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Abstract
Background: Muscle-	invasive	bladder	cancer	(MIBC)	is	a	heterogeneous	disease	with	
varying clinical courses and responses to treatment. To improve the prognosis of pa-
tients, it is necessary to understand such heterogeneity.
Methods: We	used	single-	sample	gene	set	enrichment	analysis	to	classify	35	MIBC	
cases	 into	 immunity-	high	 and	 immunity-	low	 groups.	 Bioinformatics	 analyses	 were	
conducted	to	compare	the	differences	between	these	groups.	Eventually,	single-	cell	
mass	cytometry	(CyTOF)	was	used	to	compare	the	characteristics	of	the	immune	mi-
croenvironment between the patients in the two groups.
Results: Compared	with	patients	in	the	immunity-	low	group,	patients	in	the	immunity-	
high	group	had	a	higher	number	of	tumor-	infiltrating	immune	cells	and	greater	enrich-
ment	of	gene	sets	associated	with	antitumor	immune	activity.	Furthermore,	positive	
immune	response-	related	pathways	were	more	enriched	in	the	immunity-	high	group.	
We	identified	26	immune	cell	subsets,	including	cytotoxic	T	cells	(Tcs),	helper	T	cells	
(Ths),	regulatory	T	cells	(Tregs),	B	cells,	macrophages,	natural	killer	(NK)	cells,	and	den-
dritic	cells	(DCs)	using	CyTOF.	Furthermore,	there	was	a	higher	proportion	of	CD45+	
lymphocytes	and	enrichment	of	one	Tc	subset	in	the	immunity-	high	group.	Additionally,	
M2	macrophages	were	highly	enriched	in	the	immunity-	low	group.	Finally,	there	was	
higher	expression	of	PD-	1	and	Tim-	3	on	Tregs	as	well	as	a	higher	proportion	of	PD-	1+	
Tregs	in	the	immunity-	low	group	than	in	the	immunity-	high	group.
Conclusion: In	 summary,	 the	 immune	microenvironments	 of	 the	 immunity-	high	 and	
immunity-	low	groups	of	patients	with	MIBC	are	heterogeneous.	Specifically,	 immune	
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1  |  INTRODUC TION

Bladder	cancer	(BC)	is	the	10th	most	common	cancer	globally,	with	an	in-
cidence rate four times higher in women than in men.1 Smoking and occu-
pational exposure to chemical and water pollutants are major risk factors 
for this type of cancer.2	BC	is	mainly	classified	into	non-	muscle-	invasive	
BC	(NMIBC)	and	muscle-	invasive	BC	(MIBC),	with	MIBC	accounting	for	
25% of the cases.3	Although	the	majority	of	MIBCs	are	identified	by	the	
first diagnosis, 10%– 20% of the cases result from progression of NMIBC. 
When compared to NMIBC, MIBC presents with a more aggressive phe-
notype characterized by a higher risk of metastasis and poor prognosis, 
with	a	5-	year	 survival	 rate	of	60%	 in	patients	without	 recurrence	and	
<10% in patients who have already developed distant metastasis.4

Surgery is the main treatment for MIBC. Besides, stage T2 BC can 
be treated with neoadjuvant chemotherapy preoperatively, with the 
decision to use systemic chemotherapy and/or radiotherapy postoper-
atively	on	the	basis	of	pathologic	findings.	The	use	of	platinum-	based	
chemotherapeutics	 as	 first-	line	 agents	 for	 advanced	 BC	 has	 been	
hampered by the presence of strong myelosuppressive toxic effects 
that	 reduce	 leukocyte	 and	 platelet	 levels	 in	 patients.	 Consequently,	
they are only used in half of all patients with BC.5	Additionally,	 im-
mune	 checkpoint	 inhibitors	 (ICIs)	 are	 emerging	 therapeutic	 agents	
that can effectively improve the survival time of patients with MIBC.6 
The inhibition of immune checkpoints promotes tumor regression by 
reactivating immune cytotoxicity in MIBC.7	However,	there	are	differ-
ences in the response to treatment among patients, mainly due to the 
heterogeneity that exists among individuals, even for the same drug. 
Indeed, some patients with MIBC show continued disease progres-
sion, even after receiving the corresponding treatments.8	As	a	result,	
only 20%– 30% of MIBC patients respond to treatment with ICIs.9 
Therefore, there is an urgent need to identify new and effective drug 
targets to enhance therapeutic outcomes for these patients.

