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Abstract

Many real world networks are reported to have hierarchically modular organization. However, there exists no algorithm-
independent metric to characterize hierarchical modularity in a complex system. The main results of the paper are a set of
methods to address this problem. First, classical results from random matrix theory are used to derive the spectrum of a
typical stochastic block model hierarchical modular network form. Second, it is shown that hierarchical modularity can be
fingerprinted using the spectrum of its largest eigenvalues and gaps between clusters of closely spaced eigenvalues that are
well separated from the bulk distribution of eigenvalues around the origin. Third, some well-known results on fingerprinting
non-hierarchical modularity in networks automatically follow as special cases, threreby unifying these previously
fragmented results. Finally, using these spectral results, it is found that the limits of detection of modularity can be
empirically established by studying the mean values of the largest eigenvalues and the limits of the bulk distribution of
eigenvalues for an ensemble of networks. It is shown that even when modularity and hierarchical modularity are present in
a weak form in the network, they are impossible to detect, because some of the leading eigenvalues fall within the bulk
distribution. This provides a threshold for the detection of modularity. Eigenvalue distributions of some technological,
social, and biological networks are studied, and the implications of detecting hierarchical modularity in real world networks
are discussed.
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Introduction

Many real world networks have been reported to have modular

or hierarchical modular organization, including social networks

[1], collaboration networks [1], biological networks such as

structural and functional brain networks [2–5], metabolic

networks [6], and gene expression networks [7], and technological

networks such as the Internet, the World Wide Web, and the

global air transportation network [1]. Reliably detecting the

hierarchical and modular organization of complex systems

provides us with a way to understand how their microscale

structure scales up to the macroscale, and how the system is able to

perform specific behaviors and functions.

Despite the importance of hierarchy and modularity, there

exists no algorithm-independent way to characterize how ‘‘hier-

archically modular’’ a network is. Since detection of modularity is

dependent upon the assumptions made in specific modularity

detection algorithms, these assumptions significantly affect the

results. For example, a modularity detection algorithm that is

based on strict graph partitioning techniques will fail to find

overlaps between communities and hierarchical organization,

unless specifically modified. In addition, there are many

algorithms that will find optimal partitions in networks with no

modularity. For example, an algorithm that is designed to locate

optimal partitions will do so even for nonmodular networks.

Second, many of the algorithms are based on optimizing the

modularity metric Q [1,8], which is computed for a particular

division of a network into communities by comparing this division

to that of a null reference model – a random graph with the same

size and degree distribution, but no community structure. The

modularity metric Q has been shown to suffer from a resolution

limit problem, meaning that it cannot detect the smallest size

communities relative to network size [9]. Further, the computation

of Q requires that the network first be divided into modules before

it can be evaluated, and provides no information on the

uniqueness of the postulated modules; i.e., which solution should

be preferred if two solutions have the same Q value. Further, no

such well accepted metric exists for measurement of hierarchical

modularity in networks, although there exist some modularity

detection algorithms based on quantifying the quality of hierar-

chical modularity and partitions in network structure [10].

In this paper, the main results are a set of methods to address

the above gap. We present an algorithm-independent manner of

characterizing network modularity. We use results from random

matrix theory and spectral graph theory to derive the spectrum of

eigenvalues for hierarchically modular networks generated using a

stochastic block model and show that the spectrum contains clear

fingerprints of hierarchical modularity. Further, we rederive some

known results about the spectra of modular networks, which are

simply shown to be a special case of hierarchically modular

networks with a single hierarchical level. Using the spectral results,
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we empirically derive the limits of modularity detection; i.e., a way

to compare the degree of modularity that actually exists in the

network, versus its actual detectability, by varying the degree of

probabilities of instantiating edges at various hierarchical levels. It

is shown that even when modularity and hierarchical modularity

are present in a sufficiently weak form in the network, it is

impossible to detect them, because some of the leading eigenvalues

fall within the bulk distribution of eigenvalues around the origin

and are no more separated from it. The point at which this

happens is estimated in terms of the edge instantiation probabil-

ities, and sets a threshold beyond which modularity cannot be

detected even when present in the network. Eigenvalue distribu-

tions of some technological, social, and biological networks are

studied, and the implications of detecting hierarchical modularity

in real world networks are discussed.

Some previous work [9] and a very recent study [11] has shown

a similar result for modular networks (a subcase in our work), but

not hierarchically modular networks, thereby making the results in

this paper more general. They derived analytical results for the

threshold of modularity detection in undirected, modular graphs.

Our findings agree with their results, but our results in this paper

are valid for both directed and undirected graphs, and we include

hierarchical modularity. Modular networks are shown as a special

case of the general framework. The work in [11] asserted that the

spectral signatures of modularity detection are optimal in the sense

that no other method can detect modularity in a regime where the

spectral methods fail. This establishes that the results we present in

this paper on the limits of modularity detection are general in the

sense that if the spectral fingerprint fails to detect weak forms of

modularity in a network, then any of the current methods and

algorithms using spectral approaches for modularity detection are

likely to be unable to detect it.

