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Abstract: Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important
disease in ruminants, with great economic losses. The infection can be also transmitted to humans;
therefore, it is considered a major threat to both human and animal health. In a previous work, we
described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir
that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different
viral proteins when compared to its parental viral strain, two of them located in the NSs protein that
is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work
we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo.
Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice
while their growth in an interferon (IFN)-competent cell line as well as the production of interferon
beta (IFN-β) did not seem to be affected. However, the pattern of nuclear NSs accumulation was
modified in cells infected with the mutant viruses. These results highlight the key role of the NSs
protein in the modulation of viral infectivity.

Keywords: Rift Valley fever virus; non-structural NSs protein; interferon antagonist; nuclear filaments;
PXXP motifs

1. Introduction

Rift valley fever virus (RVFV) is a mosquito-borne phlebovirus of the Phenuiviridae
family (O. Bunyavirales) that causes an important disease in ruminants, mostly characterized
by a high-rate of abortions, fetal malformation and death of newborn lambs, with great
economic losses. The infection can be transmitted to humans through mosquito bites or
when exposed to infected material, producing a usually self-limiting disease with more
severe development in a low percentage of cases (reviewed in [1]). Rift Valley fever is
confined to the African continent and southern parts of the Arabian Peninsula and Indian
Ocean islands, but its potential for spreading to other geographical areas linked to climatic
change and globalization has been widely remarked [2]. Veterinary vaccines are available
in Africa, but currently there are no licensed vaccines for human use, while in Europe there
is no available treatment or licensed RVF vaccine. Therefore, the development of safer and
effective control strategies intended also for human use is an active field of research [3–5].

The RVFV genome consists of three ssRNA(-) segments of different sizes (large,
medium, small). The L-segment codes for an RNA-dependent RNA polymerase (RdRp).
The M segment contains five in-frame start codons alternatively used by virtue of a riboso-
mal “leaky scanning” mechanism for the synthesis of the envelope glycoproteins (Gn and
Gc), a cytosolic accessory protein (NSm) that can be found in two isoforms of 13–14-kDa
protein [6], and a 78-kDa glycoprotein (NSm-Gn) that incorporates in virus particles when
produced in insect cells [7] but with unknown functions in mammal hosts. The S segment
encodes in an ambisense strategy the viral 27 kDa nucleoprotein (N), and a 30kDa protein
(NSs), considered the main virulence factor of the virus.
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The NSs protein inhibits the host antiviral responses by multiple pathways that,
either alone or combined, allow the virus to replicate efficiently. NSs interaction with
several binding partners promotes the sequestration or degradation of a number of cellular
proteins, thus avoiding their functions: NSs prevents the activation of the interferon (IFN)-ß
promoter, promotes the degradation of double-stranded RNA-dependent protein kinase
R (PKR) and blocks the assembly of transcription factor II H (TFIIH), inducing a general
transcription shut off in infected cells (reviewed in [8,9]). These biological functions seem
to be dependent on the nuclear localization of NSs in the infected cells, where it assembles
displaying a typical filamentous pattern unique in phleboviruses. Another role related with
the accumulation of superoxide in infected cells has been suggested for NSs, in association
with non-nuclear compartments, such as mitochondria [10]. Several works have identified
different amino acid positions or regions of the protein involved in different functions. An
essential core domain spanning residues 83–248 was shown to be sufficient for filament
formation [11]; other results suggest that the NSs functionality is more likely dependent on
conformational integrity than on the presence of particular domains [12]. However, the
understanding of the whole picture is still unclear, especially regarding the relationships
between some of these functions and their combined contribution to virulence in vivo. The
characterization of the biological features of NSs is a big step towards the development of
effective control measures for RVF. Due to its role in providing an efficient viral replication,
NSs appears to be a good target for antivirals and, in addition, some live attenuated
vaccines are based on viruses lacking or carrying a non-functional NSs protein. Besides
these biological functions, recent data showed that the reported nuclear NSs filamentous
pattern corresponds to amyloid-like structures that could play an important role in mouse
neuropathology or neurotoxicity [13].