The molecular characterization of samples is essential for the accu-
rate prediction of responses to therapeutics such as ICIs.10 Biomarkers 
that have been shown to correlate with responsiveness to immuno-
therapy in BC include tumor mutational burden,11 tumor molecular 
subtype,12	CD8+	tumor-	infiltrating	lymphocytes	(TILs),	and	PD-	L1	ex-
pression on other immune cells.13 Transcriptome profiling facilitates the 
molecular classification of BC, leading to the adoption of more precise 
treatment regimens and accurate prediction of treatment outcomes.

Research on BC has shown significant molecular heterogene-
ity.14,15 Tumor heterogeneity is one of the main factors affecting 
the efficacy of chemoradiotherapy and the prognosis of surgery in 

different patients.16	A	 study	 on	 the	 heterogeneity	 between	 tumors	
will not only help in understanding disease pathogenesis, but will also 
act as a guide for personalized therapy, which may help improve pa-
tient	survival	and	prognosis.	Currently,	single-	cell	technologies	enable	
the study of tumor heterogeneity by analyzing tumor evolutionary 
relationships.17	Mass	 cytometry	 (CyTOF)	 applies	 the	 single-	cell	 the-
ory	by	employing	metal	 isotope-	labeled	antibodies	that	allow	the	si-
multaneous	detection	of	up	to	40	parameters	in	a	single	cell.	CyTOF	
overcomes the effects caused by the overlap of emission spectral sig-
nals between traditional flow channels, enabling precise analysis of 
cell subpopulations.18	This	 technique	has	been	developed	for	nearly	
10 years, since the cellular fraction of human peripheral blood was 
first detected.19	CyTOF	plays	an	important	role	in	the	analysis	of	het-
erogeneity across multiple solid tumors, such as kidney cancer,20 lung 
adenocarcinoma,21 and breast cancer.22

In this study, we investigated the relationship between immune in-
filtration and cancer development in patients with MIBC. We collected 
35	MIBC	 samples	 and	 used	 their	 RNA	profile	 data	 to	 calculate	 the	
scores	of	29	 immune	signatures	 in	each	sample	using	single-	sample	
gene	set	enrichment	analysis	(ssGSEA).23 Bioinformatics analyses, in-
cluding differential gene expression analysis, GO molecular function 
enrichment	 analysis,	 and	 GSEA	 were	 performed	 to	 investigate	 the	
differences	 between	 the	 immunity-	high	 and	 immunity-	low	 groups.	
We also analyzed the composition and function of infiltrating immune 
cells	 in	MIBC	tissues	using	single-	cell	CyTOF.	We	then	searched	for	
potential prognostic biomarkers by comparing the differences in sub-
sets of immune cells between the two groups. Our findings reveal the 
presence of heterogeneity in the immune microenvironment and may 
provide guidance for the therapy of patients with MIBC.

2  |  MATERIAL S AND METHODS

2.1  |  Patients

This	 study	 was	 approved	 by	 the	 Human	 Subject	 Committee	 of	
Guangxi	 Medical	 University	 (approval	 number:	 2019	 [KY-	E-	088]).	
The 35 MIBC tissue samples used in this study were collected at The 
First	Affiliated	Hospital	of	Guangxi	Medical	University	in	China	from	
January	2018	 to	June	2019.	Patients	undergoing	chemo-		or	 radio-
therapy before resection were excluded, and the pathology results 
were	 confirmed	 by	 two	 experienced	 pathologists.	 All	 participants	
provided informed consent.

suppression was observed in the immune microenvironment of the patients in the 
immunity-	low	group.

K E Y W O R D S
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2.2  |  Acquisition of RNA sequencing data

Total	 RNA	 was	 extracted	 from	 tissues	 using	 TRIzol® reagent 
(Invitrogen)	according	to	the	manufacturer's	protocol,	and	RNA	qual-
ity was evaluated using a Thermo Scientific Nanodrop 2000 spectro-
photometer.	Ribosomal	RNA	 (rRNA)	was	 then	eliminated	 from	 total	
RNA	using	Ribo-	Zero	 rRNA	 removal	 kits	 (Illumina),	 according	 to	 the	
manufacturer's	 instructions.	 Next,	 cDNA	 libraries	were	 constructed	
by	 reverse	 transcription	 of	 the	 purified	 mRNAs.	 The	 libraries	were	
then	amplified	using	PCR,	followed	by	sequencing	for	150	cycles	on	
an	 Illumina	HiSeq	4000	sequencer	 (Illumina).	The	quality	of	 the	 raw	
sequencing	data	was	assessed	using	FastQC	software.	Preprocessing	
of	the	raw	data	(including	adapter	trimming	and	quality	filtering)	was	
performed using fastp.24 The clean data were then mapped to the 
human	genome	(hg19)	using	HISAT2.25	Finally,	StringTie	was	used	to	
separately	assemble	the	RNA	sequences,26,27 while Cufflinks was used 
to merge the data.28