Results

In this section, we derive and illustrate the methods that

constitute the main results of this paper. Our main results are (i)

derivation of the spectrum of hierarchically modular graphs; i.e.,

the mean expected values of the largest eigenvalues of the

adjacency matrix of the graph, (ii) establishing the limits of ‘‘how

modular’’ a real world system is through a study of the properties

of the spectrum and its distribution, and (iii) establishing the limits

of detection of hierarchical modularity and modularity as

permitted by the spectral approach; i.e., given the amount or

degree of modularity, how much of this modularity can (or cannot)

be detected using the spectral approach.

Thus, in this work, we characterize the hierarchical modularity

of a network in an algorithm-independent manner. The spectrum

of modular networks with no hierarchy is shown to be a special

case of the framework, and some known results on the spectrum of

modular networks are thus automatically reproduced, thereby

providing a unified basis to characterize network modularity in

general. Finally, we empirically show that when probability

parameters for instantiating edges in networks are varied, there

is a threshold set by the probabilities and the limits of the bulk

distribution of eigenvalues around the origin beyond which

hierarchical modularity and modularity cannot be detected even

if present.

Spectrum of Hierarchically Modular Networks
We follow a typical stochastic block model form for contructing

a hierarchical network, similar to [12]. This process involves

construction of a hierarchically modular network by recursively

placing random matrix blocks with decreasing levels of con-

necitivity between nodes in hierarchical levels in a block diagonal

form. We consider the matrix

A0~
A P

P A

� �
, ð1Þ

where A is a random network of size s and edge probability p, and

P is a random network of size s and edge probability pq. Here, the

parameter q sets the level of decrease in connectivity between the

various hierarchical levels. That is, q is a numeric parameter which

is varied to define the connectivity of the first level hierarchy off-

diagonal blocks or networks represented by P. For example, if

q ~ 0:5, then the connectivity in P is 50% of the connectivity in A.

If q ~ 1, the network will no longer be hierarchical, but will simply

be a random network of size 2s with connection probability p

(since, in this case, p ~ pq). It is clear from the formulation that

lower the value of q, stronger the hierarchical modular structure,

and higher the value of q (to 1), weaker the hierarchical modular

structure. This point is important in the following section on

establishing the limits of detection of modularity. We know from

the random matrix theorems established in Methods that the

expected value of the largest eigenvalue of A is sp and that of P is

spq. We thus rewrite A9 as a sum of deterministic matrices AE and

PE with entries AE
ij ~ sp and PE

ij ~ spq, respectively, and a matrix

of fluctuations around these means, obtaining

A0~
AE PE

PE AE

" #
z

AX PX

PX AX

" #
~ E’zX’ ð2Þ

The spectrum of A’ can now be decribed by independently

describing the spectra of matrices E’ and X’.
First, it can be easily proved that the deterministic matrix E’ has

the eigenvalue distribution

Sp(E’)~
s(pzpq) s(p{pq) 0

1 1 2(s{1)

� �
, ð3Þ

and it gives us the mean expected values of the largest two

eigenvalues and the mean value of rest of the bulk distribution of

eigenvalues of A’. Consider a vector of the form v~½1,1�, where

the 1 vectors have s entries each. Then,

E’v~
AE PE

PE AE

" #
1

1

� �
ð4Þ

~
AEzPE

AEzPE

� �
~spzspq

1
1

� �
:

Thus, v is an eigenvector of E’ with the eigenvalue s(pzpq).
Similarly, consider vectors of the form y1~½1,{1� and

y2~½{1,1�, again with vectors 1 and {1 of size s. Then, by

similar reasoning as above, y1 and y2 can be shown to be

eigenvectors of E’ with eigenvalue s(p{pq). The other eigenvalues

will all be 0.

Next we consider the spectrum of the fluctuation matrix X’. The

expectation value of the entries of X’ is 0 by definition, since

X’~A’{E’. Thus, by Eq.(20), (see Methods) the spectrum of X’ has

a zero mean value, and all its eigenvalues are bounded by the

spread limit s
ffiffiffiffiffi
N
p

, where s stands for the standard deviation of the

ð5Þ
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values in A’. This s
ffiffiffiffiffi
N
p

gives us the spread of the bulk distribution

of A’ with zero mean.

Thus, putting together the above results, the spectrum of A’ is

Sp(A’)~
s(pzpq) s(p{pq) O(s

ffiffiffiffiffi
N
p

)

1 1 2(s{1)

" #
, ð6Þ

showing that there will be two large eigenvalues separated from a

bulk distribution of eigenvalues around the origin. Figure 1 shows

examples of the actual eigenvalues and analytical predictions by

Eq. (3) along with the actual eigenvalues of the fluctuation matrix.

