
sensors

Article

Feature Subset Selection for Malware Detection in Smart
IoT Platforms

Jemal Abawajy 1,* , Abdulbasit Darem 2 and Asma A. Alhashmi 2

����������
�������

Citation: Abawajy, J.; Darem, A.;

Alhashmi, A.A. Feature Subset

Selection for Malware Detection in

Smart IoT Platforms. Sensors 2021, 21,

1374. https://doi.org/10.3390/

s21041374

Academic Editor: Francesco Mercaldo

Received: 4 January 2021

Accepted: 10 February 2021

Published: 16 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cyber Security Research and Innovation Centre, Faculty of Science, Engineering and Built Environment,
Deakin University, Geelong, VIC 3220, Australia

2 Department of Computer Science, Northern Border University, 9280 Arar, Saudi Arabia;
basit.darem@nbu.edu.sa (A.D.); asma.alhashmi@nbu.edu.sa (A.A.A.)

* Correspondence: jemal@deakin.edu.au

Abstract: Malicious software (“malware”) has become one of the serious cybersecurity issues in
Android ecosystem. Given the fast evolution of Android malware releases, it is practically not feasible
to manually detect malware apps in the Android ecosystem. As a result, machine learning has become
a fledgling approach for malware detection. Since machine learning performance is largely influenced
by the availability of high quality and relevant features, feature selection approaches play key role
in machine learning based detection of malware. In this paper, we formulate the feature selection
problem as a quadratic programming problem and analyse how commonly used filter-based feature
selection methods work with emphases on Android malware detection. We compare and contrast
several feature selection methods along several factors including the composition of relevant features
selected. We empirically evaluate the predictive accuracy of the feature subset selection algorithms
and compare their predictive accuracy and the execution time using several learning algorithms.
The results of the experiments confirm that feature selection is necessary for improving accuracy of
the learning models as well decreasing the run time. The results also show that the performance
of the feature selection algorithms vary from one learning algorithm to another and no one feature
selection approach performs better than the other approaches all the time.

Keywords: Internet of Things; malware; Android OS; feature selection; machine learning; filter
methods; malware detection; smartphones

1. Introduction

The Internet of Things (IoTs) has come to permeate all aspects of our life and IoT
devices such as smartphones and smartwatches have become necessary in modern mobile-
centric connected world. Android is an open-source operating system (OS) devised primar-
ily for use in smart IoT devices. With 71.18% market share [1], Android is undoubtedly the
leading operating system used in IoT devices such as smartphones worldwide. Permission-
based models are used in the Android platform to protect the IoT devices from dangerous
apps. However, this security model has proven to be inadequate for dealing with malware
threats for IoT devices using Android OS [2]. Currently, malware targeting the Android
platform far outnumbers all the other platforms and continue to rise considerably over the
last few years [3]. For example, in 2018 Kaspersky detected about 5,321,142 malware sam-
ples from different families targeting Android platforms. Also, Android app distribution
markets such as third-party markets and official Google Play Store market have become
a haven for malware app distribution [4]. Specially, the third-party markets hosting up
to 50% malware apps [5], tend to be replete with malicious apps. Although Google tries
to weed out malware-infected apps from its market, the Google Play Store occasionally
hosts malicious apps estimated to be up to 22% of the apps uploaded on the Google Play
Store [6].

Sensors 2021, 21, 1374. https://doi.org/10.3390/s21041374 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8962-1222
https://orcid.org/0000-0002-5650-1838
https://orcid.org/0000-0001-7871-7069
https://doi.org/10.3390/s21041374
https://doi.org/10.3390/s21041374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041374
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1374?type=check_update&version=2

Sensors 2021, 21, 1374 2 of 19

Android malware can infringe on users privacy, compromise data integrity and destroy
sensitive information. With the fast evolution of Android malware, it is practically not
feasible to manually detect malware apps in Android ecosystem. Similarly, the signature-
based traditional classification methods are not effective [2] thus calling for an alternative
approach that can quickly and effectively detect malware apps. As a result, machine
learning algorithms are taking the centre stage to malware detection [2,7,8]. Machine
learning based solutions rely heavily on extracting meaningful features from the Android
apps for training the models [9]. Generally, static and dynamic analysis methods are
utilized to extract typical malware descriptive behaviour (i.e., features) from the raw
data. These feature extraction methods normally generate very large high-dimensional,
redundant and noisy features [10,11]. Some of the raw features offer little or no information
that is useful to distinguish malware apps from benign apps and may even impact the
performance of the malware detection methods [10,12–14]. As a result, automatic feature
subset selection has become a key aspect of machine learning [15].

Feature selection algorithms select a subset of features from the original feature set,
which are considered useful for training the learning models to obtain good results [2,10].
A growing number of Android malware detection models have applied different fea-
ture subset selection algorithms and have achieved good detection rates [8,16]. However,
research on the usefulness of the state-of-the-art feature subset selection methods in the con-
text of Android malware detection models have not received the attention it deserves [10].
To this end, we investigate the utility of the commonly used feature subset selection ap-
proaches for malware detection in Android platforms. We analyse the feature selection
methods with the goal of finding out: (i) the order in which they select the subset features,
(ii) the usefulness of the selected features on the performance of the learning models,
(iii) similarities between the various feature selection methods with respect to feature rank-
ing, and (iv) the direct influence of varied feature length on the learning model classification
accuracy. The contributions made in this paper can be summarized as follows:

• We formulate the feature selection problem as a quadratic programming problem;
and analyse how different feature selection methods work and how they are used in
Android malware detection models,

• We compare and contrast several commonly used filter-based feature selection meth-
ods along several factors,

• We analyse the requested permissions distribution of the samples and the composition
of the relevant feature subsets selected by the feature subset selection algorithms
thoroughly to discover the usefulness of the feature subsets,

• We empirically evaluate the predictive accuracy of the feature selection techniques us-
ing several learning algorithms that do not perform feature subset selection internally,
and

• We demonstrate the usefulness of feature selection in Android malware classification
systems.

We organise the remainder of the paper in the following manner: In Section 2, the
problem overview is given. Section 3 will review some related work while Section 4
highlights the model used in this paper. Experimental evaluation is discussed in Section 5.
The conclusion remarks and future work are discussed in Section 6.

2. Problem Overview

Quality features are crucial for building effective machine learning based classification
models. This is because raw features extracted from Android apps for the purposes of
training the models are very large. For example, Su et al. [11] extracted more than 50,000
different features from an Android app. Typically, some of these raw features are key
in differentiating malware from benign apps while others are not [17]. Also, too many
features lead to the model complexity and to the “curse of dimensionality” problem [17].
Moreover, these features tend to be high-dimensional [18] and replete with a large number
of redundant features that may not be relevant to exclusively differentiate Android malware

Sensors 2021, 21, 1374 3 of 19

from benign apps [11]. It is not useful for machine learning algorithms to directly handle
high-dimensional data [19]. This is because such data normally contains significant noises
and irrelevant features that add little or no value to the performance of the learning
algorithms. Therefore, these unwanted features should be removed from feature subsets to
be used in training the learning models.

The feature selection problem can be formulated by using quadratic programming.
Specifically, given a dataset of n training samples {(Fi, li) | 1 ≤ i ≤ n}, where li is the target
classification label and Fi =

{
fij
∣∣ 1 ≤ j ≤ m

}
∈ Rm is a vector of m raw features such that

n � m. The feature subset selection problem is to select a subset of the original features
from the observation space Rm for use in training the learning algorithms. This problem
can be formally stated as a quadratic programming optimization problem as follows [20]:

max
X

(
X
(

XT × S
2

− FT
))

(1)

Such that
xi ≥ 0 ∀i 1, · · · , m (2)

m

∑
i=0

xi = 1 (3) (3)

The above formulation considers the relevance of the features to the class label whereas
redundancy between the features is penalized. The parameter S ∈ Rm×m in the above
equation is a similarity matrix used for capturing features redundancy; the parameter
F ∈ Rm quantifies the level of correlation between each feature and the target class label
(i.e., captures how relevant the feature is). The entries in X = {x1, x2, · · · , xm} represent
the weight of each feature as computed by F. The constraints in Equations (2) and (3)
enforce the weight of each feature (i.e., xi ∈ X) should be non-negative must add up to one.
Normally, features with weights above a given threshold are considered useful features
and selected for subsequent training of the learning algorithms.

Although feature subset selection is important in machine learning, finding the best
subset features from the original features is known to be an NP-hard optimization prob-
lem [20]. This is because the feature selection algorithm has to examine a total of 2m − 1
candidate subset of features. As the number of m increases, it quickly become evident that
examining all of the features exhaustively cannot be done in practice. An exhaustive search
for the best possible features from the original feature sets is practically unfeasible in most
cases. Solving the problem, even for a modestly large m, is computationally impracticable.
As a result, many heuristic approaches have been proposed in the literature to solve this
problem.