2.3  |  ssGSEA

Enrichment of 29 immune signatures for each MIBC sample was 
quantified	using	the	ssGSEA	score	(enrichment	level)	as	previously	
described.23 The enrichment levels of the 29 immune signatures 
were	then	used	to	perform	hierarchical	clustering.	Finally,	the	sam-
ples	 were	 divided	 into	 immunity-	high	 and	 immunity-	low	 groups,	
based on the results of clustering.

Identification	of	differentially	expressed	genes	(DEGs),	and	path-
way enrichment analysis.

The	 R	 package	 DESeq2	was	 used	 to	 analyze	 DEGs,	 using	 ad-
justed p value <0.05, and |Log2(foldchange)|	>1.5,	as	the	cut-	off	crite-
ria.	Hierarchical	clustering	analysis	was	conducted	using	a	heatmap.	
Gene	ontology	(GO)	enrichment	analysis	was	performed	using	clus-
terProfiler.29 Statistical significance was set at p < 0.05.

2.4  |  Gene set enrichment analysis (GSEA)

GSEA	was	 performed	 using	 expression	 profiles	 of	 35	MIBC	 sam-
ples. The specific parameter settings were as follows: gene set data-
base: c2.cp.kegg.v7.2.symbols.gmt; number of permutations: 1000; 
enrichment statistic: weighted; collapse dataset to gene symbols: 
False;	 metric	 for	 ranking	 genes:	 Signal2Noise.	 Normalized	 enrich-
ment	score	(NES)	>1	and	nominal	p value (NOM p-	val)	<0.05,	were	
considered to indicate significant differences.

2.5  |  CyTOF marker labeling and detection

The protocol used to dissect the tumor tissues was described previ-
ously.30	The	cell	suspensions	were	preserved	in	liquid	nitrogen	prior	to	
staining.	Selected	antibodies	(listed	in	Figure	3B)	were	conjugated	to	iso-
topic	tags	using	a	MaxPar	X8	Antibody	labeling	kit	(Fluidigm)	according	
to	the	manufacturer's	instructions.	Cell	suspensions	were	removed	from	

liquid	nitrogen	and	1.5	million	living	cells	were	taken	from	each	sample.	
Cells	were	 stained	with	 cisplatin	 (Fluidigm)	 to	a	 final	 concentration	of	
5 mmol/L for determining viability. The cell suspensions were then incu-
bated	with	human	Fc	receptor	blocking	solution	(Biolegend)	for	10	min,	
followed	by	incubation	with	surface	antibody	cocktail	for	1	h.	Afterward,	
the cells were washed and incubated with nuclear antigen staining buffer 
working solution for 30 min at 25℃, followed by incubation with intra-
cellular	antibody	cocktail	for	1	h.	After	washing,	the	samples	were	incu-
bated in a fresh solution of 1.6% paraformaldehyde at room temperature 
for	10	min	and	then	stained	with	a	DNA	intercalator	(Fluidigm)	overnight	
at	4°C.	Before	the	analysis	on	a	CyTOF2	instrument	(Fluidigm),	cells	were	
prepared	with	subsequent	washes	in	cell	staining	buffer	and	deionized	
water	to	remove	buffer	salts.	Finally,	10%	EQ™	Four	element	calibration	
beads were used to resuspend the cells. Labeled samples were analyzed 
using	the	CyTOF2	instrument	at	a	rate	<500	events/s.

2.6  |  Analysis of CyTOF data

CyTOF	software	v6.7	was	used	to	normalize	and	merge	the	result-
ing	flow	cytometry	standard	files	(FCS).	Analyzed	data	and	FCS	files	
were then uploaded to the online software Cytobank (https://www.
cytob	ank.org/)	 or	 R	 packages	 (such	 as	 cytofkit,	 Rtsne,	 FlowSOM,	
cytofexplorer,	and	ggplot)	to	perform	analysis	and	manual	gating.