We now define the second level of perturbation, where

A0’~
A0 P

P A0

� �
, ð7Þ

where A’ is the matrix defined in Eq. (1) and P is a random

network or matrix of size 2s and edge probability pq2. Note here

the second hierarchical level: A’ already has the first level of

hierarchy built in as described previously, with the first level off-

diagonal blocks having connectivity pq and the diagonal blocks

having connectivity p, with pqvp. Now, the second level off-

digonal blocks, represented by matrix P, have connectivity pq2

with pq2
vpqvp. In general, the matrix P defines each successive

level L of perturbations of increasing size (s,2s,4s, . . . ,N=2) and

decreasing probability of connection (pq,pq2, . . . ,pqL{1), produc-

ing an extra level of hierarchical modular structure with each

perturbation level.

Once again, we define this matrix A0’ as a sum of a deterministic

matrix and a fluctuation matrix in a form similar to described

above, A0’~E0’zX0’. The mean expected values of the eigenval-

ues of A0’, using similar analysis as before, are shown to be

Sp(E’’)~

s½pzpq(1z2q)� s½pzpq(1{2q)� s(p{pq) 0

1 1 2 4(s{1)

" #
:
ð8Þ

In general, for L hierarchical levels, the expectation values of

the eigenvalues of a hierarchical network AL, along with their

multiplicities, are

Sp(EL)~

s pzpq
PL{1

i~0 (2q)i
h i

1

s pzpq
PL{2

i~0 (2q)i
h i

{(2q)L{1
n oh i

1

. . . . . .

s pzpq(1{2q)½ � 2L{2

s p{pq½ � 2L{1

2
66666664

3
77777775
: ð9Þ

Figure 2 shows the spectra of 100 hierarchical networks, the

eigenvalues of the fluctuation matrices, and the analytically

predicted mean expected values for the largest eigenvalues for a

network with N~1024,p~0:9,q~0:5 and 5 hierarchical levels

with 1024 nodes at the coarsest level, followed by 2 clusters of 512

nodes, 4 clusters of 256 nodes, 8 clusters of 128 nodes, and 64

clusters of 16 nodes. Note that the spectrum and the predicted

mean expected values of the 16 largest eigenvalues echo this

pattern: there are 5 clusters of eigenvalues separated with large

gaps, with the largest 2, 4, 8, and 16 eigenvalues in each cluster.

Spectrum of Perturbed Modular, Nonhierarchical
Networks

It is known that if a modular network has m modules, then its

spectrum will show m large eigenvalues [13,14]. This result is

easily rederived as a special case of the above framework. We

consider an unperturbed modular network G(N,m) with N nodes

and m equally sized disconnected modules that are random

networks of size s and nodes connected with probability p, as

defined in the previous section. The adjacency matrix A for this

network has m random blocks on the diagonal.

We now perturb this ideal modular network with block matrices

of size s, each of which is random network of s nodes with

probability pq of an edge between two nodes, where q sets a rate of

decrease in probability of an edge between two nodes. As above,

we call these the perturbation matrices P. The perturbed modular

network is represented by matrix A’~AzP, where A’ has the

block form

Figure 1. First level hierarchical network spectrum. N~256
node network, p~0:5, q~0:1, Black circles (below green circles) show
actual spectrum. Red circles, centred on the point, show analytic
prediction of mean expected eigenvalues from Eq. (3). Green circles
show distribution of eigenvalues of the fluctuation matrix.
doi:10.1371/journal.pone.0054383.g001

Figure 2. Full hierarchical network spectrum. N~1024 node
network, p~0:9, q~0:1. Black circles (below green circles) show actual
spectrum. Red circles, centred on the point, show analytic prediction of
mean expected eigenvalues from Eq. (9). Green circles show distribution
of eigenvalues of the fluctuation matrix.
doi:10.1371/journal.pone.0054383.g002
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A0~

A P . . . P

P A . . . P

. . . . . . . . . . . .

P . . . A P

P P . . . A

2
6666664

3
7777775
: ð10Þ

Thus, instead of considering higher powers of q to set the levels

of decrease of connectivity, we set q to a single value to produce a

single levelled perturbed modular network. Using Eq. (9), and

substituting the correct values for s, p, and q, it can be easily shown

that the spectrum of the perturbed modular network A’ is

SA0~
spz(m{1)spq sp{spq O(s

ffiffiffiffiffi
N
p

)

1 m{1 N{m

" #
: ð11Þ

The largest eigenvalue of the perturbed matrix has a mean

expected value of spz(m{1)spq and the next m{1 largest

eigenvalues have a mean expected value of sp{spq. Figure 3

shows the actual, predicted, and fluctuation matrix eigenvalue

distributions for a non-hierarchical modular network.