In a previous work aimed to characterize a novel RVFV variant that was selected in
cell culture in the presence of the antiviral compound favipiravir, we found that this virus,
named as 40F-p8, was highly attenuated in vivo [14]. Out of the 24 amino acid substitutions
found in other viral proteins when compared to the parental virulent strain, only two
changes were located on the NSs protein: V52I and P82L. Since V52I is a conservative
substitution and variants at this position have been reported in other RVFV strains (V52A
in Madagascar strains 0212-08 and 200803162) we focused on the P82L mutation. P82 is
placed within the PXXP motif 2 (positions 82 to 85), a motif reported to be involved in both
NSs nuclear localization and IFN-β activation/expression, with proline residues playing a
critical role [15]. In this work, using a reverse genetics system, we investigated the role of
NSs P82L mutants on the viral infectivity in vivo in a mouse model of infection.

2. Materials and Methods
2.1. Cells

The cell lines used for this study were HEK293T (human embryonic kidney 293 cells,
ATCC CRL-3216), Vero (African green monkey kidney cells, ATCC CCL-81) and BHK-
21 (baby hamster kidney fibroblasts, ATCC CCL-10). All cell lines were grown as de-
scribed [16]. Recombinant RVFV (rRVFV) previously generated (rZH548 (wild-type) and a
NSs-deleted virus expressing green fluorescent protein, named as rZH548∆NSs::GFP, [16])
were included as controls in the different assays. Infections were performed as de-
scribed [14]. Assays to quantify plaque-forming units (pfu) were carried out on Vero
cells in semisolid medium consisting of Dulbecco’s Modified Eagle Medium (DMEM 1X)-
1% Carboxymethylcellulose (CMC, Sigma, St. Louis, MO, USA). Monolayers were fixed
and stained 5 days post infection.

2.2. huIFN-β ELISA

The levels of human IFN-β in infected HEK293T cell supernatants were tested us-
ing the IFN-β Human ELISA Kit (PBL Assay Science, Piscataway, NJ, USA), following
manufacturer’s instructions. Briefly, a standard curve in the range of 50–4000 pg/mL was
constructed and used to calculate the interferon titer in each sample by plotting the mean
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OD value obtained for each sample, that was tested undiluted in duplicate. Blank ODs were
subtracted in all cases. Samples rendering an optical density (OD) value lower than the
one in wells with buffer alone were considered as negative and for graphic representation
an arbitrary value of 25 was assigned. Since 50 pg/mL was the lowest concentration of
huIFN-β in the standard curve, this was the limit of detection of the assay.

2.3. Rescue of Recombinant Viruses

Recombinant RVF viruses were rescued by means of a reverse genetic system [16,17].
Briefly, this system is based on the transfection of HEK293T and BHK-21 cell co-cultures
of a set of 5 plasmids comprising 3 plasmids providing viral genomic segments L, M
and S (pHH21_RVFV_vL, pHH21_RVFV_vM and pHH21_RVFV_vS, respectively) and
2 plasmids providing the viral polymerase L and the nucleoprotein N (pI.18_RVFV_L and
pI.18_RVFV_N).

To generate the plasmid carrying a mutant S segment, the desired nucleotide change
C279T (numbering according to NC_014395 RVFV segment S, strain “ZH-548”) was in-
troduced in plasmid pHH21-RVFV-vS by PCR using the Q5® Site-Directed Mutagenesis
Kit (NewEngland Biolabs, Ipswich, MA, USA) following manufacturer’s protocols. The
primers used, designed using the NEB online design software NEBaseChanger™, were
S279Fwd (5′-GCACCTCCACTAGCGAAGCCT-3′; underlined letter corresponds to the
nucleotide changed) and S279Rev (5′-AACGTTTGATGCAAAGTCTCCAAGTC-3′). On
days 3, 5 and 7, transfected cell supernatants were harvested and inoculated onto BHK-21
cells in order to screen for the presence of virus by cytopathic effect (CPE). For those
rendering positive CPE, further two passages were performed to generate a virus stock for
use in the present experiments.