2.7  |  Statistical analysis

The mean values of independent samples were analyzed using either 
t-		or	Mann-	Whitney	U	tests.	The	log-	rank	test	was	used	for	survival	
analysis.	All	analyses	were	conducted	using	SPSS	(version	24.0;	IBM	
Corp),	and	p values <0.05 were considered statistically significant.

3  |  RESULTS

3.1  |  Immunophenotyping based on ssGSEA

To investigate the presence of immune heterogeneity in MIBC, we 
collected 35 MIBC samples. ssGSEA	was	used	to	assess	and	grade	
the enrichment of 29 immune signatures for each sample. Through 
ssGSEA	 and	 cluster	 analyses,	 the	 35	 samples	were	 classified	 into	
immunity-	high	(n	=	18)	and	immunity-	low	(n	=	17)	groups	(Figure	1A).	
We	found	that	there	was	a	higher	enrichment	of	natural	killer	(NK)	
cells,	neutrophils,	helper	T	cells	(Ths),	B	cells,	mast	cells,	T	cells	(Tcs),	
TILs,	macrophages,	 and	dendritic	 cells	 (DCs)	 in	 the	 immunity-	high	
group	than	in	the	immunity-	low	group.	In	addition,	immune	function	
associated gene sets such as type I and type II interferon response, 
immune	checkpoint,	Tc	costimulation,	cytolytic	activity,	and	antigen-	
presenting cells costimulation were also highly enriched in the 
immunity-	high	group	(Figure	1A).	These	results	indicated	that	there	
was a significant difference in the infiltration of tumors by immune 
cells between the two groups. To determine if the above differences 
had an effect on the pathology of patients with MIBC, a comparative 
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analysis of their clinical parameters was conducted. The results 
showed that there were no significant differences in the clinical 
parameters	between	the	two	groups	(Figure	1B).	Furthermore,	the	
results	of	the	log-	rank	test	and	Kaplan-	Meier	curves	revealed	that	
patients	 in	 the	 immunity-	high	 group	 had	 a	 longer	 overall	 survival	
(OS)	 time	 than	 patients	 in	 the	 immunity-	low	 group	 (Figure	 1C).	 In	
summary,	ssGSEA	showed	that	there	was	a	significant	difference	in	
the cell composition and activation status of the immune microenvi-
ronment	in	the	immunity-	high	and	immunity-	low	groups,	which	may	
contribute to the differences in prognosis between the two groups.

To investigate the differences in molecular mechanisms be-
tween	the	immunity-	high	and	immunity-	low	groups,	we	identified	
DEGs between the two groups. In total, 541 upregulated and 786 
downregulated	 mRNAs	 in	 the	 immunity-	high	 group,	 compared	

with	 the	 immunity-	low	 group,	 were	 obtained	 from	 differential	
gene	expression	analysis	(Figure	2A,B).	Pathway	enrichment	anal-
ysis	was	conducted	for	the	541	mRNAs	that	were	upregulated	in	
the	immunity-	high	group.	As	shown	in	Figure	2C,	the	GO	biological	
process terms revealed a high enrichment of genes functioning in 
the immune system, including Tc activation, regulation of Tc acti-
vation,	leukocyte	proliferation,	migration,	chemotaxis,	cell-	cell	ad-
hesion,	and	mononuclear	cell	proliferation.	GSEA	results	showed	
that	the	top	ten	gene	sets	(ranked	by	NES)	that	were	enriched	in	
the	 immunity-	high	 group,	 when	 compared	 to	 the	 immunity-	low	
group, included chemokine signaling pathway, cytokine to cyto-
kine receptor interaction, cell adhesion molecules, hematopoietic 
cell lineage, primary immunodeficiency, systemic lupus erythe-
matosus, leukocyte transendothelial migration, intestinal immune 