3. Related Work

Feature subset selection is among the top fundamental challenges in machine learning
arena. The problem has continued to draw an increasing attention from researchers and
practitioners alike [7,8,10,18,21–28]. Although choosing a subset of features from the origi-
nal features is a combinatorial problem, many suboptimal heuristics have been put forward
and used in various domains, which include the chi-squared based feature subset selec-
tion [7,8,10], the analysis of variance (ANOVA) [7,8,10], mutual information [7,23,29] and
information gain [18,25–27]. Many studies have shown that feature selection approaches
that select good feature subset will have significant impact on reducing the complexity
in processing by eliminating unimportant features and enhance the performance of the
learning models [24,30]. For example, Aonzo et al. [30] demonstrated that small number of
features are enough for a very good classification. They considered the most significant
features extensively used in prior research. They selected a small number of features from
the list of most important features and show that the small subset features they are enough
for a very good classification.

Sensors 2021, 21, 1374 4 of 19

Exiting feature selection approaches are organized into filters, wrapper, embedded
and hybrid methods [15,16]. The filter methods select a subset of features without altering
their original representation. A statistical criterion is used in filter-based feature selection
techniques to assess the relevance of the features. The selected features can be used by
any learning methods because the selection is not tied to any machine learning method.
In contrast, feature selection in the wrapper-based approach involves a classification
model to assess the suitability of the features [15]. Several authors empirically compared
representatives of filter, wrapper, and embedded feature selection methods using simulated
data. Bolón-Canedo et al. [19] analyzed the seven filter-based feature selection methods,
two wrapper feature selection methods, and two embedded feature selection methods using
synthetically created microarray data sets under four machine learning classifiers. Similarly,
Wah et al. [31] investigated how the filter methods compare with the wrapper methods in
terms of the classifier accuracy. The authors compared two filtering methods, namely the
correlation based and the information gain feature selection against two wrapper methods,
namely the sequential forward and sequential backward elimination methods. The feature
selection methods are tested using both artificial data sets and real data sets using logistic
regression as a classifier. Xue et al. [32] compared the filter-based feature subset selection
and wrapper-based feature subset selection methods with respect to classification accuracy
and execution time. These works show that the wrapper methods generally achieve better
classification performance than the filter method but much slower than the filter method.

Alazab [8] discussed a supervised machine-learning algorithm for Android malware
detection using various feature sets that are generated using the Chi-Square and one-
way ANOVA feature subset selection methods. The detection accuracy of ten supervised
machine-learning algorithms were evaluated to identify the most reliable classifier for mal-
ware detection. The model with feature subsets produced by Chi-Square was found to have
a higher detection accuracy than the feature subsets produced by ANOVA. Wang et al. [7]
experimented with three filter-based feature selection methods, namely Mutual Informa-
tion, Chi-Squared and one-way ANOVA to avoid overfitting of their model. The authors
used the selected features to train linear regression (LR) models with different numbers of
selected top features, and thus compare their performances and the performance with full
feature sets. The main tenet of the above studies is to develop Android malware detection,
which differs from the main objective of our work.

Masabo et al. [10] proposed a New Feature Engineering (NFE) feature subset selection
method that utilizes the domain knowledge of the data to create feature subsets. The au-
thors assessed the power of NFE on feature selection by comparing it against one-way
ANOVA, Recursive Feature Elimination (RFE), and PCA using KNN and Linear Discrim-
inant Analysis and Gradient Boosting Classifiers. Thus, the main focus of this work is
to evaluate the performance of NFE as compared to ANOVA, RFE and PCA on feature
selection. The authors used 30 most discriminating features to assess the feature subset se-
lection models and shown that NFE outperforms the other approaches in terms of precision,
recall, and F score. In contrast, we compare and contrast several feature selection methods
along several factors including the composition of relevant features selected. Moreover,
PCA transforms the original features and it is not really good to compare it with other
approaches that do not transform the original features.

Wang et al. [33] discuss one-class classification methods for detecting zero-day An-
droid malware attacks using Intra-Class Distance (ICD) feature selection method. The one-
class classification methods use benign samples only to construct the detection model as
opposed to the two-class models that use both benign and malware samples. In order to
justify the use of ICD, the authors compared it against PCA and Pearson Correlation Coeffi-
cient methods using the Gauss Distribution and ν-SVM classifiers. It is shown that Pearson
Correlation Coefficient has a significantly poorer classification and runtime performance
as compared to the ICD and LS. Although ICD and LS have comparable classification
performance, ICD has significantly lower runtime than the other models.

Sensors 2021, 21, 1374 5 of 19

Mas’ud et al. [22] investigated the use of several different feature selection methods in
optimizing the n-gram system call sequence feature in classifying benign and malicious
mobile application. The n-gram system call sequence can generate a large number of
features to be used in the classification and can contribute to the degradation of classification
performance. Several filter and wrapper feature selection methods are selected, and their
performance analyzed. Four different filter methods, namely Correlation-based Feature
Selection (CFS), Chi Square (CHI), Information Gain (IG), ReliefF (RF) and one wrapper
method with a Linear SVM classifier (WR) are chosen to be evaluated in this paper. The
feature selection methods are evaluated based on the number of feature selected and the
contribution it made to improve the True Positive Rate (TPR), False Positive Rate (FPR) and
Accuracy of the Linear-SVM classifier in classifying benign and malicious mobile malware
application.

Mahindru and Sangal [24] discuss a Least Squares Support Vector Machine (LSSVM)-
based malware detection system. The authors analyzed various feature selection methods
for the purpose of selecting the relevant features. These feature selection approaches include
Pearson’s correlation coefficients, Chi-Squared, Rough set analysis (RSA), Information-gain,
Consistency subset evaluation and PCA. Empirical result reveals that the model using the
Rough Set Analysis (RSA) feature selection achieved better results when compared to the
other feature subset selection methods. Bommert et al. [34] comprehensively compared
various filter-based feature selection techniques available on different toolboxes. It is
concluded that there is no single feature subset selection that is superior to others all the
time but some of the methods always perform well on many of the data sets.

Wang et al. [29] used the mutual information, Pearson correlation coefficient, and T-test
feature subset selection with the aim of understanding the possible risks posed by Android
permissions. The permissions are ranked based on their risks. In order to determine risky
permission subsets, two different methods, namely sequential forward selection as well
as the PCA (principal component analysis) are deployed. The experimental results, using
several machine learning (SVM, decision trees, and random forest) algorithms, the authors
show that risky permissions as features offer satisfactory performance with a detection
rate as 94.62% with a false positive rate as 0.6%. This work is focused on identifying risky
permissions and its use in Android malware detection. In contrast, we are focused on
feature subset selection algorithms use in Android malware detection.

Wang and Li [35] used PCA, Correlation, Chi-square and Information Gain feature
selection methods for the sake of dimension reduction. The authors examined the Android
kernel features to identify Android malware. A Weight-Based Detection (WBD) approach is
proposed to differentiate between Android malware and benign apps using Decision Tree,
Naive Bayes, and Artificial Neural Network machine learning algorithms. The authors
used 112 multiple dimensional kernel features of tasks and processes where the four feature
selection methods. Vinod et al. [36] examined system calls for Android malware detection.
The authors compared five feature selection methods for reducing higher dimensional sys-
tem call set. The five feature selection methods are the symmetric uncertainty, information
gain and principal component analysis (PCA), Absolute Difference of Weighted System
Calls (ADWSC) and Ranked System Calls using Large Population Test (RSLPT). The last
two methods are proposed by the authors whereas the other three methods are used as
a benchmark to demonstrate the effectiveness of ADWSC and RSLPT feature selection
methods.

There are many survey papers on feature selection methods [37–40]. In Wang, et al. [37],
a systematic survey of the feature subset selection techniques and the features used in
exiting literatures for Android malware detection is discussed. A taxonomy of existing
features and feature selection methods is presented, and the issues of creating features for
malware detection are highlight. The authors concluded that there is a need for further
work that explore and refine well-discriminated features from numerous features extracted
from Android apps. Feizollah et al. [38] analyzed about 100 publications with respect to

Sensors 2021, 21, 1374 6 of 19

feature selection in Android malware detection. The authors reported that feature selection
algorithms were not exhaustively investigated in prior articles.

The prior works are either focused on non-malware related fields [19,30,31] or compare
approaches that transform the original features against approaches that does not [10] or
use classification methods that perform embedded selection of the feature subsets such
as random forests [41] and gradient boosting [39] or use them as a validation of a newly
proposed feature subset selection methods [10]. As noted in [19], it is essential that the
efficacy of the feature subset selection is examined and verified on different situations and
platforms such as Android malware classification. Also, classification methods that perform
embedded selection of the feature subsets will not be able to explicitly quantify the influence
of the feature selection methods. There is limited research in comprehensive analysis
of feature selection methods for Android platform that avoids the above shortcomings.
In this paper, we avoid classification algorithms with in-built feature subset selection.
Also, we focus on filter-based feature subset selection algorithms since this class of feature
selection methods have lower computational complexity as compared to the wrapper-based
approaches. Moreover, research on malware detection in Android platform mostly deploy filter-
based methods to select the subset of feature for training the learning algorithms [7,8,18,26,42].
Further, filter-based methods assess the suitability of features solely on statistical criterion
and thus can be used in conjunction with any learning model.