2.4. Animal Inoculation and Sampling

BALB/c mice (9–18-week-old male) were used for the in vivo studies. They were
equally distributed into groups of 5–7 animals and inoculated intraperitoneally with 500
plaque-forming units (pfus) of the corresponding viruses. Development of disease was
evaluated over 3 weeks (18 days) in terms of mortality and morbidity, as elsewhere [18]
checking for weight and development of clinical signs, such as ruffled fur, ocular discharges,
hunched posture and reduced activity. Blood samples were collected in Microvette® tubes
K3 EDTA or Serum (Sarstedt, Nümbrecht, Germany) upon submandibular puncture at
72 h after infection and tested for viral RNA by RT-qPCR [16,19] to monitor viremia, while
serum samples collected from survivor mice at the end of the experiment (day 18 pi) were
used in antibody assays. Mice were housed in biosafety level 3 (BSL-3) animal facilities at
INIA-CISA before use. All experimental procedures involving animals were performed in
accordance with EU guidelines (directive 2010/63/EU), and protocols approved by the
Animal Care and Biosafety Ethics’ Committees of INIA and Comunidad de Madrid (permit
codes CEEA 2014/26, CBS 2017/15, PROEX 108/15 and PROEX192/17).

2.5. Sequencing and RT-qPCR Assays

RNA was extracted from supernatants of cells infected with recombinant viruses
of passage 3 after rescue or from blood samples collected at day 3 pi using an RNA
virus extraction kit (Speedtools, 180 Biotools BM, Madrid, Spain) as described [16]. For
sequencing, amplicons corresponding to the S-segment were obtained by RT-PCR using
a SuperScript IV Reverse Transcriptase and a Phusion High-Fidelity DNA polymerase
(Thermofisher, Whaltham, MA, USA), as described [14]. PCR products were purified and
the sequence corresponding to the NSs ORF (RNA positions 35–832) was determined by
automated Sanger-sequencing. The Lasergene software suite (DNAstar, Madison, WI, USA)
was used for sequencing data analysis.

To monitor viremia, a real-time RT-qPCR specific to the RVFV L-segment [19] was
performed on RNA extracted from blood samples. To establish a correspondence between
Cq values and plaque forming units (pfus), blood from naïve mice was spiked with



Viruses 2021, 13, 542 4 of 13

101 to 105 pfu of a plaque assay titrated RVFV stock and RNA was extracted for RT-qPCR
as above.

2.6. Antibody Assays

Antibodies against the viral nucleoprotein N were detected by an in-house ELISA and
RVFV neutralizing antibodies in a microneutralization assay [14]. Briefly, for the detection
of antibodies against N, sera were tested in duplicate in serial 3-fold dilutions starting at
1/50, in ELISA plates adsorbed with 100 ng/well of purified recombinant Thioredoxin-N
(Trx-N) fusion protein produced in Escherichia coli and diluted in carbonate buffer (pH 9.6).
Wells were blocked with 5% skimmed milk in PBS, 0.05% Tween 20, then bound antibodies
were detected with goat anti-mouse-IgG (H+L)-HRP Conjugated (Bio-Rad, Hercules, CA,
USA) and TMB (Thermofisher) was used as chromogen substrate. For neutralization,
sera (in quadruplicates) were 2-fold diluted from 1/10, mixed with an equal volume of
infectious virus containing 100 TCID50 and incubated for 30 minutes at 37 ◦C. Then, a Vero
cell suspension was added, and plates were incubated for 4 days. Monolayers were then
controlled for the development of the cytopathic effect (CPE), fixed and stained. Anti-N
titers are expressed as last dilution of serum (log10) giving an OD reading at 450 nm over
1.0 in ELISA; neutralization titers are expressed as the dilution of serum (log10) rendering
a reduction in infectivity of 50%.