F I G U R E  1 Immunophenotyping	of	MIBC	based	on	ssGSEA.	A,	Clustering	of	29	immune	signatures.	Immunity_H,	immunity-	high;	
Immunity_L,	immunity-	low.	B,	Clinical	parameter	of	35	patients	with	MIBC.	C,	Kaplan-	Meier	curves	for	overall	survival	of	MIBC	patients	
(n	=	27)	by	Immunophenotyping.	Immunity-	high	(n	=	14);	Immunity-	low	(n	=	13).	p:	p	value	of	Log-	Rank	test;	p < 0.05 was considered to 
indicate statistical differences
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network	 for	 IgA	production,	 calcium	signaling	pathway,	and	viral	
myocarditis	gene	sets.	Furthermore,	the	B	cell	receptor	signaling,	
Tc	receptor	signaling,	and	NK	cell-	mediated	cytotoxicity	pathways	
were	enriched	 in	the	 immunity-	high	group	(Figure	2D).	These	re-
sults are consistent with our previous results showing that the 
immunity-	high	 group	 tended	 to	 have	 a	more	 activated	 status	 of	
immunity.	 The	 above	 results	 suggested	 that	 the	 immunity-	high	
group	and	immunity-	low	group	immune	microenvironments	were	
heterogeneous.

3.2  |  Characterization of the immune 
microenvironment of MIBC using CyTOF

CyTOF	was	used	to	further	explore	the	heterogeneity	of	the	immune	
microenvironment	 between	 the	 immunity-	high	 and	 immunity-	low	
groups.	This	technique	can	simultaneously	detect	over	40	cell	mark-
ers	at	the	single-	cell	level;	it	was	used	to	accurately	characterize	in-
tratumoral immune cells of the 35 MIBC samples. The workflow of 
CyTOF	is	described	in	Figure	3A.	First,	single-	cell	suspensions	from	
tissues	were	acquired	through	manual	dissociation.	Then,	they	were	
labeled	 with	 34	 immune-	associated	 antibodies,	 including	 the	 cell	
typing	and	cellular	function	panels	(Figure	3B).	CyTOF	was	used	to	
detect stained immune cells, followed by dimension reduction of the 
high-	dimensional	data	obtained.	The	cell	proportions	and	the	level	
of expression of cellular surface markers were determined and com-
pared	between	the	immunity-	high	and	immunity-	low	groups.	Based	
on	 our	 antibody	 panels,	 t-	distributed	 stochastic	 neighbor	 embed-
ding	(t-	SNE)	was	used	to	generate	two-	dimensional	images	to	visual-
ize	tumor	infiltration	by	CD45+	lymphocytes.	CD45+	lymphocytes	
were	divided	into	26	cell	subsets	(or	clusters)	based	on	the	similarity	
in	the	expression	of	cellular	surface	markers	(Figure	3C).	Based	on	
such expression, markers, we identified clusters 1, 3, 4, 6, 10, 11, and 
13	as	Tcs	(CD3+	and	CD8+);	clusters	2,	5,	7,	8,	9,	12,	and	17	as	Ths	
(CD3+	and	CD4+);	clusters	2	and	5	as	regulatory	Tcs	(Tregs;	CD3+,	
CD4+,	and	FOXP3+);	cluster	22	as	B	cells	(CD19+	and	CD20+);	clus-
ters	16,	20,	25,	and	26	as	macrophages	(CD14+	and	CD68+);	clusters	
15,	19,	and	23	as	DCs	(CD3-		and	CD11c+);	clusters	14	and	18	as	NK	
cells	(CD3-		and	CD56+);	and	clusters	21	and	24	as	other	cell	types	
(Figure	 3D,E).	 Cluster	 abundance	 volcano	 plots	 showed	 that	 clus-
ter	16	(M2	macrophages;	CD68+	and	CD163+)	and	cluster	23	(DCs)	
were	more	enriched	in	the	immunity-	low	group,	whereas	cluster	10	
(Tcs)	 was	 more	 enriched	 in	 the	 immunity-	high	 group	 (Figure	 4A).	
After	manual	gating	of	CD45+	lymphocytes,	Tcs,	Ths,	Tregs,	B	cells,	
macrophages,	and	DCs	on	Cytobank,	the	proportion	of	CD45+	lym-
phocytes	was	found	to	be	higher	 in	the	 immunity-	high	group	than	
in	the	immunity-	low	group,	which	was	consistent	with	our	previous	
results	(Figure	4B).	We	then	used	CyTOF	to	accurately	characterize	
the intratumoral immune cells of the 35 MIBC samples and discov-
ered that there were significant differences in the composition of 
tumor-	infiltrating	immune	cells	between	the	two	groups	of	patients.	
This lays a foundation for further analysis of the immune microenvi-
ronment of MIBC.

