.org/10.1172/JCl105692.
- Scoazec JY, Bringuier AF, Medina JF, Martínez-Ansó E, Veissiere D, Feldmann G, Housset C. 1997. The plasma membrane polarity of human biliary epithelial cells: *in situ* immunohistochemical analysis and functional implications. J Hepatol 26:543–553. https://doi.org/10.1016/s0168-8278(97)80419-9.
- Tanimizu N, Miyajima A, Mostov KE. 2007. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell 18:1472–1479. https://doi.org/10.1091/mbc.e06-09-0848.
- Nath G, Gulati AK, Shukla VK. 2010. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 16:5395–5404. https://doi.org/10.3748/wjg.v16.i43.5395.
- Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895. https://doi.org/ 10.1016/s0960-9822(00)00610-2.
- 57. Del Bel Belluz L, Guidi R, Pateras IS, Levi L, Mihaljevic B, Rouf SF, Wrande M, Candela M, Turroni S, Nastasi C, Consolandi C, Peano C, Tebaldi T, Viero G, Gorgoulis VG, Krejsgaard T, Rhen M, Frisan T. 2016. The typhoid toxin promotes host survival and the establishment of a persistent asymptomatic infection. PLoS Pathog 12:e1005528. https://doi.org/10.1371/journal.ppat.1005528.
- Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D. 2002. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000. https://doi.org/10 .1091/mbc.02-02-0030.
- Liu Y, Chen S, Wang S, Soares F, Fischer M, Meng F, Du Z, Lin C, Meyer C, DeCaprio JA, Brown M, Liu XS, He HH. 2017. Transcriptional landscape of the human cell cycle. Proc Natl Acad Sci U S A 114:3473–3478. https://doi.org/10.1073/pnas.1617636114.
- Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. 2017. Biofilmproducing Salmonella Typhi: chronic colonization and development of gallbladder cancer. Int J Mol Sci 18:1887. https://doi.org/10.3390/ ijms18091887.
- Wozniak AJ, Ross WE. 1983. DNA damage as a basis for 4'-demethylepipodophyllotoxin-9-(4,6-O-ethylidene-β-D-glucopyranoside) (etoposide) cytotoxicity. Cancer Res 43:120–124.
- Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. 2017. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 15:109–128. https://doi.org/10.1038/nrmicro .2016.171.
- 63. Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Janssen H, Song J-Y, Neefjes-Borst EA, Te Riele H, Holden DW, Nath G, Neefjes J. 2015. *Salmonella* manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17:763–774. https://doi.org/10 .1016/j.chom.2015.05.002.

- Boccellato F, Meyer TF. 2015. Bacteria moving into focus of human cancer. Cell Host Microbe 17:728–730. https://doi.org/10.1016/j.chom .2015.05.016.
- Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG, Duronio V, Finlay BB. 2000. Activation of Akt/protein kinase B in epithelial cells by the *Salmonella* Typhimurium effector sigD. J Biol Chem 275:37718–37724. https://doi.org/10.1074/jbc.M008187200.
- Roppenser B, Kwon H, Canadien V, Xu R, Devreotes PN, Grinstein S, Brumell JH. 2013. Multiple host kinases contribute to Akt Activation during *Salmonella* infection. PLoS One 8:e71015. https://doi.org/10 .1371/journal.pone.0071015.
- Santos AJ, Meinecke M, Fessler MB, Holden DW, Boucrot E. 2013. Preferential invasion of mitotic cells by *Salmonella* reveals that cell surface cholesterol is maximal during metaphase. J Cell Sci 126:2990–2996. https://doi.org/10.1242/jcs.115253.
- Buckner MM. 2016. Divide and conquer: Salmonella move into both daughter cells during mitosis. Virulence 7:616–619. https://doi.org/10 .1080/21505594.2016.1190063.
- Pérès SY, Marchès O, Daigle F, Nougayrède JP, Herault F, Tasca C, De Rycke J, Oswald E. 1997. A new cytolethal distending toxin (CDT) from *Escherichia coli* producing CNF2 blocks HeLa cell division in G₂/M phase. Mol Microbiol 24:1095–1107. https://doi.org/10.1046/j.1365-2958.1997 .4181785.x.
- Comayras C, Tasca C, Pérès SY, Ducommun B, Oswald E, De Rycke J. 1997. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G₂/M transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect Immun 65:5088–5095. https://doi.org/ 10.1128/IAI.65.12.5088-5095.1997.
- Ohguchi M, Ishisaki A, Okahashi N, Koide M, Koseki T, Yamato K, Noguchi T, Nishihara T. 1998. Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G₂/M phase and apoptosis. Infect Immun 66:5980–5987. https://doi.org/10.1128/IAI.66.12.5980-5987.1998.
- 72. Sert V, Cans C, Tasca C, Bret-Bennis L, Oswald E, Ducommun B, De Rycke J. 1999. The bacterial cytolethal distending toxin (CDT) triggers a G₂ cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand breaks. Oncogene 18:6296–6304. https://doi.org/10.1038/sj .onc.1203007.
- Poon SL, McPherson JR, Tan P, Teh BT, Rozen SG. 2014. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Genome Med 6:24. https://doi.org/ 10.1186/gm541.
- 74. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, Paganelli FL, Geurts MH, Beumer J, Mizutani T, Miao Y, van der Linden R, van der Elst S, Garcia KC, Top J, Willems RJL, Giannakis M, Bonnet R, Quirke P, Meyerson M, Cuppen E, van Boxtel R, Clevers H, Genomics England Research Consortium. 2020. Mutational signature in colorectal cancer caused by genotoxic pks(+) *Escherichia coli*. Nature 580:269–273. https://doi.org/10.1038/s41586-020-2080-8.
- Auth MK, Keitzer R, Scholz M, Blaheta R, Hottenrott EC, Herrmann G, Encke A, Markus BH. 1993. Establishment and immunological characterization of cultured human gallbladder epithelial cells. Hepatology 18: 546–555. https://doi.org/10.1002/hep.1840180311.
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/ nar/qkv007.
- Sergushichev AA, Loboda AA, Jha AK, Vincent EE, Driggers EM, Jones RG, Pearce EJ, Artyomov MN. 2016. GAM: a web-service for integrated transcriptional and metabolic network analysis. Nucleic Acids Res 44: W194–W200. https://doi.org/10.1093/nar/gkw266.
- Mutterer J, Zinck E. 2013. Quick-and-clean article figures with FigureJ. J Microsc 252:89–91. https://doi.org/10.1111/jmi.12069.
- Datsenko K, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. https://doi.org/10.1073/pnas.120163297.
- Elhadad D, Desai P, Grassl GA, McClelland M, Rahav G, Gal-Mor O. 2016. Differences in host cell invasion and SPI-1 expression between *Salmonella enterica* serovar Paratyphi A and the non-typhoidal serovar Typhimurium. Infect Immun 84:1150–1165. https://doi.org/10.1128/IAI.01461-15.
- Nelson DL, Kennedy EP. 1971. Magnesium transport in *Escherichia coli*: inhibition by cobaltous ion. J Biol Chem 246:3042–3049.