2.7. Immunofluorescence

Vero cells were infected at a multiplicity of infection (MOI) of 1 and, at the time post-
infection (pi) indicated, cells were fixed with 4% paraformaldehyde and subjected to indi-
rect immunofluorescence with the anti-NSs monoclonal antibody 5C3A1B12 [20], kindly
provided by Dr. Martin Eiden (Friedrich-Loeffler Institute, Riems, Germany) following
procedures as described [16]. All the buffers included 0.1% saponin for permeabilization.
The secondary antibody was a goat anti-mouse Alexa Fluor 488. Cell nuclei were stained
with DAPI. Microscopy was performed with a Zeiss LSM880 confocal laser microscope
(Gmbn, Oberkochen, Germany).

2.8. Western Blot

HEK293T cells were infected at a MOI of 1 and whole cell extracts harvested at 20 hpi
and lysed in Laemmli’s SDS-PAGE sample buffer (Bio-Rad). Proteins were transferred
to a Whatmann nitrocellulose membrane (Merck, Darmstadt, Germany). The membrane
was incubated for one hour with 5% skimmed milk in Tris-buffered saline (TBS). Upon
blocking, incubation with primary antibodies diluted in 5% milk-TBS-T (TBS with 0.05%
Tween-20) was performed at 4 ◦C overnight. The antibodies used were: anti-PKR (B-10)
and anti-p62 (H10) mouse monoclonal antibodies (Santa Cruz Biotechnology, Dallas, TX,
USA), anti RVFV-N mAb 2B1 [16] and mouse anti-actin antibody (Sigma), at dilutions
1/200; 1/250; 1/1000, and 1/2000, respectively. The membranes were then washed three
times with TBS-T and incubated for 1 hour at room temperature with an anti-mouse IgG-
HRPO conjugated antibody. The membrane was washed again three times with TBS-T
before adding luminiscent substrate (ECL-GE Healthcare, Little Chalfont, Buckinhamshire,
UK). Gel images were visualized using a ChemiDoc Imaging System (Bio-Rad) and were
analyzed by Western blot. Loaded samples corresponded to 106 cells per well.

2.9. Statistical Analysis

Data analysis was performed using GraphPad Prism software (version 6.0). Differ-
ences in survival times were tested by the Log-Rank (Mantel–Cox) test. Variations in the
mean viral titers were analyzed using a non-parametric one-way ANOVA test (Kruskall–
Wallis test) with Dunn’s multiple comparison post hoc tests. Differences were considered
statistically significant when p < 0.05.
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3. Results
3.1. Rescue of Recombinant Rift Valley Fever Viruses Carrying the S-Segment C279T Substitution

We planned to rescue recombinant ZH548 (rZH548) viruses carrying the amino acid
substitution P82L in the NSs protein by means of our reverse genetic system [17]. This
amino acid change was deduced from the nucleotide sequence of the virus 40F-p8 that
displayed the change C279T in the corresponding codon (CCA in the parental virus RVFV
56/74, CTA in the selected variant; [14]). Thus, we first introduced the desired nucleotide
change C279T in the plasmid corresponding to genomic S-segment, pHH21-RVFV-vS. After
checking the correct sequence of the resulting plasmid, co-cultures of HEK293T and BHK-21
cells were transfected in triplicates with the whole set of plasmids constituting our reverse
genetic system. At days 3, 5 and 7 post-transfection supernatants were harvested and
inoculated onto BHK-21 cells in order to screen for the presence of virus by the appearance
of cytopathic effect (CPE). In samples collected at days 5 and 7, post-transfection from
two separate replica wells total CPE was observed at day 4 pi. Viruses were grown on
BHK-21 cells for three passages, with CPE registered at 48 hpi and yields of 8.4- and
3.2 × 107 pfu/mL, comparable to the wt rZH548 (2.7 × 107 pfu/mL). Plaque formation on
Vero cells was indistinguishable to rZH548 (not shown). The presence of the mutation was
confirmed by RT-PCR amplification of genomic S-segment and further sequence analysis
and no other changes were detected in the NSs gene. Viruses were generically named after
the amino acid position changed (rZH548-P82L viruses). In particular, the two viruses
obtained after three passages were termed 2B7 and 3VB5 and are the viral clones used for
this study.