3.3  |  Immune suppression in patients of the 
immunity- low group

Since there was a difference in the composition of TILs between 
the	 immunity-	high	 and	 immunity-	low	 groups,	 we	 speculated	 that	
there was also a difference in the cellular functions. To determine 
this, we examined the expression of functional markers associated 
with activation, differentiation, and exhaustion in the 26 cell sub-
sets	(Figure	4C).	The	majority	of	the	Tc	subsets	belonged	to	mem-
ory	Tcs	 (CD45RO+),	and	high	PD-	1	expression	was	observed	 in	Tc	
subsets	 (clusters	 1,	 3,	 and	 4).	Moreover,	 in	 the	 Ths	 subsets	 (clus-
ters	2,	5,	8,	 and	12),	we	observed	heterogeneous	coexpression	of	
PD-	1	with	the	inhibitory	receptor	CTLA4	and	the	activation	markers	
CD28	 and	CD278	 (Figure	 4D).	 The	 coexpression	 of	 high	 levels	 of	
PD-	1	and	CTLA4	may	be	associated	with	the	exhaustion	phenotype.	
Intriguingly,	higher	PD-	1	and	Tim-	3	expression	on	Tregs	and	higher	
proportions	 of	 PD-	1+	 Tregs	 were	 detected	 in	 the	 immunity-	low	
group	(Figure	5A,B).	This	suggested	that	there	was	immunosuppres-
sion	in	the	patients	in	the	immunity-	low	group	compared	to	patients	
in	 the	 immunity-	high	group,	accounting	 for	 their	poor	clinical	out-
comes. Taken together, it appears that the tumor microenvironment 
of	patients	with	MIBC	in	the	immunity-	low	group	is	under	stronger	
immunosuppressive	conditions	than	that	of	patients	in	the	immunity-	
high group. Therefore, we found that a decrease in the number and 
function	of	tumor-	infiltrating	immune	cells	helps	tumors	to	escape	
immune surveillance, promoting the development of cancer, and ul-
timately leading to the poor prognosis of patients with MIBC.

4  |  DISCUSSION

MIBC is a subtype of BC that invades the detrusor muscle and has 
a high risk of metastasizing.31	It	is	estimated	that	the	majority	(75%)	
of newly diagnosed BC patients have NMIBC, while only 25% have 
MIBC.3 Targeted therapy and biomarker discovery for MIBC lag 
far behind other cancers, resulting in poor prognosis for patients. 
However,	there	has	been	a	recent	increase	in	the	understanding	of	
MIBC pathology based on genomic and transcriptomic profiling.32 
There have been many molecular characterizations of patients 
with MIBC, with different subtypes of patients showing different 
responses to the same treatment. This indicates that the molecular 
characterization of patients is critical for the development of thera-
peutic strategies.33,34	Although	molecular	subtypes	play	a	key	role	
in guiding clinical therapy, there are still challenges in the applica-
tion of molecular characterization in clinical practice. Studies have 
shown that intrinsically aggressive basal BCs are more sensitive to 
combination chemotherapy than low aggressive luminal subtypes.35 
Therefore, more studies are needed to verify the molecular charac-
teristics of the different subtypes.

In addition to molecular characterization, the recent advent of 
immune checkpoint blockade has also improved the therapeutic out-
comes of MIBC.36	However,	patients	with	similar	clinical	parameters	
and laboratory indices may have diverse responses to ICIs owing to 
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F I G U R E  2  Differentially	expressed	genes	and	enrichment	analysis.	A,	Heatmap	of	the	differentially	expressed	genes	(DEGs)	between	the	
immunity-	high	and	immunity-	low	groups.	Samples	(column)	and	genes	(row)	were	clustered	by	unsupervised	hierarchical	cluster	analysis.	B,	
Volcano	plot	showed	the	DEGs	between	the	immunity-	high	and	immunity-	low	groups.	Red	dots	represented	the	significantly	upregulated	
genes	in	the	immunity-	high	group	compared	with	immunity-	low	group	(Log2(foldchange))	>1.5	and	adjusted	p	<	0.05).	Blue	dots	represented	
the	significantly	downregulated	genes	in	the	immunity-	high	group	compared	with	immunity-	low	group	(Log2(foldchange))	<−1.5	and	adjusted	
p	<	0.05).	Black	dots	represented	non-	DEGs.	C,	Go-	bubble	plot	showed	top	15	pathways	of	GO	enrichment	analysis,	ranked	by	p value. D, 
Significant	pathways	identified	by	GSEA