4. Android Malware Detection Framework

As shown in Figure 1, the general automated classification framework for Android
malware detection consists of three general phases: (1) the sample dataset preprocessing
(includes feature extraction) phase, (2) a phase for selecting feature subsets, and (3) a
classification phase. The detailed descriptions of the first phase is given in this section.
The other two phases will be discussed in separate subsections.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 19

work that explore and refine well-discriminated features from numerous features ex-
tracted from Android apps. Feizollah et al. [38] analyzed about 100 publications with re-
spect to feature selection in Android malware detection. The authors reported that feature
selection algorithms were not exhaustively investigated in prior articles.

The prior works are either focused on non-malware related fields [19,30,31] or com-
pare approaches that transform the original features against approaches that does not [10]
or use classification methods that perform embedded selection of the feature subsets such
as random forests [41] and gradient boosting [39] or use them as a validation of a newly
proposed feature subset selection methods [10]. As noted in [19], it is essential that the
efficacy of the feature subset selection is examined and verified on different situations and
platforms such as Android malware classification. Also, classification methods that per-
form embedded selection of the feature subsets will not be able to explicitly quantify the
influence of the feature selection methods. There is limited research in comprehensive
analysis of feature selection methods for Android platform that avoids the above short-
comings. In this paper, we avoid classification algorithms with in-built feature subset se-
lection. Also, we focus on filter-based feature subset selection algorithms since this class
of feature selection methods have lower computational complexity as compared to the
wrapper-based approaches. Moreover, research on malware detection in Android plat-
form mostly deploy filter-based methods to select the subset of feature for training the
learning algorithms [7,8,18,26,42]. Further, filter-based methods assess the suitability of
features solely on statistical criterion and thus can be used in conjunction with any learn-
ing model.

4. Android Malware Detection Framework
As shown in Figure 1, the general automated classification framework for Android

malware detection consists of three general phases: (1) the sample dataset preprocessing
(includes feature extraction) phase, (2) a phase for selecting feature subsets, and (3) a clas-
sification phase. The detailed descriptions of the first phase is given in this section. The
other two phases will be discussed in separate subsections.

 F

EA
TU

RE
 S

EL
EC

TI
ON

2

PR
EP

RO
CE

SS
IN

G

1

DATASET

Manifest.xm

APK

Malware

Benign

 CLASSIFIER

MALWARE
?

YES

NO
3

T
ra

in
in

g

Test Dataset

T
es

tin
g

Figure 1. General framework for Android malware detection.

4.1. Unpacking Files
APK (Android Package) files are used to install apps on Android devices. It is a zip

compression package and contains all the necessary contents of an Android apps. We fol-
lowed the standard procedure for unpacking APK file apps as in [8]. We sourced APKs
from various sources, which includes AndroZoo [4] and Drebin sites. To ensure that they
are goodware, we used VirusTotal to scan the dataset and validate them that they are
clean.

4.2. Feature Extraction

Figure 1. General framework for Android malware detection.

4.1. Unpacking Files

APK (Android Package) files are used to install apps on Android devices. It is a
zip compression package and contains all the necessary contents of an Android apps.
We followed the standard procedure for unpacking APK file apps as in [8]. We sourced
APKs from various sources, which includes AndroZoo [4] and Drebin sites. To ensure that
they are goodware, we used VirusTotal to scan the dataset and validate them that they
are clean.

4.2. Feature Extraction

Android uses several permissions to guard users’ sensitive information from Android
apps on the smartphone [30,43]. Each permission is associated with a specific operation
such as accessing secure sections of the API, contact lists and camera. Therefore, the apps

Sensors 2021, 21, 1374 7 of 19

that are granted a particular permission are allowed to perform the operations linked to
that permission. As malware writers usually achieve their goals by exploiting Android
permission, differentiating malware apps from benign apps through behavioral analysis
of Android permissions has been the focus of numerous research [8]. Therefore, we used
the Android app permissions as features from the malware and benign sample apps.
AndroidManifest.xml file contains the permissions each Android app requested from the
system. However, AndroidManifest.xml is a binary file and thus we have to first convert it
to a plain text file. Then, we extracted the permissions requests from each app from the
manifest file.

4.3. Feature Vectors

We use an n by m dimensional binary vector to represent the apps features. Given a set
of apps, A = {a1, a2, · · · , an}, and a set of F = { f1, f2, · · · , fm} permissions, we created a
features vector as follows:

vik =

{
1 i f app i request permissoin k

0 otherwise
(4)

An example feature vector is shown in Table 1. We use Boolean values recorded in
feature vector to refer to presence (1) and absence (0) of a permission in the apps. That is
to say, if an app ai ∈ A requested a feature fi ∈ F, the vector entry for this app will be 1.
However, if a particular permission is not requested by an app, the vector entry will be 0
since the feature is not present in the app.

Table 1. Feature vectors for a1, a2, · · · , an apps.

Apps f1 f2 f3 f4 · · · fm

a1 1 0 0 1 · · · 1
a2 1 1 1 0 · · · 1
· · · 1 0 0 1 · · · 1
an 1 0 1 0 · · · 1

Generally, the last column of the feature vector holds the value of the target class label.
For a malware app, the entry will be 1 and for benign apps the entry will be 0. In order
to check the apps for the label (malware or not), we used the VirusTotal that incorporates
more than 80 virus detection engines. The vector in Table 1 is used for training and testing
the classifiers.

5. Feature Subset Selection Methods

Both the number and quality of the features used to train models to classify Android
apps with respectable accuracy as a benign and malware are paramount. To this end,
feature selection is used to weed out irrelevant, redundant, constant, duplicated, and
correlated features from the raw features before training the models. A variety of filter
methods for selecting the best features in Android malware detection frameworks have
been widely deployed. In this section, we present detailed descriptions of the filter feature
selection algorithms.

The basic tenet of filter-based feature subsets selection algorithms is that features that
have a high correlation with the target are considered useful to enhance the training of the
learning algorithms and subsequently improve the classification performance. Generally,
filter methods are classified as univariate and multivariate methods. Univariate filter
methods assess and rank a single feature at a time independently (i.e., the no evaluation
for correlation among the features); multivariate filter methods assess the entire feature
space while considering the relationships between the features. Multivariate filter methods
are able to handle duplicated, redundant, and correlated features. In contrast, univariate
methods do not consider the relationship between features and thus unable to handle du-

Sensors 2021, 21, 1374 8 of 19

plicated, redundant, and correlated features. Each filter method uses a distinct performance
parameter to rank the feature.

Generally, filter methods follow a typical scenario described in Figure 2. Given a set of
n features, F = { f1, f2, · · · , fn}, and the class label C ∈ {benign, malware} (as a target),
the filter methods rank the F features based on certain criteria according to their degrees
of relevance to the class label, and return the ranked features. Note that the features are
judged solely based on the intrinsic characteristics of the features in relation to the target
either individually or taking into account the statistical relationships between the features.
A variety of scoring function is used to differentiate informative and discriminating features
from less significant features. Normally filter methods perform statistical analysis such as
correlation analysis or mutual information to assess and rank the features. The features
with top rankings that is equal or exceed a threshold value are returned as the most suitable
features while the rest are discarded.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19

space while considering the relationships between the features. Multivariate filter meth-
ods are able to handle duplicated, redundant, and correlated features. In contrast, univari-
ate methods do not consider the relationship between features and thus unable to handle
duplicated, redundant, and correlated features. Each filter method uses a distinct perfor-
mance parameter to rank the feature.

Generally, filter methods follow a typical scenario described in Figure 2. Given a set
of 𝑛 features, 𝐹 = {𝑓ଵ, 𝑓ଶ, ⋯ , 𝑓௡}, and the class label 𝐶 ∈ {benign, malware} (as a target),
the filter methods rank the 𝐹 features based on certain criteria according to their degrees
of relevance to the class label, and return the ranked features. Note that the features are
judged solely based on the intrinsic characteristics of the features in relation to the target
either individually or taking into account the statistical relationships between the features.
A variety of scoring function is used to differentiate informative and discriminating fea-
tures from less significant features. Normally filter methods perform statistical analysis
such as correlation analysis or mutual information to assess and rank the features. The
features with top rankings that is equal or exceed a threshold value are returned as the
most suitable features while the rest are discarded.

Scoring
Function

Threshold

Estimate
Significance

Original
Features

Top-k
Features

Subset Features

Figure 2. An architecture of filter methods for feature selection.

Although there are many filter-based feature selection methods, we are considering
only a subclass of filter-based that does not perform feature transformation. In other
words, the selected features have not gone through any transformation and keep the se-
mantics of the original features. Also, note that the features are selected independent of
any learning algorithm. Table 2 compares the filter-based feature selection methods dis-
cussed in this paper in terms of univariate (UV) or multivariate (MV), the ranking used,
the relationship between the feature and the target and the feature type supported. Para
indicates if it is parametric (Y) or a non-parametric (N). The filter methods discussed here
are capable of classifying data sets with either numeric features or categorical features.
They can also be univariate (e.g., Pearson correlation coefficient) or multivariate (e.g., mu-
tual information). The main difference between these two classes of filter methods is that
the univariate (UV) filter methods do not consider interactions between the features
whereas the multivariate (MV) methods do consider interactions between the features.