3.2. Analysis of Pathogenicity and Immunogenicity of Recombinant rZH548-P82L Mutant Viruses
in Mice

The virulence of the recombinant rZH548-P82L mutant viruses was tested in BALB/c
mice by intraperitoneal (ip) inoculation of 500 plaque-forming units (pfus) of the two
rescued viruses, 2B7 and 3VB5. Rescued rZH548 (wild-type) and an NSs-deleted virus ex-
pressing green fluorescent protein, named as rZH548∆NSs::GFP, were included as controls
for virulence and attenuation, respectively (Figure 1).

In the control group inoculated with the attenuated, NSs-deleted, rZH548 virus,
one mouse showed, unexpectedly, tremors and a severe weight loss (20%) one day after
bleeding and was euthanized (day 4). We considered that this mouse did not recover well
from the stress or damage caused by the bleeding procedure. It was later found to be virus
negative by RT-qPCR and was excluded from the statistical analysis; thus a 100% survival
was considered for this group. No signs of disease were observed in any animal within
this group.

In mice inoculated with wt rZH548, the first signs of disease (watery eye, reduced
mobility, ruffled fur) appeared at day 3 with first deaths occurring at day 4; disease evolved
rapidly (hunched back, lethargy, paralysis) and at day 9 all the animals had deceased. The
median survival time of this group was 6 days. In contrast, animals inoculated with the
rZH548-P82L viruses remained without signs of disease the first week after inoculation,
when disease signs were first observed. At the end of the experiment (day 18 pi) both
mutant groups recorded significantly higher survival rates than the wt group: two out of
seven mice inoculated with 3VB5 survived, with a median survival time of 14 days and
four out of seven in the group inoculated with 2B7. This increased survival percentage
of 2B7 with respect to 3VB5 did not reach statistical significance (p = 0.1964, Log-Rank
Mantel–Cox test).

Viral loads at day 3 were analyzed by RT-qPCR (Figure 2A). As expected, all samples
recovered from mice inoculated with rZH548 revealed high viral loads, while viral RNA
in samples from rZH548∆NSs::GFP-infected mice was below the detection level. In mice
inoculated with rZH548-P82L viruses viral loads at day 3 pi were strongly reduced, with
one animal also rendering undetectable RNA levels (2B7 group). A total of six RNA samples
(three from each mutant group, randomly selected) extracted from day 3 blood were used
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for RT-PCR amplification and sequencing of the NSs ORF, confirming the presence of the
mutation and no other changes.

Figure 1. Analysis of the in vivo pathogenicity of the rZH548-P82L mutant viruses in BALB/c mice. 9–18-week-old male
mice (n = 5–7, equally distributed) were inoculated IP with 500 plaque-forming units (pfus) of the indicated viruses and
both rZH548-P82L clones, 2B7 and 3VB5. Wild-type rZH548 (red) and rZH548∆NSs::GFP (labeled as, rZH∆NSs/GFP,
green) viruses were included as controls for virulence and attenuation, respectively. Animals were monitored up to 18 days.
(A) Survival rates and (B–E) morbidity upon challenge with the indicated viruses. The graph represents the clinical status
of each mouse: D (dead/euthanized): black bars; S (signs-sick), hatched bars; H (healthy), grey bars. The animal within the
group rZH548∆NSs::GFP euthanized at day 4 pi was excluded from the survival analysis.