F I G U R E  3 Description	of	immune	microenvironment	by	CyTOF.	A,	Workflow	of	CyTOF.	B,	Antibodies	panel	of	CyTOF.	C,	The	t-	SNE	maps	
of	the	immunity-	high	and	immunity-	low	groups.	D,	The	t-	SNE	maps	of	antibodies	for	cell	typing.	E,	The	t-	SNE	maps	of	tumor-	infiltrating	
immune cells in cancer tissues of 35 patients with MIBC
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the existence of molecular tumor heterogeneity.37	Thus,	an	in-	depth	
study of heterogeneity is necessary to explain why only 20%– 30% 
of MIBC cases have a favorable response to ICIs.9 Dissection of the 
tumor immune microenvironment can partly explain this heteroge-
neity.	 A	 study	 reported	 that	 patients	with	 high	 PD-	L1	 expression	
on	 tumor-	infiltrating	 immune	 cells	 were	 associated	 with	 a	 better	

response	 to	 anti-	PD-	L1	 therapy.38	 Another	 study39 demonstrated 
that	response	to	nivolumab,	an	inhibitor	of	PD-	1,	was	associated	with	
an increase in Tc and NK cells, as well as a decrease in macrophages 
in patients with melanoma, indicating the importance of studying 
the immune microenvironment. Therefore, new knowledge on the 
regulatory mechanisms of the immune microenvironment of tumors 

F I G U R E  4 Differences	of	immune	cell	composition	and	function	between	the	immunity-	high	and	immunity-	low	groups	A,	Volcano	plot	
and	Box	plots	showed	the	differential	expressed	tumor-	infiltrating	immune	cell	subsets	between	the	immunity-	high	and	immunity-	low	
groups.	H_CT:	cancer	tissues	of	immunity-	high	group;	L_CT	cancer	tissues	of	immunity-	low	group.	Red	dots	represented	the	significantly	
differential expressed cell subsets (|Log2(foldchange)|	>1	and	p	<	0.05).	Gray	dots	represented	the	non-	significantly	differential	expressed	
cell subsets (|Log2(foldchange)|	<1	or	p	>	0.05).	B,	Box	plots	show	differentially	expressed	of	tumor-	infiltrating	lymphocytes	between	the	
immunity-	high	and	immunity-	low	groups.	C,	The	t-	SNE	maps	of	antibodies	for	cellular	function.	D,	The	heatmap	showed	expressions	of	
34	markers	in	26	tumor-	infiltrating	immune	cell	subsets.	p:	p value of t-	test	or	Mann-	Whitney	U test; p < 0.05 was considered to indicate 
statistical differences
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based on accurate molecular typing may provide new insights into 
the treatment of MIBC.

In	 this	 study,	we	 used	 ssGSEA	 to	 classify	 35	MIBC	 cases	 into	
immunity-	high	and	immunity-	low	groups.	High	infiltration	of	tumors	
by immune cells as well as more positive antitumor activities were 
observed	 in	 the	 immunity-	high	 group,	 which	 was	 consistent	 with	
previous findings.23 It is known that Tcs can kill cancer cells. Thus, 
patients	with	higher	infiltration	of	CD3+	or	CD8+	Tcs	in	the	tumor	
epithelium	or	invasive	margin	have	a	longer	disease-	free	survival	or	
OS, indicating that this infiltration is a favorable prognostic factor 
for BCs.40	Among	 immune	cells,	B	cells	are	 important	members	of	
humoral immunity and are considered to be independent favorable 
prognostic factors for MIBC.41 Besides, NK cells exert antitumor ef-
fects under low major histocompatibility complex conditions, and it 
has been reported that CD56bright NK cells are positively correlated 
with prognosis.42 Moreover, macrophages can differentiate into 
two	types:	pro-	inflammatory	and	tumoricidal	M1	macrophages,	and	
M2 macrophages, which inhibit inflammation.43 M2 macrophages 
serve as “protumoral macrophages” which contribute to poor clinical 
prognosis and disease progression.44	Additionally,	DCs	are	antigen-	
presenting cells that initiate an immune response by transmitting 
collected information to the adaptive immune system.45 The infiltra-
tion of a tumor by some immune cells plays a positive antitumor role 
and improves the survival of patients. Consistently, the survival time 
of	patients	in	the	immunity-	high	group	was	longer	than	that	in	the	
immunity-	low	group.	Moreover,	GO	and	GSEA	analyses	showed	that	
the	 immunity-	high	group	had	a	higher	enrichment	of	several	path-
ways	related	to	the	positive	 immune	response	than	the	 immunity-	
low	 group.	 The	 results	 of	 ssGSEA	 combined	 with	 the	 results	 of	
bioinformatics analysis suggest a more activated status of immunity 
in	 the	patients	of	 the	 immunity-	high	group.	Therefore,	patients	 in	
the	immunity-	high	group	had	better	survival	and	higher	immune	cell	
infiltration, consistent with previous results.23