Empirical Limits of Modularity Detection
From the above sections we see that the mean expected

eigenvalues depend upon the network size N, the number of

modules m, the size of each module s, and the probability

parameters p and q. We vary all these parameters, and especially p
and q for given N,m, and s, to explore how the mean expected

eigenvalues vary. It is clear that the gaps between the largest

eigenvalues and the bulk of the distribution provides us with the

capacity to detect community structure. Therefore, at the point

where the principal or largest eigenvalues are no longer separated

from the bulk distribution is also the point where we lose the

capacity to detect the community structure. It might be expected

that this point will occur when q~1, thereby making the

probability of edges outside modules equal to that for those inside

modules; i.e., p~pq~pq2~ . . . ~pqL{1. However, using the

spectral results above, we find that this is not the case. We find that

even when modularity is present in a weak form in the network, it

will not be possible to detect it. Thus, for a given N,m, and s,

certain values of p and q provide a detectability threshold beyond

which it is not possible to detect modularity structure in networks,

even if some modularity is present. We present the empirical

location of this threshold for any network, in terms of the values of

N,m,s,p, and q. Very recently, a study has found similar results for

modular networks [11], but we know of no other such studies for

hierarchically modular networks. The study in [11] also asserts

and demonstrates that if spectral modularity detection methods fail

to detect community structure then no other method will detect it.

Limits of modularity detection in modular networks. In

a modular network, the mean expected value of the largest

eigenvalue l1 is spz(m{1)spq, that of the second largest

eigenvalue l2 is sp{spq, and the limits of the bulk distribution

(all the other eigenvalues are denoted as lx), are Ds
ffiffiffiffiffi
N
p

D, where s is

the standard deviation of the entries in the fluctuation matrix as

described in the previous section. The difference between l1 and

l2 is

d1~l1{l2~spz(m{1)spq{½sp{spq�~mspq~Npq, ð12Þ

which grows when q is increased relative to p because l1 will grow

and l2 will become smaller as q increases. The difference between

l2 and the limits of the bulk distribution is s
ffiffiffiffiffi
N
p

d2~l2{s
ffiffiffiffiffi
N
p

~sp{spq{s
ffiffiffiffiffi
N
p

: ð13Þ

As l2 gets smaller with increasing q, and the limits of the bulk

distribution grow larger with increasing q, the point at which l2

falls within the limits of the bulk distribution it will no longer be

possible to detect the modularity structure. At q~1, l2~0,

because sp~spq. Since s
ffiffiffiffiffi
N
p

w0, this point falls when 0vqv1,

which implies that even when weak modularity is present in the

network, it is no longer possible to detect it. This is seen in Figure 4

that shows l2 for chosen values of p and q for given N,m, and s.

Thus, the condition that

sp{spqws
ffiffiffiffiffiffi
ms
p

p{pqws

ffiffiffiffi
m

s

r
ð14Þ

provides the criterion for modularity detection, with the threshold

given by the condition sp{spq~s
ffiffiffiffiffi
N
p

. When the condition is

violated, it will be impossible to detect modularity structure even

when present. For example, in Fig. 4(b), it is easily observed that at

p~0:5, q~0:6, some weak modularity is present, but cannot be

detected.

Equation (14) also shows that as the number of modules m
increases, and the size of modules s decreases, for a certain p, this

threshold is violated for smaller and smaller values of q. On the

other hand, when the size of modules s is larger, the number of

modules m grows smaller, larger values of q will not violate the

threshold condition. Qualitatively, this implies that as network size

increases, it gets harder to detect the smallest modules in the

network.

Limits of modularity detection in hierarchical

networks. We recall that in a hierarchically modular network,

the mean expected values of the largest eigenvalues are given by

Eq. (9), and the limits of the bulk distribution (all the other

eigenvalues are denoted as lx), are described by s
ffiffiffiffiffi
N
p

, where s is

the standard deviation of the entries in the fluctuation matrix as

Figure 3. Full modular non-hierarchical network spectrum.
N~1024 node network, p~0:9, q~0:1. Black circles (below green
circles) show actual spectrum. Red circles, centred on the point, show
analytic prediction of mean expected eigenvalues from Eq. (11). Green
circles show distribution of eigenvalues of the fluctuation matrix.
doi:10.1371/journal.pone.0054383.g003
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described in the previous section. From the spectrum we can see

that the largest eigenvalue l1 grows with increasing q, while the

subsequent eigenvalues outside the bulk distribution get smaller.

Further, the limits of the bulk distribution of the fluctuation matrix

will also grow with increasing q. At the point where the leading

eigenvalues fall within the limits specified by the bulk distribution

of eigenvalues, it will be no longer possible to detect the

corresponding hierarchical levels or the modules at these levels.