These results of viremia correlated with the levels of seroconversion to viral proteins
detected in survivor mice (Figure 2B). Anti-N antibodies, indicative of viral replication,
were detected in all mice, including also those inoculated with rZH548∆NSs::GFP virus
where no viral RNA was detected. Likewise, antibodies able to neutralize RVFV infectivity
in vitro were detected in all animals. Compared to those reached in the rZH548∆NSs::GFP
group, titers in both assays were slightly higher in groups inoculated with the rZH548-P82L
viruses, although these differences were not statistically significant (one-way ANOVA test).
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Figure 2. Viremia and seroconversion after inoculation with the rZH548-P82L mutant viruses.
(A) Viremia. RT-qPCR on EDTA blood samples collected at day 3 pi. Samples giving a Cq (quan-
tification cycle) value under the detection level of the assay (37) are arbitrarily represented as 45 and
were excluded from the statistical analysis. The correlation of Cq data with pfu equivalents is indicated
in the right Y axis. (B) Antibody responses in survivor mice at day 18 pi. Titers are expressed as the
dilution of serum (log10) rendering a reduction in infectivity of 50% in a microneutralization assay (left
Y-axis; closed symbols), and last dilution of serum (log10) giving an OD reading at 450 nm over 1.0
in anti-N ELISA (right Y-axis; open symbols). Each symbol corresponds to an individual mouse. For
neutralization, only n = 3 samples were available for rZH548∆NSs::GFP and 2B7. * p≤ 0.05, ** p≤ 0.001.

3.3. Cellular Localization and Pattern of NSs in Cells Infected with rZH548-P82L Mutants

Once it was proved that the change introduced in the NSs led to attenuation of RVFV
in mice, we performed some in vitro assays to further characterize the phenotype of the
P82L-mutant viruses. First, we tested the pattern of cellular distribution of the mutated
NSs in Vero-infected cells. P82 is placed within PXXP motif 2 (positions 82 to 85), and
changes in two of the four PXXP motifs present in the NSs (motif 1 at positions 29 to 32,
and motif 2 at positions 82 to 85) are known to affect the nuclear filamentous arrangement
of NSs, with NSs mutants remaining in the cytoplasm [15]. In order to test whether the
change carried by our P82L-mutants affected this pattern, infected Vero cells were subjected
to indirect immunofluorescence with the anti-NSs monoclonal antibody 5C3AB12 [20].
At 6 hpi, NSs could be detected in the cytoplasm of all infected cells in all cases, but in
the nucleus the prototypical fibrillar NSs structures could only be detected after infection
with wt rZH548 virus (Figure 3A, left panels). In contrast, in cells infected with the NSs-
mutant viruses, this typical nuclear staining was harder to find at this early point: nuclear
filaments were only detected in 2.0%–2.5% of the infected cells (4/162 for 2B7; 2/99 for
3VB5; counting on five different fields each), while in cells infected with the rZH548,
this proportion reached 74.5% (111/149). When present, filaments seemed less defined.
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Rather, the fluorescence had a punctate pattern distributed along the cytoplasm and the
cell nucleus (Figure 3A, central and right panels). At 24 h pi, filamentous structures could
be detected in the nucleus in all cases, although some subtle morphologic differences were
found again between filaments formed in cells infected with the wt (Figure 3B, left panels)
and the NSs-mutant viruses (Figure 3B, central and right panels). While in rZH548-infected
cells nuclear filaments appeared thicker and sharply defined, those in cells infected with
both rZH548-P82L viruses looked more disordered and loosely aggregated and with more
cytoplasmic staining.

Figure 3. Localization and filament formation of wt and mutant NSs proteins. Vero cells were infected
with rZH548 and the two rZH548-P82L mutants at a MOI of 1. At 6 (panel A) and 24 (panel B) hours
pi, cells were fixed and subjected to indirect immunofluorescence with the anti-NSs monoclonal
antibody 5C3A1B2. Nuclei were stained with DAPI. For each virus and time pi, 2 images with
different magnification are shown as indicated. AS denotes Zeiss Airyscan 2D superresolution mode.
Red arrows in panel A point to cells infected with the rZH548-P82L viruses where nuclear filaments
could be detected. Scale bars: 20 µM (upper panel B), 10 µM (upper panel A and lower panel B);
5 µM (lower panel A).
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3.4. Growth and IFN-β Induction of rZH548-P82L Mutants on HEK293T Cells