CyTOF	overcomes	the	spectral	overlap	limitation	associated	with	
traditional flow channels while maintaining the high throughput of 
flow cytometry, and has been applied to uncover the heterogeneity 
of immune cells.46,47	We	used	CyTOF,	with	an	antibody	panel	 that	

included cell typing and cellular function, to effectively divide the 
tumor-	infiltrating	immune	cells	into	26	subsets	that	contain	common	
immune cells. The analysis of cell abundance showed that clusters 
16	(M2	macrophages)	and	23	(DCs)	were	enriched	in	the	immunity-	
low	group,	and	that	cluster	10	was	more	enriched	in	the	immunity-	
high group. It is known that M2 macrophages have the ability to 
promote cancer progression as they play an antagonistic role in the 
immune process against tumors, whereas Tcs kill tumor cells.43 In 
addition,	 the	proportion	of	CD45+	 lymphocytes	was	higher	 in	 the	
immunity-	high	group.	These	results	are	consistent	with	our	ssGSEA	
analysis findings. Results of manual gating showed that there was a 
higher	number	of	Treg	cells	 in	the	 immunity-	low	group.	Tregs	pro-
duce	 immunosuppressive	 cytokines,	 such	 as	 interleukin-	10	 (IL-	10)	
and	transforming	growth	factor-	β	 (TGF-	β),	 leading	to	the	inhibition	
of Tcs in the tumor microenvironment.48	Further	analysis	of	the	ex-
pression	of	functional	markers	revealed	that	TIM-	3	and	PD-	1	were	
highly	expressed	on	Tregs	in	the	immunity-	low	group.	Noteworthy,	
it	is	known	that	TIM-	3	marked	tumor-	associated	Foxp3+	Tregs	have	
a	great	inhibitory	effect	on	CD8+	TILs,	and	targeting	TIM-	3	is	a	po-
tent immunotherapeutic approach.49 Park and colleagues reported 
that	a	high	expression	of	PD-	1	by	Tregs	increased	the	suppression	of	
CD8+	Tcs	compared	to	PD-	1− Tregs during chronic viral infection.50 
Altogether,	our	findings	showed	that	the	immunity-	low	group	had	a	
relatively	 lower	 number	of	 tumor-	infiltrating	CD45+	 lymphocytes.	
We suggest that there is immune suppression in the immune micro-
environment	of	tumors	of	patients	with	MIBC	in	the	immunity-	low	
group, which is conducive to the survival and development of the 
tumors. Our findings provide evidence to explain the tumor hetero-
geneity of MIBC and reveal more insights into its clinical treatment.

E THIC S APPROVAL AND CONSENT TO PARTICIPATE
This	study	was	approved	by	the	Ethics	and	Human	Subject	Committee	
of	Guangxi	Medical	University.	All	experiments	and	methods	were	
performed according to relevant guidelines and regulations.

CONFLIC T OF INTERE S T
The authors declare that they have no competing interests.

F I G U R E  5 Differential	maker	expressions	of	Tregs	and	frequency	of	PD-	1+	Treg	between	the	immunity-	high	and	immunity-	low	groups.	
A,	Box	plots	showed	differentially	expressed	of	CD279	(PD-	1)	and	TIM-	3	on	Tregs	between	the	immunity-	high	and	immunity-	low	groups.	H_
Treg:	Treg	in	the	immunity-	high	group;	L_Treg:	Treg	in	the	immunity-	low	group.	B,	Box	plot	showed	differential	frequency	of	CD279+	(PD-	1)	
Treg	between	the	immunity-	high	and	immunity-	low	groups.	H_CT:	cancer	tissues	of	immunity-	high	group;	L_CT	cancer	tissues	of	immunity-	
low group. p: p value of t-	test	or	Mann-	Whitney	U test; p < 0.05 was considered to indicate statistical differences
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