These threshold conditions, starting from the cluster of eigenvalues

signifying the finest hierarchical level in the network, are given by

p{pqws

ffiffiffiffi
m

s

r
, ð15Þ

pzpq(1{2q)ws

ffiffiffiffi
m

s

r
, ð16Þ

and in general

pzpq
XL{2

i~0

(2q)i

" #
{(2q)L{1

( )" #
ws

ffiffiffiffi
m

s

r
: ð17Þ

Figure 5 shows l2, . . . ,lL{1 for chosen values of p and q for given

N,m, and s. The points at which the threshold conditions stated

above are violated, it is impossible to detect the modularity

structure present in the network. Specifically, in the hierarchical

case, the number of eigenvalue clusters that fall within the bulk

distribution equals the number of hierarchical levels and modules

at these levels that go undetected. For example, in Fig. 5(c), it is

easily observed that for N~1024 and m~16, s~64 at the finest

hierarchical levels, with q~0:9, the first two (finest) hierarchical

levels cannot be detected at any value of p, even though

hierarchical modularity is present.

From the threshold conditions, it is also seen that as the sizes of

modules s get smaller and the number of modules m higher

relative to network size N, it will get harder and harder to detect

the smallest sized modules at the finest levels of hierarchy for

smaller and smaller values of q. For example, in Fig. 5(f), the first 3

hierarchical levels cannot be detected, because the smallest module

size is 32 instead of 64, as in Fig. 5(c). Thus, while the overall large

scale hierarchy is detectable, finer levels of hierarchy signified by

the eigenvalues that fall within the bulk distribution of eigenvalues

lie undetected. As we show in the next section, this observation has

significant implications for detection of modularity in real world

networks that are known to have extraordinary complexity and

multiscale levels of organization, such as human brain networks.

Real World Networks
Evolving peer to peer internet networks. Peer-to-peer or

P2P networks are decentralized, self-organized systems, in which

individual computers connect to each other and communicate

directly for the purposes of sharing information and resources,

without dedicated or centralized servers [15]. Though these

systems are guided by common goals (for example, of sharing CPU

cycles and storage space), there is no central guiding authority.

The resulting network topology and the dynamics of communi-

cation occurring on it are emergent; i.e., individual users

interacting locally with other users determine the local decisions,

but the large scale system behavior cannot be determined trivially

from the local interactions alone. The highly decentralized self-

organized nature of these evolving networks ensures large

fluctuations in network size and numbers of edges, as the size

and resulting topology of the network are completely determined

by how many individual users are joining and leaving the network.

Since many self-organized systems in nature and society show

Figure 4. Limits of modularity detection in modular networks.
Expectation value of second largest eigenvalues lm{1 (red lines) and

limits of bulk distribution s
ffiffiffiffiffi
N
p

(black lines) are plotted for values of
N~1024, m~16, s~64, p~0:4{0:9 and (a) q~0:3, (black line below
red line: modularity can be detected for all p), (b) q~0:6, (modularity
can only be detected for pw0:6, i.e., region with black line below red
line), (c) q~0:7 (modularity can only be detected for pw0:8, i.e., region
with black line below red line). Threshold of detection is the point
where the two lines cross. In (b), eigenvalue distributions are plotted for
100 networks at p~0:5, q~0:6 and p~0:7, q~0:6. Black circles: actual
eigenvalues, green circles: eigenvalues of fluctuation matrix, red circles:
analytically predicted expectation values of second largest and bulk
distribution of eigenvalues, blue pluses: predicted limits of bulk
distribution of fluctuation matrix. Before threshold point, second largest
eigenvalue falls within the bulk distribution, after threshold point, it falls
outside the bulk distribution.
doi:10.1371/journal.pone.0054383.g004
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modular organization, we were interested in looking at the

modularity properties of large scale evolving peer to peer

networks, and to chart how modular organization of a guided

self-organized system evolves dynamically over time.

To explore the modular organization of these networks, we

explore the eigenvalue spectra of temporal snapshots of the peer-

to-peer Gnutella file sharing network (data from [16]). The data

represents a sequence of 8 snapshots of the P2P Gnutella network,

collected in August 2002 (from 4 Aug 2002 to 30 Aug 2002,

smallest network size [6301 nodes, 20777 edges] to largest network

size [36682 nodes, 88328 edges]), with the nodes representing

hosts and edges representing connections between hosts. Figure 6

shows the spectra for 8 temporal snapshots of this evolving

network.

The results show a striking absence of large modules in all the 8

networks. The eigenvalue spectra show only one large eigenvalue

well separated from the eigenvalue cloud, distinctly showing that

there is no significant modularity present in the network. If there is

any modularity present, we surmise that it is local; i.e., the size of

the module is insignificant as compared to the size of the system,

and that the modularity is very weak so as to be rendered

undetectable by the spectral approach. As opposed to this

signature, if there was any significant modularity present, the

spectrum would have shown more than one eigenvalue well

separated from the eigenvalue cloud. This was a very surprising

result. One principle driving modularity in P2P systems could be

that users on the P2P network are likely to have specific file sharing

or information needs and exercise freedom in connecting to other

users. Thus, an expected trend could be that modularity emerges

in the network, even with the possibility that it is transient. Thus, it

is remarkable that the evolving Gnutella P2P network (at least over

a month of observations) shows a distinct absence of modularity.