NSs is an antagonist of the antiviral type I interferon (IFN) system. RVFVs lacking NSs
or a functional NSs are unable to counteract the IFN response, thus showing an impaired
growth in interferon-competent cells [15,21,22]. As for the nuclear pattern of NSs, changes
in the PXXP motifs have also been reported to affect the ability to suppress the activation of
IFN-β promoter, in particular when prolines were substituted [15]. Thus, we decided to check
whether the change introduced had some effect on the growth of rZH548-P82L viruses on
interferon-competent HEK293T cells. Both the rZH548∆NSs::GFP and the wt rZH548 virus
were again included for a comparison as examples of IFN-sensitive or non-sensitive viruses,
respectively (Figure 4). As expected, titers of the rZH548∆NSs::GFP did not increase over
time. In contrast, the growth curves of the two P82L mutant viruses were similar to the one
displayed by the wt rZH548 virus, showing increasing titers along the time analyzed. In
addition, these supernatants were analyzed for the presence of human IFN-β by ELISA. IFN-β
was only detected in samples recovered 48 hpi from cells infected with rZH548∆NSs::GFP.
All the other samples rendered OD values corresponding to IFN levels below or close to
the sensitivity threshold of the assay (50 pg/mL). Altogether, these results suggested that
the change introduced in rZH548-P82L viruses did not affect the ability of NSs to block the
cellular production of IFN and thus their growth in these IFN-competent cells.

Figure 4. Growth of rZH548-P82L mutants on HEK293T cells and IFN-β production. HEK293T cells
were infected at a MOI of 0.05 with the indicated viruses. At 24, 48 and 72 hpi, supernatants were
collected and titrated on Vero cells (panel A) and analyzed for IFN-β production by ELISA (panel B).
The limit of detection of this ELISA was established at 50 pg/mL (see Materials and Methods). The
sample corresponding to rZH548 at 72 hpi was not analyzed in ELISA.
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3.5. Degradation of PKR and p62 in rZH548-P82L Infected Cells

Another pathway by which NSs blocks the host antiviral responses of infected cells is
the degradation of cellular proteins such as PKR and p62, a component of transcription
factor II H (TFIIH) [23–25]. In order to determine whether the change introduced affected
this ability and could therefore modulate viral attenuation, HEK293T cells were infected
and whole cell extracts analyzed by Western blot (Figure 5). In samples from cells infected
with the two rZH548-P82L viruses, the expression of PKR was clearly diminished while
p62 was undetectable, suggesting that the change in P82L did not impair the ability of the
mutant protein to degrade the cellular proteins under study.

Figure 5. Degradation of protein kinase R (PKR) and p62 in rZH548-P82L infected cells. HEK293T cells
were infected at a MOI of 1 with the indicated viruses. Cells were harvested at 20 hpi and analyzed by
Western blot using anti-PKR (B-10), anti-p62 (H10) mouse monoclonal antibodies, anti RVFV-N mAb
2B1 and anti-actin antibody as primary antibodies. Samples loaded correspond to 106 cells.

4. Discussion

In this work, we describe the rescue of recombinant ZH548 (rZH548) RVF viruses
carrying a P82L mutated NSs protein and analyze the effect of this change in RVFV
infectivity. This mutation was one of the 24 amino acid changes originally identified in a
virus isolated under the selective pressure of a mutagenic agent that was found to be hyper-
attenuated in mice [14,26]. Among the many substitutions identified in this RVFV variant,
changes in the nucleotide 279 of genomic S-segment led to the substitution Proline→
Leucine in residue 82 in the NSs protein. Changes in this protein, known to be the main
virulence factor for RVFV, were especially interesting to study. The substitution of proline
82 was of special interest since it lies within a PXXP motif involved in the correct nuclear
localization of the protein and in the ability to suppress IFN-β promoter activation [15].