Table 2. Comparison of filter-based feature selection methods.

Filter
Variate Para

Ranking
Relation

Feature Types
UV MV Y N L NL

Pearson √ × √ × 𝑅ி௅ √ × category
Information Gain × √ × √ 𝐼𝐺(𝐿|𝐹) √ √ category

Anova √ × × √ F-score √ × numeric or binary
Chi-Square √ × √ 𝜒ଶ √ × category

Mutual Information × √ × √ 𝑀𝐼(𝐹, 𝐿) √ √ category

Figure 2. An architecture of filter methods for feature selection.

Although there are many filter-based feature selection methods, we are considering
only a subclass of filter-based that does not perform feature transformation. In other words,
the selected features have not gone through any transformation and keep the semantics of
the original features. Also, note that the features are selected independent of any learning
algorithm. Table 2 compares the filter-based feature selection methods discussed in this
paper in terms of univariate (UV) or multivariate (MV), the ranking used, the relationship
between the feature and the target and the feature type supported. Para indicates if it is
parametric (Y) or a non-parametric (N). The filter methods discussed here are capable of
classifying data sets with either numeric features or categorical features. They can also be
univariate (e.g., Pearson correlation coefficient) or multivariate (e.g., mutual information).
The main difference between these two classes of filter methods is that the univariate (UV)
filter methods do not consider interactions between the features whereas the multivariate
(MV) methods do consider interactions between the features.

Table 2. Comparison of filter-based feature selection methods.

Filter
Variate Para Ranking Relation Feature

TypesUV MV Y N L NL

Pearson
√

×
√

× RFL
√

× category

Information
Gain ×

√
×

√
IG(L|F)

√ √
category

Anova
√

× ×
√

F− score
√

× numeric or
binary

Chi-Square
√

×
√

χ2 √
× category

Mutual
Information ×

√
×

√
MI(F, L)

√ √
category

Sensors 2021, 21, 1374 9 of 19

5.1. Pearson Correlation Coefficient

Pearson correlation coefficient is used in many Android malware detection meth-
ods [29,35], Pearson correlation coefficient uses statistical measures (i.e., linear correlation
coefficient

(
Rxy
)
) to determine the strength of the correlation between a pair of variables X

and Y. The linear correlation coefficient
(

Rxy
)

can be computed as follows [29]:

Rxy =
n

∑
i=1

(xi − x)× (yi − y)√
(xi − x)2 ×

√
(yi − y)2

(5)

where n is the sample size, xi ∈ X and yi ∈ Y are the ith data values, and x, y are the mean
values. Equation (5) will result in Rxy = {−1, 0, +1}, where the value of Rxy is close to
±1 indicates that the correlation coefficient between a feature and the target class is high
enough and the feature is selected. In contrast, if Rxy is close to 0, the correlation coefficient
is low, and the feature can be dropped.

5.2. Chi-Square

Chi-square is among the common feature subset selection algorithms used for malware
classification in Android platform [8,36]. Chi-Square

(
χ2) is used to determine whether the

occurrence of a specific feature and the occurrence of a specific class label are independent
from each other or not. Formally, χ2 for a given feature fi ∈ F is computed as follows [35]:

χ2 = ∑
(fi − C)2

C
, 1 ≤ i ≤ n (6)

Normally, the features are ranked in ascending order following the calculation of χ2

for each feature. The higher the χ2 score the more the feature (fi) and the class (C) are
considered as dependent and the features that are highly dependent on the occurrence
of the class label are considered as good candidates while those that are independent
considered as a noninformative for classification purposes thus can be dropped.

5.3. Analysis of Variance (ANOVA)

The analysis of variance (Anova) is used in several studies as a feature selection
method [7,8,10]. For feature, fi ∈ F, the degree of dependency with the class label is
estimated and the feature is given a score based on F-statistics. The f-score is computed as
the ratio of within group variance and between group variance as follows:

F− statistics =
variation between sample means

variation within the samples means
(7)

The variation between sample means (SSB) and variation within the means (SSW)
samples are expressed as follows:

SSB = ∑
ck

Nk(xk − x)2

(m− 1)
(8)

SSW = ∑
ck

∑
xi

Nk(xki − xk)
2

∑ck
(Nk −m)

(9)

where xk is the sample mean, x is the class mean, m represent the total number of class
labels, and Nk is the number of class label ck. The features are ranked in ascending order
of their F− score and the top features that meet the selection criterion are identified for
further use.

Sensors 2021, 21, 1374 10 of 19

5.4. Information Gain

Given a feature F and a class label L (malware, benign), the information gain (IG)
quantifies the amount of information feature F contributes to the accurate prediction of the
class L. Formally, IG for a given feature F and a class label L is expressed as follows [35]:

IG(L|F) = H(L)− H(L/F) (10)

where H(L) represents the prior uncertainty of L (i.e., entropy of a feature) and H(L/F)
denotes the expected posterior uncertainty, which are computed as follows:

H(L) = −∑
i

P(Li)· log2(F(Li)) (11)

H(L|F) = −∑
j

P
(

Fj
)
∑

i
P
(

Li
∣∣Fj
)
· log2 P

(
Li
∣∣Fj
)

(12)

where P(Li) and P
(

Li
∣∣Fj
)

refer to the prior probability of L, and the posterior probability of
L given feature F respectively. Equations (11) and (12) give the entropy of L before and after
observing F. The features are ranked in ascending order of their IG(F) and the top features
that meet the selection criterion are identified for further use. Normally, the features with
a high IG(F) value are taken to be relevant features, whereas those that do have a lower
IG(F) value are considered not useful feature.

5.5. Mutual Information

Mutual information (MI) can measure the relevance of specific permissions by cap-
turing a correlation between a given features F and a class label L based on how much
information they share. Specifically, the mutual information between L and F can be
measured by using the Kullback-Leiber divergence as follows:

MI(F, L) = − ∑
xi∈{0,1}

∑
ci∈{c0,c1}

P
(

F = xi, L = cj
)
· log2 M

P
(

F = xi, L = cj
)

P(F = xi)× P
(

L = cj
) (13)

where P
(

L = cj
)

is the occurrence rate of L with score cj ∈ {0, 1}, P(F = xi) is the rate
of recurrence of F with score xi ∈ {0, 1}, and P

(
F = xi, L = cj

)
is the frequency count of

F with value xi ∈ {0, 1} in class cj. The features are ranked in ascending order of their
MI(F) and the top features that meet the selection criterion are identified for further use.
Basically, the larger the value of MI(F), the greater the relationship between the L and F.
But if MI(F) = 0, then L and F are said to be independent (i.e., no correlation).

6. Performance Analysis

In this section, detailed descriptions of the learning models used, the data sets charac-
teristics, the performance metrics used, and cross validation are discussed. Table 3 shows
the naming convention used in the paper.

Table 3. Naming conventions used in the paper.

Symbol Corresponding Name Symbol Corresponding Name

FS1 Chi squared FS4 Pearson Correlation Coefficient
FS2 Mutual information FS5 Analysis of variance (ANOVA)
FS3 Information gain FS0 All extracted features

KNN K Nearest Neighbours SVM Support Vector Machines
NB Naïve Bayes LR Logistic Regression

6.1. Experimental Setup and the Dataset

The experiment was performed on a 4th Gen. Intel Core i5 CPU with 12 GB of RAM
running the Ubuntu 18.10 operating system. As in [43], we used WEKA 3.8, an open source

Sensors 2021, 21, 1374 11 of 19

platform, that supports many kinds of classifiers and different feature subset selection
methods [44]. We used publicly available real-world dataset that includes 6190 benign apps
from the Google Play Store and 5500 malware apps randomly sourced from VirusShare,
Drebin and AndroZoo. The selected dataset provides an acceptable ground truth. This
is because the data sources are relatively reliable, and many published works have used
them. We also rigorously analysed the dataset using VirusTotal to ensure that they are
exactly as we want them to be (i.e., malware or benign).

6.2. Performance Metrics

We use two metrics, namely accuracy and F1 score for the purpose of assessing the
efficacy of the models. These metrics are used in many studies including [10,24,29]. In this
regard, accuracy can be formally expressed as follows:

accuracy =
correctly classi f ied instances

total number o f instances
(14)

The computed value will be in the range of [0, 1]. The closer the accuracy to 1.0, the
higher the performance of the model.

F1 is used to measure the precision and recall at the same time based on harmonic
mean. It is defined as follows:

F1 = 2×
(

preceision× recall
preceision + recall

)
(15)

where the ‘precision’ and ‘recall’ parameters are expressed as follows:

preceision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(16)

recall =
TP

TP + False Negative (FN)
(17)

6.3. Malware Classification Models

The learning models to assess the performance of the feature subset selection methods
described in Section 4 includes the following:

• K-Nearest Neighbours (KNN) is a supervised machine learning algorithm commonly
deployed in malware classification problem. KNN uses a majority vote to classify a
new instance based on its K closest instances. We experimented with K equal to three.