The random nature of user connections that is used as a model for

the Gnutella network may explain the result. This finding has

implications for P2P system design and performance. We note that

the non-scalability of existing P2P Gnutella architecture, its

reported mismatch with the underlying Internet topology, and

new strategies for designing scalable and robust P2P systems has

been the topic of much research [15]. Our analysis shows that

these can be related to the finding that existing self-organized P2P

systems appear to be non-modular, and that modularity and

hierarchical organization are considered essential organizing

principles in self-organized systems that maintain scalability of

the system.

Social networks. As opposed to many technological and

biological systems, social network data is usually available on

smaller scales; i.e., the sizes of social networks are smaller in

nature. Due to their small size, detailed study of community

structure is possible, and some classic social networks with known

modularity structure are often used as benchmark cases for

modularity detection approaches and algorithms. Here, we

explore the eigenvalue spectra of several social networks that are

used as benchmark test cases. In all cases, the number of largest

eigenvalues separated from the bulk distribution correctly predicts

the known number of modules in the networks. Figure 7 shows the

results for the well known Zachary Karate Club network, Dolphins

social network [17,18] and the American College Football data set

[19].

The Zachary Karate Club network is one of the most studied

social network data sets in the literature [1,20]. Its small size and

known partitions render it usable as ‘‘real world’’ test data for

community detection techniques and algorithms. Members of a

Karate club, 34 in number, split into 2 known communities

follwing a disagreement between 2 leaders in the group. The split

into 2 groups is known and well-documented and other authors

have also studied the network for its hierarchical structure, and

have shown that the two sub-groups split into smaller communi-

ties, showing 4 communities at a second hierarchical level [1]. The

Figure 5. Limits of modularity detection in hierarchically modular networks. Mean expected value of l2, . . . ,lL{1 (red, blue, green, purple,

cyan lines, respectively) and limits of bulk distribution s
ffiffiffiffiffi
N
p

(black lines) are plotted for a 4 level hierarchical network with N~1024, m~½16,8,4,2�,
½s~64,128,256,512�, p~0:1{{0:9 and (a) q~0:7 and (b) q~0:9, and for a 5-level hierarchical network N~1024, ½m~32,16,8,4,2�,
½s~32,64,128,256,512�, p~0:1{{0:9 and (c) q~0:7 and (d) q~0:9. The points where the black lines cross the colored lines show thresholds of
detection for the corresponding hierarchical levels. Modularity can only be detected above the black lines. Comparing (a) and (b), as q increases, the
number of colored lines falling below the black lines increases. Comparing (b) and (d), as the number of hierarchical levels increase and module sizes
at finer hierarchical levels become smaller, at the same q value, a larger number of colored lines fall below the black lines.
doi:10.1371/journal.pone.0054383.g005
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eigenvalue spectrum clearly reveals this analysis. Figure 7(a) shows

the eigenvalue spectrum with two largest eigenvalues (signifying

the major split of the network into two main parts), and two more

clustered eigenvalues separated from the bulk distribution

(signifying the second hierarchical level with 4 communities).

The inset (i) shows the original adjacency matrix. In insets (ii) and

(iii), following the algorithm presented in [14], we have produced 2

dimensional and 4 dimensional approximations of the original

adjacency matrix by preserving, respectively, 2 and 4 largest

eigenvalues and associated eigenvectors. It can be clearly seen in

the lower dimensional approximations that at 2 eigenvalues the

network shows 2 communities, and at 4 eigenvalues, these larger

communities have split into two each, showing 4 communities. In

both approximations, some nodes fall in overlaps between

communities. These results correctly reveal the exact known

partitions in the network [1].

The undirected Dolphin social network [17,18] is a widely-cited

example in the community detection literature. A group of

dolphins were observed over a period of time, after which the

groups split into two following the disappearence of a few

members that were on the boundary of the group. Nodes in the

social network represent these dolphins, and edges represent

regular social contact. The group has a known community

structure, with two well separated groups into which the bigger

group split, and the larger of the groups showing further

submodules. The spectra shows a clear indication of this

hierarchical structure [Fig. 7(b)], with two largest eigenvalues

being followed by a cluster of 3–4 eigenvalues that are well

separated from the bulk distribution. We have previously studied

the hierarchical structure of this network using an alternate

spectral approach in detail and the results are in [14]. The insets

Figure 6. Gnutella evolving network spectra. 8 network snapshots captured from 4 Aug 2002 to 30 Aug 2002, data from [16]. Only 600 largest
eigenvalues computed and plotted for the last snapshot in part (h), showing principal eigenvalue and perimeter of bulk distribution.
doi:10.1371/journal.pone.0054383.g006
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show the unordered network data, and reordered organization to

show the modules. The hierarchical structure is clearly visible.