When viruses carrying P82L NSs were tested in vivo, viral loads were reduced, dis-
ease appeared later than in controls and survival rates were higher, confirming that this
substitution led to virus attenuation in mice. A third additionally rescued virus (clone



Viruses 2021, 13, 542 11 of 13

3B5) displayed also longer survival times, supporting this observation (Supplemental
Figure S1). Although mortality rates between the clones tested were not different with
statistical significance, there were slight differences in how infection progressed. While
these differences could be due to normal variation in animal experimentation with a low
number of individuals, we cannot exclude that minor subpopulations generated during
virus growth in vitro or during viral replication in vivo might also contribute to modulate
the observed pathogenicity. Nonetheless, the genomic background in which P82L was
introduced corresponded to a strain of different lineage (Egyptian) with respect to the
parental virus (South African). Therefore, this emphasizes the dominant role of this change
in the phenotype observed. Surprisingly, none of the in vitro assays performed revealed a
clear difference between rZH548wt and both mutant viruses: they all were able to grow in
IFN-competent HEK293T cells and block the cellular production of IFN-β, retaining the
ability to degrade both PKR and p62 proteins.

The only feature where we identified a difference between the wt and the mutant
viruses was the pattern/kinetics of nuclear distribution of NSs in infected cells. Even
though filamentous structures were observed in the nucleus in all cases, the assembly
of these typical structures was somehow impaired for the mutant NSs, appearing with
some delay and with a looser consistency at later times pi, suggesting some deficiency
in nuclear import, aggregation capability or kinetics. It is difficult to determine whether
this is an actual trait with any effect on the NSs activities, not only in vitro, but especially
in vivo. Correlation between this typical pattern of RVFV NSs and in vivo virulence is
controversial since it was described that nuclear filament formation is important but not
sufficient for in vivo virulence [27,28]. Interestingly, recent data reported that the nuclear
NSs filamentous pattern indeed corresponds to amyloid-like structures, therefore stressing
the potential role of NSs in mouse neuropathology or neurotoxicity [13]. Further work is
needed to assess the role of the P82L change in amyloid formation.

Our results provide some noteworthy findings for the development of live attenuated
vaccines. In terms of attenuation, the substitution of residue P82L has a remarkable effect in
mice, with higher survival than the wt virus. Most animals infected with the mutant viruses
developed detectable viremia and strong seroconversion to RVFV, both at higher levels
than mice inoculated with attenuated ∆NSs virus expressing green fluorescent protein
(rZH548∆NSs::GFP). When developing safer and more stable live-attenuated vaccines, a
whole deletion provides a better approach than single amino acid substitutions, with lower
chances of changes and reversion. Nonetheless, a total lack of NSs may lead to poorly
immunogenic viruses, thus a different LAV strategy based on viruses keeping the NSs but
including additional combinations of single attenuation changes may be preferred [29].
In this case, the P82L substitution could be included as an additional safety feature, since
our results show that it does not affect the viral growth (production) or immunogenicity.
Of note, the P82L mutation was found in a virus derived from a South African origin
(lineage D) [30]. Here, we report the biological consequences of this change in the context
of the ZH548 backbone (lineage A) stressing the relevance of amino acid residue 82 among
distinct RVFV lineages.

On the other hand, how this single change in the NSs leads to in vivo attenuation
remains unknown. Except for a tenuous difference in the consistency and definition of the
nuclear filaments, all other NSs features analyzed in this work known to affect virulence
did not show significant differences between the virulent rZH548 and the mutant viruses.
Virus growth and yield in Vero cells were equivalent and the rZH548-P82L viruses retained
the ability to block IFN production in IFN-competent cells and to degrade cellular PKR
and p62. Interactions of NSs with other cellular proteins related with mitochondrial or
nuclear targeting or further interfering with the host antiviral response, as well as other
effects influencing apoptosis or different immunological pathways, may contribute to the
attenuated phenotype observed in mice. Work is in progress to determine the pathway
affected by the substitution P82L studied in this work.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1999-491
5/13/4/542/s1, Figure S1: (A) Survival plots of BALB/C mice upon challenge with rZH548-P82L
mutant clone 3B5. Comparison with rZH548 and rZH548∆NSs::GFP (upper plot) or mutant clones
2B7 and 3VB5 (bottom). Indicated p values according to the Log-rank (Mantel-Cox) test. (B) Morbidity
upon challenge with mutant clone 3B5. The graph represents the clinical status of each mouse: D
(dead/euthanized): black bars; S (signs-sick), hatched bars; H (healthy), grey bars.
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