• Support Vector Machines (SVM) is also a supervised learning algorithm and commonly
used in malware classification problem. SVM uses a hyperplane to represent different
classes and map a new instance to one of the hyperplanes.

• Naïve Bayes (NB) is another supervised learning classifier. NB is based on the Bayes
theorem with conditional independence assumption. NB, based on the joint proba-
bilities of sample observations and classes, attempts to approximate the conditional
probabilities of the class given a new instance.

• Logistic Regression (LR) is a statistical model that uses a logistic function to assign
observations to a discrete set of classes based on the probability theory.

The chosen classification methods are not only popular machine learning models but
also, they do not perform embedded feature selection. These classification models are ideal
for evaluating the direct impact of the feature selection algorithms as they are not capable
of embedded feature selection.

6.4. Cross-Validation

Cross-validation is a practical approach commonly deployed to avoid the problem of
overfitting when evaluating the effectiveness of classification systems [24,43]. To evaluate

Sensors 2021, 21, 1374 12 of 19

the models, the k-fold cross-validation method is used, where the dataset is divided into
k equal segments. We used the k-1 sets to train the models and one set is used to test the
models with. In the experiment, we set k = 20.

7. Results and Discussion

In this section, we analyze the feature subsets selected by the selection approaches
in terms of the classification accuracy and F1-score. We also examine the execution time
needed for feature subset selection.

7.1. Permission Analysis

As noted earlier, each app requests a set of permissions necessary for it to operate.
In this section, we analyse the distribution of the requested permissions in each app.
For each permission requested by the apps, we obtained the percentage of the permissions
usage in each class (i.e., benign and malware). Figure 3 shows the most frequently requested
permissions by the samples in our dataset. The pattern of the permission requested by
the apps is basically similar to the recent studies [29,45]. Although we can observe from
the figure that few of the permissions (e.g., INTERNET and READ_PHONE_STATE)
are the most widely requested permissions in the dataset by both benign and malware
samples, prior research confirms that benign and malware apps requesting a similar set of
permissions is very common.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19

6.4. Cross-Validation
Cross-validation is a practical approach commonly deployed to avoid the problem of

overfitting when evaluating the effectiveness of classification systems [24,43]. To evaluate
the models, the k-fold cross-validation method is used, where the dataset is divided into
k equal segments. We used the k-1 sets to train the models and one set is used to test the
models with. In the experiment, we set k = 20.

7. Results and Discussion
In this section, we analyze the feature subsets selected by the selection approaches in

terms of the classification accuracy and F1-score. We also examine the execution time
needed for feature subset selection.

7.1. Permission Analysis
As noted earlier, each app requests a set of permissions necessary for it to operate. In

this section, we analyse the distribution of the requested permissions in each app. For each
permission requested by the apps, we obtained the percentage of the permissions usage
in each class (i.e., benign and malware). Figure 3 shows the most frequently requested
permissions by the samples in our dataset. The pattern of the permission requested by the
apps is basically similar to the recent studies [29,45]. Although we can observe from the
figure that few of the permissions (e.g., INTERNET and READ_PHONE_STATE) are the
most widely requested permissions in the dataset by both benign and malware samples,
prior research confirms that benign and malware apps requesting a similar set of permis-
sions is very common.

Figure 3. Distribution of most commonly requested permissions.

Further, we can observe from the figure that benign apps and malware apps have
dissimilar inclinations in regard to requesting different permissions. For example, we can
see from the graph that malware apps ask for much more permissions than the benign
apps (e.g., READ_PHONE_STATE). We can also observe from the graph that malware
tends to request permissions that pose privacy or fraud risks (e.g.,
READ_PHONE_STATE and WRITE_SMS) as well as permissions from dangerous class
than benign apps (e.g., ACCESS_COARSE_LOCATION and WRITE_EXTERNAL_STOR-
AGE). Prior research has reported that more than 53% of malware apps tend to request
dangerous permission such as READ_SMS whereas merely READ_SMS is requested by
1.36% of benign apps [29].

0 10 20 30 40 50 60 70 80 90 100

INTERNET
READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE
ACCESS_NETWORK_STATE

ACCESS_COARSE_LOCATION
ACCESS_WIFI_STATE

WAKE_LOCK
VIBRATE

RECEIVE_BOOT_COMPLETED
INSTALL_PACKAGES

CHANGE_WIFI_STATE
ACCESS_FINE_LOCATION

CALL_PHONE
READ_SMS
GET_TASKS

READ_CONTACTS
WRITE_SMS

RECEIVE_SMS
SEND_SMS

Requested Percentage

Pe
rm

iss
io

ns

Benign Malware

Figure 3. Distribution of most commonly requested permissions.

Further, we can observe from the figure that benign apps and malware apps have
dissimilar inclinations in regard to requesting different permissions. For example, we can
see from the graph that malware apps ask for much more permissions than the benign
apps (e.g., READ_PHONE_STATE). We can also observe from the graph that malware
tends to request permissions that pose privacy or fraud risks (e.g., READ_PHONE_STATE
and WRITE_SMS) as well as permissions from dangerous class than benign apps (e.g.,
ACCESS_COARSE_LOCATION and WRITE_EXTERNAL_STORAGE). Prior research has
reported that more than 53% of malware apps tend to request dangerous permission such
as READ_SMS whereas merely READ_SMS is requested by 1.36% of benign apps [29].

7.2. Feature Ranking Analysis

In order to determine the similarity between the feature subset selection approaches
from the feature ranking point of view, we analyzed the methods by considering the top
feature subsets recommended by the methods. Figure 4 shows the distributions of the top

Sensors 2021, 21, 1374 13 of 19

twenty features with respect to the permission protection levels (i.e., normal, dangerous or
signature) for all feature selection methods. The top features selected from the dangerous
permission level by the selection methods are in the range of 75% to 45% while between 15%
to 5% of the top features are from the signature/system protection level class. FS1 selects
75% of the top features from the dangerous protection level class whereas FS5 selects 45%
of the top features from the dangerous protection level class. Permissions selected by the
FS3 method consists of 60% dangerous, 30% normal, and 10% signature levels.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19

7.2. Feature Ranking Analysis
In order to determine the similarity between the feature subset selection approaches

from the feature ranking point of view, we analyzed the methods by considering the top
feature subsets recommended by the methods. Figure 4 shows the distributions of the top
twenty features with respect to the permission protection levels (i.e., normal, dangerous
or signature) for all feature selection methods. The top features selected from the danger-
ous permission level by the selection methods are in the range of 75% to 45% while be-
tween 15% to 5% of the top features are from the signature/system protection level class.
FS1 selects 75% of the top features from the dangerous protection level class whereas FS5
selects 45% of the top features from the dangerous protection level class. Permissions se-
lected by the FS3 method consists of 60% dangerous, 30% normal, and 10% signature lev-
els.

Figure 4. Distribution of the most frequently requested permissions with respect to their protec-
tion levels.

Almost all feature selection methods rank SMS related permissions (e.g.,
READ_SMS, SEND_SMS, WRITE_SMS and RECEIVE_SMS) at the top. INSTALL_PACK-
AGES permission is also a dangerous permission with the tendency to be often requested
by malware apps. Prior research shows that these SMS-related permissions are found fre-
quently in malicious apps (Wang et al., 2017). The difference in the frequency count be-
tween the app classes in regard to READ_SMS, RECEIVE_SMS, and SEND_SMS is above
50% while it is in excess of 15% for WRITE_SMS permission. This clearly shows the dif-
ference between the malware and benign apps usage pattern of SMS related permissions.
We also observe that some of the sensitive permission such as INTERNET are not among
the top features suggested by the feature subset selection methods. This is because these
permissions tend to be very commonly requested by both benign apps and malware apps.

In order to assess the degree of similarity between the feature subset selection meth-
ods with respect to the final ranking of the features, we performed a rank correlation co-
efficient measures using the Spearman correlation coefficient between the rankings. Fig-
ure 5 illustrates the similarity between the feature selection methods. An interesting ob-
servation is that the FS1 and FS3 seem to be quite closely resemble in terms of the ranking
while the similarities between FS2 and FS3 are moderate. We find that 88.4% of features
selected by FS1 and FS3 are the same, which make them very close.

0

10

20

30

40

50

60

70

80

FS1 FS2 FS3 FS4 FS5

Pe
rc

en
ta

ge
 o

f p
er

m
iss

io
ns

Dangerous Normal Signature

Figure 4. Distribution of the most frequently requested permissions with respect to their protection levels.

Almost all feature selection methods rank SMS related permissions (e.g., READ_SMS,
SEND_SMS, WRITE_SMS and RECEIVE_SMS) at the top. INSTALL_PACKAGES permis-
sion is also a dangerous permission with the tendency to be often requested by malware
apps. Prior research shows that these SMS-related permissions are found frequently in
malicious apps (Wang et al., 2017). The difference in the frequency count between the app
classes in regard to READ_SMS, RECEIVE_SMS, and SEND_SMS is above 50% while it is
in excess of 15% for WRITE_SMS permission. This clearly shows the difference between
the malware and benign apps usage pattern of SMS related permissions. We also observe
that some of the sensitive permission such as INTERNET are not among the top features
suggested by the feature subset selection methods. This is because these permissions tend
to be very commonly requested by both benign apps and malware apps.