The undirected American College Football dataset [19] is

another well known dataset with a known community structure.

There are 115 college teams that all play against each other.

However, they are organized in ‘‘conferences’’ such that more

frequent games occur between teams in a conference than between

teams belonging to separate conferences. The known community

structure corresponds to 12 conferences into which the teams are

divided. The spectrum distinctly shows 12 large eigenvalues well

separated from the bulk distribution [Fig. 7(c)], and the insets show

the original unordered data, and the reordered matrix to show the

12 teams. We have performed the reordering using the algorithm

described in [14].
Structural brain networks. Brains have fine-scale regular

structure, to a first approximation, with high connectivity between

nearby neurons [21]. Connectivity decreases as distance between

neurons increases. Paradoxically, the brain also shows large scale

specialization, with specific regions devoted to specific sets of

functions [2–5]. The assumption is that these areas, often termed

modules, are tightly connected together to perform certain functions

and are only sparsely connected to other specialized areas. This

assumption and experimental evidence supporting modularity is in

apparent contradiction with the observed fine scale (nonmodular)

homogeneity. Thus, reliably characterizing the structure of the

brain is an unsolved problem. In a future paper, we use the

methods reported here to resolve this contradiction between and

simultaneous presence of fine scale regularity and large scale

modularity in brain networks [22].

Here, we examine the eigenvalue spectrum of a human brain

structural connectivity network. The human brain structural

network was obtained from [23]. They performed high resolution

diffusion spectrum MRI (DSI) of the human cortex. They then

defined 66 cortical regions with anatomical landmarks. Each of

these 66 cortical regions was then individually subdivided into 998

regions of interest (ROIs). Weighted undirected networks were

produced at two resolutions, a fine resolution network of 998

nodes and a coarse resolution network of 66 nodes. We study the

spectrum of the fine scale 998 node network here. Figure 8 shows

the results. The spectrum shows clusters of leading eigenvalues and

a bulk distribution. However, the distinction between these clusters

is highly smoothed, meaning that there are no clear gaps visible

between hierarchical levels, with the leading eigenvalues gradually

merging into the bulk distribution.

In the previous sections of Results on hierarchical networks, we

showed that the above signature is typical of a network in which if

it has many levels of hierarchy with the finer level hierarchical

levels having smaller modules, then some of the leading

eigenvalues get subsumed into the bulk distribution and hence

cannot be detected. Thus, we generate a typical 6-level

hierarchical modular network with 64 modules of size 16, followed

by 32 modules of size 32, 16 modules of size 64, 8 modules of size

128, 4 modules of size 256, and 2 modules of size 512, following

the stochastic block model network generation model described inFigure 7. Social network spectra for benchmark test cases.
Eigenvalues are all real because the networks are undirected. (a)
Spectrum of Zachary Karate Club network data of 34 nodes from [20].
Inset (i) shows original adjacency matrix. Insets (ii) and (iii) show 2
dimensional and 4 dimensional approximations of original matrix. (b)
Spectrum of Dolphins social network of 62 dolphins from [17]. (c)
Spectrum of American Football Teams social network from [19]. Left
inset shows unordered original network data. Right inset shows the
same network, where rows and columns have been reordered using
algorithm in [14] to show modules along the main diagonal.
doi:10.1371/journal.pone.0054383.g007

Figure 8. Human brain structural connection network spec-
trum. 998 node structural connection network spectrum (black pluses)
compared with a 6 level 1024 node hierarchical network spectrum
(green pluses). Both spectra have been divided by the corresponding
largest eigenvalue to allow for superimposition to show relative scaling
and relationship to each other.
doi:10.1371/journal.pone.0054383.g008
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the section Spectrum of hierarchically modular networks [12]. We set a

low p~0:1,0:15,0:2 and high q~0:6,0:7,0:8. However, generat-

ing these hierarchical networks using the simple stochastic block

model form does not produce a spectrum that matches the brain

connectivity spectrum, although it successfully explains why the

finer hierarchical levels with smallest module sizes cannot be

detected.