In order to assess the degree of similarity between the feature subset selection methods
with respect to the final ranking of the features, we performed a rank correlation coefficient
measures using the Spearman correlation coefficient between the rankings. Figure 5 illustrates
the similarity between the feature selection methods. An interesting observation is that the
FS1 and FS3 seem to be quite closely resemble in terms of the ranking while the similarities
between FS2 and FS3 are moderate. We find that 88.4% of features selected by FS1 and FS3
are the same, which make them very close.

Sensors 2021, 21, 1374 14 of 19
Sensors 2021, 21, x FOR PEER REVIEW 14 of 19

Figure 5. Similarity analysis between the feature selection methods with respect to the ranking.

7.3. Analysis of Feature Subset Selection Methods
In this section, we analyze the usefulness of the selected features in terms of their

predictive performance on the classifiers. We use, as an important baseline, results with
raw features (unfiltered) and compare it with the results of selected features.

7.3.1. Impact of Feature Selection
We now analyze the influence of feature subset selection methods on the Naıve Bayes

classifier in terms of performance. As shown in Figure 6, a subset of feature (FSM) on
average leads to a better performance than the case where feature selection is not deployed
(FS0). This concurs with prior studies such as [8] in which Bayesian method combined
with FS1 feature selection method yielded a better result as compared to Bayesian method
without feature selection. This result can be explained by the fact that the unfiltered fea-
tures contain various anomalies such as noise that impact the performance of a machine
learning algorithm.

Figure 6. Performance with and without feature selections.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

CO
RR

EL
AT

IO
N

LE
VE

L

FS1 FS2 FS3 FS4 FS5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FS1 FS2 FS3 FS4 FS5

Ac
cu

ra
cy

 (%
)

FSM FS0

Figure 5. Similarity analysis between the feature selection methods with respect to the ranking.

7.3. Analysis of Feature Subset Selection Methods

In this section, we analyze the usefulness of the selected features in terms of their
predictive performance on the classifiers. We use, as an important baseline, results with
raw features (unfiltered) and compare it with the results of selected features.

7.3.1. Impact of Feature Selection

We now analyze the influence of feature subset selection methods on the Naıve Bayes
classifier in terms of performance. As shown in Figure 6, a subset of feature (FSM) on
average leads to a better performance than the case where feature selection is not deployed
(FS0). This concurs with prior studies such as [8] in which Bayesian method combined
with FS1 feature selection method yielded a better result as compared to Bayesian method
without feature selection. This result can be explained by the fact that the unfiltered
features contain various anomalies such as noise that impact the performance of a machine
learning algorithm.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 19

Figure 5. Similarity analysis between the feature selection methods with respect to the ranking.

7.3. Analysis of Feature Subset Selection Methods
In this section, we analyze the usefulness of the selected features in terms of their

predictive performance on the classifiers. We use, as an important baseline, results with
raw features (unfiltered) and compare it with the results of selected features.

7.3.1. Impact of Feature Selection
We now analyze the influence of feature subset selection methods on the Naıve Bayes

classifier in terms of performance. As shown in Figure 6, a subset of feature (FSM) on
average leads to a better performance than the case where feature selection is not deployed
(FS0). This concurs with prior studies such as [8] in which Bayesian method combined
with FS1 feature selection method yielded a better result as compared to Bayesian method
without feature selection. This result can be explained by the fact that the unfiltered fea-
tures contain various anomalies such as noise that impact the performance of a machine
learning algorithm.

Figure 6. Performance with and without feature selections.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

CO
RR

EL
AT

IO
N

LE
VE

L

FS1 FS2 FS3 FS4 FS5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FS1 FS2 FS3 FS4 FS5

Ac
cu

ra
cy

 (%
)

FSM FS0

Figure 6. Performance with and without feature selections.

Sensors 2021, 21, 1374 15 of 19

The feature selection methods select a mix of permission classes (i.e., normal, dangerous,
signature). The result suggest that the classification accuracy could be greatly enhanced by
blending features from all permission classes (i.e., normal, dangerous and signature).

7.3.2. Classification Accuracy

We now consider the predictive performance of the feature subsets recommended by
the feature subset selection methods discussed in Section 4. We used the feature subsets
with five machine learning models. Figure 7 shows the performance of the feature subsets
under five different classifiers. From the results of the experiment, it is not possible to
pinpoint a single feature subset selection method as winner. This is because none of the
methods is always the best since there are many factors that influence the performance of
the methods, which include the data sets used, the classifiers and the presence or exclusion
of one or more relevant features. As can be observed from the result, feature subsets
produced by a single method can lead to learning models with quite different predictive
accuracy. For example, KNN performs better than SVM with FS1 while SVM performs
better than KNN with FS3.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 19

The feature selection methods select a mix of permission classes (i.e., normal, dan-
gerous, signature). The result suggest that the classification accuracy could be greatly en-
hanced by blending features from all permission classes (i.e., normal, dangerous and sig-
nature).

7.3.2. Classification Accuracy
We now consider the predictive performance of the feature subsets recommended by

the feature subset selection methods discussed in Section 4. We used the feature subsets
with five machine learning models. Figure 7 shows the performance of the feature subsets
under five different classifiers. From the results of the experiment, it is not possible to
pinpoint a single feature subset selection method as winner. This is because none of the
methods is always the best since there are many factors that influence the performance of
the methods, which include the data sets used, the classifiers and the presence or exclusion
of one or more relevant features. As can be observed from the result, feature subsets pro-
duced by a single method can lead to learning models with quite different predictive ac-
curacy. For example, KNN performs better than SVM with FS1 while SVM performs better
than KNN with FS3.

Figure 7. Performance of the five classifiers under the feature set produced by the five feature se-
lection methods.

Overall, the result shows that FS1 and FS3 give better results as compared to the other
feature subset selection approaches. Figure 8 shows that the mean accuracy of FS1 and
FS3 are almost identical. This may be explained by the fact that these two feature selection
methods share a significant number of features. They also have a good mix of risky per-
missions that are highly concentrated in malware apps, which enable the classifiers to
discriminate well malware apps from benign apps by virtue of their appearance fre-
quency. The result seems to support some of the published results [8]. Figure 9 shows that
F-score of the five classifiers under the feature subsets produced by the feature subsets
selection algorithms, which is consistent with accuracy figures.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FS1 FS2 FS3 FS4 FS5

Ac
cu

ra
cy

Feature selection methods

SVM

NB

KNN

LR

Figure 7. Performance of the five classifiers under the feature set produced by the five feature selection methods.

Overall, the result shows that FS1 and FS3 give better results as compared to the
other feature subset selection approaches. Figure 8 shows that the mean accuracy of FS1
and FS3 are almost identical. This may be explained by the fact that these two feature
selection methods share a significant number of features. They also have a good mix of risky
permissions that are highly concentrated in malware apps, which enable the classifiers to
discriminate well malware apps from benign apps by virtue of their appearance frequency.
The result seems to support some of the published results [8]. Figure 9 shows that F-score
of the five classifiers under the feature subsets produced by the feature subsets selection
algorithms, which is consistent with accuracy figures.

Sensors 2021, 21, 1374 16 of 19
Sensors 2021, 21, x FOR PEER REVIEW 16 of 19

Figure 8. Performance of the five classifiers under the feature set produced by the feature subsets
selection methods.

Figure 9. F1-score of the five classifiers under the feature subsets produced by the feature subset
selections.

7.4. Run Time Analysis
Figure 10 shows the execution time of the various models. We can observe from the

figure that Naive Bayes (NB) is the fastest classifier. The KNN is naturally robust for small
k value but it consumes large memory and computation time for training. The same issue
with SVM regarding the need for large memory and thus more computation time for train-
ing. By filtering out extraneous as well as redundant features from the final features, we
can reduce the running time of the learning algorithms significantly, the space complexity
and yields a more general classifier [21]. Therefore, selecting the optimal set of features is
necessary to reduce the space and time complexity as well as increase the accuracy or
purity of classification [21,43].

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

FS1 FS2 FS3 FS4 FS5

AV
EA

RG
AE

 A
CC

UR
AC

Y

FEATURE SELECTION METHODS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FS1 FS2 FS3 FS4 FS5

F1
-S

CO
RE

Feature selection methods

SVM NB KNN LR

Figure 8. Performance of the five classifiers under the feature set produced by the feature subsets selection methods.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 19

Figure 8. Performance of the five classifiers under the feature set produced by the feature subsets
selection methods.

Figure 9. F1-score of the five classifiers under the feature subsets produced by the feature subset
selections.

7.4. Run Time Analysis
Figure 10 shows the execution time of the various models. We can observe from the

figure that Naive Bayes (NB) is the fastest classifier. The KNN is naturally robust for small
k value but it consumes large memory and computation time for training. The same issue
with SVM regarding the need for large memory and thus more computation time for train-
ing. By filtering out extraneous as well as redundant features from the final features, we
can reduce the running time of the learning algorithms significantly, the space complexity
and yields a more general classifier [21]. Therefore, selecting the optimal set of features is
necessary to reduce the space and time complexity as well as increase the accuracy or
purity of classification [21,43].

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

FS1 FS2 FS3 FS4 FS5

AV
EA

RG
AE

 A
CC

UR
AC

Y

FEATURE SELECTION METHODS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FS1 FS2 FS3 FS4 FS5

F1
-S

CO
RE

Feature selection methods

SVM NB KNN LR

Figure 9. F1-score of the five classifiers under the feature subsets produced by the feature subset selections.

7.4. Run Time Analysis

Figure 10 shows the execution time of the various models. We can observe from
the figure that Naive Bayes (NB) is the fastest classifier. The KNN is naturally robust for
small k value but it consumes large memory and computation time for training. The same
issue with SVM regarding the need for large memory and thus more computation time
for training. By filtering out extraneous as well as redundant features from the final
features, we can reduce the running time of the learning algorithms significantly, the space
complexity and yields a more general classifier [21]. Therefore, selecting the optimal set
of features is necessary to reduce the space and time complexity as well as increase the
accuracy or purity of classification [21,43].

Sensors 2021, 21, 1374 17 of 19
Sensors 2021, 21, x FOR PEER REVIEW 17 of 19

Figure 10. The run time for all data sets.

8. Conclusions and Future Work
The detection of Android malware is a complex process that requires selecting a sub-

set of discriminative features from the original samples. This study examined the feature
selection methods commonly used in detection of malware in an Android platform with
the goal of finding out the order in which they select the subset features, the predictive
performance of the selected feature subsets on the classifiers, the similarities between the
methods in terms of feature ranking and the influence of diverse feature length on classi-
fication accuracy. The study revealed that few of the permissions are popular among both
malware and benign apps. The result of the study also shows that, on average all feature
selection methods performed better than using the extracted features from the samples
without filtering. Also, the chi-squared and the information gain approaches tend to do
well as compared to others. However, these methods achieve high accuracy sometimes
and perform poorly on other classifiers in the analysis. While filter-based feature subset
selection techniques are effective computationally, they fail to handle issues such as mul-
ticollinearity that affects the accuracy of the filter methods. The problem with this is that
a feature determined to be irrelevant on its own by a feature selection method maybe a
significant predictor when it is combined with other features. Filter methods may miss
such features since they normally do not address multicollinearity automatically.

We plan to extend this work in several directions. We plan to examine the scalability
of the feature selection methods using very large datasets. Also, as Android malware apps
are becoming increasingly sophisticated, our future work will focus on the need to char-
acterize malware behaviours from different aspects. First, the current study shows that
few of the permissions are popular among both malware and benign apps. Therefore, our
future work will look at the implication of filtering out these common permissions on the
performance of the detection accuracy of the classifiers. Also, the present study is solely
based on a single component of Android system (i.e., permission) feature. As a single fea-
ture type may not be able to detect malware with sufficient accuracy, our future work will
examine some combinations of the permissions on the accuracy level of the malware de-
tection models. In addition, the correlation between the requested permissions and the
actually utilized permissions with respect to more precisely reveal the behavioral pattern
of the malware apps will be our other future work. Including other features such as API
will also be studied in the future. Another direction of feature work is to examine how the
characteristics of data and the machine learning models used favor one feature selection

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Naive Bayes

J48

SVM

Logistic

Random Forest

Time (seconds)

Figure 10. The run time for all data sets.

8. Conclusions and Future Work

The detection of Android malware is a complex process that requires selecting a
subset of discriminative features from the original samples. This study examined the
feature selection methods commonly used in detection of malware in an Android platform
with the goal of finding out the order in which they select the subset features, the predictive
performance of the selected feature subsets on the classifiers, the similarities between
the methods in terms of feature ranking and the influence of diverse feature length on
classification accuracy. The study revealed that few of the permissions are popular among
both malware and benign apps. The result of the study also shows that, on average all
feature selection methods performed better than using the extracted features from the
samples without filtering. Also, the chi-squared and the information gain approaches
tend to do well as compared to others. However, these methods achieve high accuracy
sometimes and perform poorly on other classifiers in the analysis. While filter-based feature
subset selection techniques are effective computationally, they fail to handle issues such as
multicollinearity that affects the accuracy of the filter methods. The problem with this is
that a feature determined to be irrelevant on its own by a feature selection method maybe
a significant predictor when it is combined with other features. Filter methods may miss
such features since they normally do not address multicollinearity automatically.

We plan to extend this work in several directions. We plan to examine the scalability
of the feature selection methods using very large datasets. Also, as Android malware
apps are becoming increasingly sophisticated, our future work will focus on the need to
characterize malware behaviours from different aspects. First, the current study shows that
few of the permissions are popular among both malware and benign apps. Therefore, our
future work will look at the implication of filtering out these common permissions on the
performance of the detection accuracy of the classifiers. Also, the present study is solely
based on a single component of Android system (i.e., permission) feature. As a single
feature type may not be able to detect malware with sufficient accuracy, our future work
will examine some combinations of the permissions on the accuracy level of the malware
detection models. In addition, the correlation between the requested permissions and the
actually utilized permissions with respect to more precisely reveal the behavioral pattern
of the malware apps will be our other future work. Including other features such as API
will also be studied in the future. Another direction of feature work is to examine how the
characteristics of data and the machine learning models used favor one feature selection

Sensors 2021, 21, 1374 18 of 19

over the others will be studied. The theoretical aspect of feature selection is also another
work planned to be tackled in the future.

Author Contributions: J.A. contributed to the supervision, conceptualization, methodology, formal
analysis, and writing of the article. A.D. contributed to the experimentation and funding acquisition.
A.A.A. contributed to the dataset collection, review and editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Ministry of Education in Saudi Arabia, grant number 1385.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We used publicly available real-world dataset from the Google Play
Store, VirusShare, Drebin and AndroZoo.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research& Innova-
tion, Ministry of Education in Saudi Arabia for funding this research work through project number
1385. The help of Maliha Omar in this research completion is greatly appreciated.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Statcounter GlobalStats. Mobile Operating System Market Share Worldwide-November 2020; Available online: https://gs.statcounter.

com/os-market-share/mobile/worldwide (accessed on 5 December 2020).
2. Mahindru, A.; Sangal, A.L. MLDroid—Framework for Android malware detection using machine learning techniques. Neural

Comput. Appl. 2020. [CrossRef]
3. Sharmeen, S.; Huda, S.; Abawajy, J.H.; Ismail, W.N.; Hassan, M.M. Malware Threats and Detection for Industrial Mobile-IoT

Networks. IEEE Access 2018, 6, 15941–15957. [CrossRef]
4. Feng, R.; Chen, S.; Xie, X.; Meng, G.; Lin, S.-W.; Liu, Y. A Performance-Sensitive Malware Detection System Using Deep Learning

on Mobile Devices. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1563–1578. [CrossRef]
5. Allix, K.; Bissyandé, T.F.; Jérome, Q.; Klein, J.; State, R.; Traon, Y.L. Empirical assessment of machine learning-based malware

detectors for android. Empir. Softw. Eng. 2016, 21, 183–211. [CrossRef]
6. Kaspersky. Malicious Android App Had More Than 100 Million Downloads in Google Play. Available online: https://www.

kaspersky.com/blog/camscanner-malicious-android-app/28156/ (accessed on 20 November 2020).
7. Wang, X.; Wang, W.; He, Y.; Liu, J.; Han, Z.; Zhang, X. Characterizing Android apps’ behavior for effective detection of malapps

at large scale. Future Gener. Comput. Syst. 2017, 75, 30–45. [CrossRef]
8. Alazab, M. Automated Malware Detection in Mobile App Stores Based on Robust Feature Generation. Electronics 2020, 9, 435.

[CrossRef]
9. Abawajy, J.H.; Chowdhury, M.U.; Kelarev, A. Hybrid Consensus Pruning of Ensemble Classifiers for Big Data Malware Detection.

IEEE Trans. Cloud Comput. 2020, 8, 398–407. [CrossRef]
10. Masabo, E.; Kaawaase, K.S.; Sansa-Otim, J.; Ngubiri, J.; Hanyurwimfura, D. Improvement of Malware Classification Using

Hybrid Feature Engineering. SN Comput. Sci. 2020, 1, 17. [CrossRef]
11. Su, X.; Xiao, L.; Li, W.; Liu, X.; Li, K.-C.; Liang, W. DroidPortrait: Android Malware Portrait Construction Based on Multidimen-

sional Behavior Analysis. Appl. Sci. 2020, 10, 3978. [CrossRef]
12. Kouliaridis, V.; Kambourakis, G.; Geneiatakis, D.; Potha, N. Two Anatomists Are Better than One—Dual-Level Android Malware

Detection. Symmetry 2020, 12, 1128. [CrossRef]
13. Liu, X.; Du, X.; Zhang, X.; Zhu, Q.; Wang, H.; Guizani, M. Adversarial Samples on Android Malware Detection Systems for IoT

Systems. Sensors 2019, 19, 974. [CrossRef] [PubMed]
14. Izadi, D.; Abawajy, J.; Ghanavati, S. An alternative node deployment scheme for WSNs. IEEE Sens. J. 2014, 15, 667–675. [CrossRef]
15. Huda, S.; Abawajy, J.H.; Abdollahian, M.; Islam, R.; Yearwood, J. A fast malware feature selection approach using a hybrid of

multi-linear and stepwise binary logistic regression. Concurr. Comput. Pract. Exp. 2017, 29, e3912. [CrossRef]
16. Sharmeen, S.; Huda, S.; Abawajy, J.; Hassan, M.M. An adaptive framework against android privilege escalation threats using

deep learning and semi-supervised approaches. Appl. Soft Comput. 2020, 89, 106089. [CrossRef]
17. Martín, I.; Hernández Alberto, J.; Muñoz, A.; Guzmán, A. Android Malware Characterization Using Metadata and Machine

Learning Techniques. Secur. Commun. Netw. 2018, 2018, 5749481. [CrossRef]
18. Wang, X.; Zhang, D.; Su, X.; Li, W. Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information

Fusion. Secur. Commun. Netw. 2017, 2017, 6451260. [CrossRef]
19. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf.

Syst. 2013, 34, 483–519. [CrossRef]

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
http://doi.org/10.1007/s00521-020-05309-4
http://doi.org/10.1109/ACCESS.2018.2815660
http://doi.org/10.1109/TIFS.2020.3025436
http://doi.org/10.1007/s10664-014-9352-6
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156/
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156/
http://doi.org/10.1016/j.future.2017.04.041
http://doi.org/10.3390/electronics9030435
http://doi.org/10.1109/TCC.2015.2481378
http://doi.org/10.1007/s42979-019-0017-9
http://doi.org/10.3390/app10113978
http://doi.org/10.3390/sym12071128
http://doi.org/10.3390/s19040974
http://www.ncbi.nlm.nih.gov/pubmed/30823597
http://doi.org/10.1109/JSEN.2014.2351405
http://doi.org/10.1002/cpe.3912
http://doi.org/10.1016/j.asoc.2020.106089
http://doi.org/10.1155/2018/5749481
http://doi.org/10.1155/2017/6451260
http://doi.org/10.1007/s10115-012-0487-8

Sensors 2021, 21, 1374 19 of 19

20. Rodriguez-Lujan, I.; Huerta, R.; Elkan, C.; Cruz, C.S. Quadratic Programming Feature Selection. J. Mach. Learn. Res. 2010, 11,
1491–1516.

21. Aazhar, A.M.; Thomas, P.A. Comparative Review of Feature Selection and Classification modeling. In Proceedings of the
International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 20–21 December
2019; pp. 1–9.

22. Mas’ud, M.Z.; Sahib, S.; Abdollah, M.F.; Selamat, S.R.; Huoy, C.Y. A comparative study on feature selection method for N-gram
mobile malware detection. Int. J. Netw. Secur. 2017, 19, 727–733.

23. Chen, T.; Mao, Q.; Yang, Y.; Lv, M.; Zhu, J. TinyDroid: A lightweight and efficient model for Android malware detection and
classification. Mob. Inf. Syst. 2018, 2018, 4157156. [CrossRef]

24. Mahindru, A.; Sangal, A. FSDroid:- A feature selection technique to detect malware from Android using Machine Learning
Techniques. Multimed. Tools Appl. 2021, 1–53. [CrossRef]

25. Khariwal, K.; Singh, J.; Arora, A. IPDroid: Android Malware Detection using Intents and Permissions. In Proceedings of the
2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020;
pp. 197–202.

26. Aminordin, A.; Faizal, M.A.; Yusof, R. Android Malware Classification Base on Application Category Using Static Code Analysis.
J. Theor. Appl. Inf. Technol. 2018, 96, 11.

27. Cai, L.; Li, Y.; Xiong, Z. JOWMDroid: Android malware detection based on feature weighting with joint optimization of
weight-mapping and classifier parameters. Comput. Secur. 2021, 100, 102086. [CrossRef]

28. Feng, P.; Ma, J.; Sun, C.; Xu, X.; Ma, Y. A novel dynamic Android malware detection system with ensemble learning. IEEE Access
2018, 6, 30996–31011. [CrossRef]

29. Wang, W.; Wang, X.; Feng, D.; Liu, J.; Han, Z.; Zhang, X. Exploring Permission-Induced Risk in Android Applications for
Malicious Application Detection. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1869–1882. [CrossRef]

30. Aonzo, S.; Merlo, A.; Migliardi, M.; Oneto, L.; Palmieri, F. Low-Resource Footprint, Data-Driven Malware Detection on Android.
IEEE Trans. Sustain. Comput. 2020, 5, 213–222. [CrossRef]

31. Wah, Y.B.; Ibrahim, N.; Hamid, H.A.; Abdul-Rahman, S.; Fong, S. Feature selection methods: Case of filter and wrapper
approaches for maximising classification accuracy. Pertanika J. Sci. Technol. 2018, 26, 329–340.

32. Xue, B.; Zhang, M.; Browne, W.N. A comprehensive comparison on evolutionary feature selection approaches to classification.
Int. J. Comput. Intell. Appl. 2015, 14, 1550008. [CrossRef]

33. Wang, Y.; Zheng, J. An Evaluation of One-Class Feature Selection and Classification for Zero-Day Android Malware Detection.
In Proceedings of the 17th International Conference on Information Technology–New Generations (ITNG 2020), Las Vegas, NV,
USA, 5–8 April 2020. [CrossRef]

34. Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional
classification data. Comput. Stat. Data Anal. 2020, 143, 106839. [CrossRef]

35. Wang, X.; Li, C. Android malware detection through machine learning on kernel task structures. Neurocomputing 2021, 435,
126–150. [CrossRef]

36. Vinod, P.; Zemmari, A.; Conti, M. A machine learning based approach to detect malicious android apps using discriminant
system calls. Future Gener. Comput. Syst. 2019, 94, 333–350.

37. Wang, W.; Zhao, M.; Gao, Z.; Xu, G.; Xian, H.; Li, Y.; Zhang, X. Constructing Features for Detecting Android Malicious
Applications: Issues, Taxonomy and Directions. IEEE Access 2019, 7, 67602–67631. [CrossRef]

38. Ali, F.; Badrul, A.N.; Rosli, S.; Abdul, W.A.W. A review on feature selection in mobile malware detection. Int. J. Digit. Forensics
Incid. Response 2015, 13, 22–37.

39. Biau, G.; Cadre, B.; Rouvìère, L. Accelerated gradient boosting. Mach. Learn. 2019, 108, 971–992. [CrossRef]
40. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput.

Surv. CSUR 2018, 50, 94. [CrossRef]
41. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
42. Chavan, N.; di Troia, F.; Stamp, M. A Comparative Analysis of Android Malware. arXiv 2019, arXiv:1904.00735.
43. Abawajy, J.H.; Kelarev, A. Iterative Classifier Fusion System for the Detection of Android Malware. IEEE Trans. Big Data 2019, 5,

282–292. [CrossRef]
44. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update.

SIGKDD Explor. 2009, 11, 10–18. [CrossRef]
45. Kumar, R.; Zhang, X.; Khan, R.U.; Sharif, A. Research on Data Mining of Permission-Induced Risk for Android IoT Devices.

Appl. Sci. 2019, 9, 277. [CrossRef]

http://doi.org/10.1155/2018/4157156
http://doi.org/10.1007/s11042-020-10367-w
http://doi.org/10.1016/j.cose.2020.102086
http://doi.org/10.1109/ACCESS.2018.2844349
http://doi.org/10.1109/TIFS.2014.2353996
http://doi.org/10.1109/TSUSC.2017.2774184
http://doi.org/10.1142/S146902681550008X
http://doi.org/10.1007/978-3-030-43020-7_15
http://doi.org/10.1016/j.csda.2019.106839
http://doi.org/10.1016/j.neucom.2020.12.088
http://doi.org/10.1109/ACCESS.2019.2918139
http://doi.org/10.1007/s10994-019-05787-1
http://doi.org/10.1145/3136625
http://doi.org/10.1109/TBDATA.2017.2676100
http://doi.org/10.1145/1656274.1656278
http://doi.org/10.3390/app9020277

	Introduction
	Problem Overview
	Related Work
	Android Malware Detection Framework
	Unpacking Files
	Feature Extraction
	Feature Vectors

	Feature Subset Selection Methods
	Pearson Correlation Coefficient
	Chi-Square
	Analysis of Variance (ANOVA)
	Information Gain
	Mutual Information

	Performance Analysis
	Experimental Setup and the Dataset
	Performance Metrics
	Malware Classification Models
	Cross-Validation

	Results and Discussion
	Permission Analysis
	Feature Ranking Analysis
	Analysis of Feature Subset Selection Methods
	Impact of Feature Selection
	Classification Accuracy

	Run Time Analysis

	Conclusions and Future Work
	References