Since the stochastic block model form is too simple to capture

the properties of real world networks, we used a more

sophisticated modified version of the stochastic block model,

discussed in [12,22,24] to generate hierarchical networks with the

above stated parameters. In this modified network generation

model, instead of placing random blocks in successive hierarchical

levels, we generate a hierarchical network by starting with a

perfect modular network (fully connected modules) and succes-

sively rewiring it with decreasing probabilities at subsequent

hierarchical levels. Figure 8 we superimpose (green pluses) the

spectrum of this hierarchical network, p{0:15, q~0:7, over the

human brain network spectrum. The close match between the two

spectra is clearly visible. This finding explains the observation that

in human brain networks, 5 to 6 large modules are frequently

detected [4,5,22,23]. As shown by the spectrum, this large scale

modularity is visible via the 5–7 leading eigenvalues in clusters

separated from the bulk distribution. However, on finer scales the

network appears nonmodular because the finest level modules are

impossible to detect – the corresponding eigenvalues are subsumed

in the bulk distribution. We note here that this undetectability, in

an algorithm-independent manner, and notwithstanding the

weakness inherent in any detection algorithm, may be a

characteristic property of a natural system in which there are

multiple hierarchical levels present. In such a system, the smallest

sized modules may be so small as compared to the system size so

that intermodular connection probabilities approaching close to

the intramodular connection probabilities at that level cannot be

avoided, thus making the modular structure extremely weak and

rendering it undetectable.

Discussion

In this paper, we address the problem of characterizing the

hierarchical modularity of a network. The main results are a set of

methods in which we develop a spectral approach to characterize

the hierarchical modularity of networks in an algorithm indepen-

dent manner, establish conditions for the detectability or

undetectability of modularity in networks, and illustrate these

results with synthetic and real world test cases. Our main results

are:

(i) We derive the spectrum of hierarchically modular graphs

generated using a stochastic block model form. Specifically,

using theorems from random matrix theory, we derive the

mean expected values for the set of largest eigenvalues of the

adjacency matrix of a hierarchically modular graph. We

show that hierarchical modularity of this model can be

fingerprinted using the spectrum of its largest eigenvalues

and gaps between clusters of closely spaced eigenvalues that

are well separated from the bulk distribution of eigenvalues

around the origin.

(ii) We establish the limits of ‘‘how’’ modular a real world

system is through a study of the properties of the spectrum

and its distribution. The spectrum of modular networks with

no hierarchy is shown to be a special case of our more

general results, and some known results on the spectrum of

modular networks are thus reproduced within our common

framework for characterizing network modularity in gener-

al.

(iii) We establish the limits of detection of hierarchical

modularity and modularity as permitted by the spectral

approach; i.e., given the amount or degree of modularity, we

determine how much of this modularity can be (or cannot

be) detected using the spectral approach. We empirically

show that when probability parameters for instantiating

edges in networks are varied, there is a threshold set by the

probabilities and the limits of the bulk distribution of

eigenvalues around the origin beyond which hierarchy and

modularity cannot be detected even if weakly present.

As noted in the recent work of [11], spectral signatures of

modularity detection are optimal in the sense that no other

method can detect modularity in a regime where the spectral

methods fail. This establishes that the results we present in this

paper on the limits of modularity detection are general in the sense

that if the spectral fingerprint fails to detect weak forms of

modularity in a network, then any of the current spectral based

methods and algorithms used for modularity detection are likely to

be unable to detect it.

We studied the eigenvalue distributions of some technological,

social, and biological networks, and showed that the spectrum can

successfully capture information about the modular, hierarchically

modular, or even non modular structure of real world networks (as

for the case of P2P networks). This detection does not rest on the

specific assumptions of any modularity detection algorithm. A

study of the real world networks also revealed that the simple

stochastic block model is insufficient to capture properties of real

world networks (such as brain networks), and more sophisticated

models are needed to capture these properties. In future work,

analytical examination of the spectral properties of more

sophisticated network models will allow us to address the problem

of modularity and hierarchy detection more robustly.

Very importantly, a detailed study of structural brain network

spectra revealed that, notwithstanding the weakness inherent in

any detection algorithm or approach, the undetectability of

modules can be a characteristic property of a natural system in

which there are multiple hierarchical levels present. In any such

natural system, the smallest sized modules at the finest hierarchical

levels may be very small as compared to the system size. Thus, an

unavoidable condition in such a situation is that the intermodular

Figure 9. Uncorrelated random graph spectrum and analytic
prediction of eigenvalue distribution. Red plus shows analytic
prediction of largest eigenvalue; green plusses show the limits s

ffiffiffiffiffi
N
p

of
the rest of the distribution. Spectra of 100 graphs are plotted,
N~1024, p~0:1:
doi:10.1371/journal.pone.0054383.g009
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connection probabilities approach very close to the intramodular

connection probabilities (since the nodes within the smallest

module have to connect to nodes from other such small modules,

thus making the modular structure extremely weak and rendering

it undetectable.

Methods

Here we present some old, classically known results that we use

to derive our new results in this paper.

Network Representation and Adjacency Matrix
Throughout the paper, in a network (or graph) G, a node

represents a component of the system, and edges represent

structural or functional relationships between the nodes. In an

adjacency or connection matrix representation of G, denoted by

A, the rows/columns represent the nodes and entries Aij represent

the weights of the edges. If the graph is undirected, Aij~Aji,

leading to a symmetric adjacency matrix. A symmetric matrix

always has real eigenvalues. If the graph is directed, then Aij

signifies an edge going from node i to node j, and in general,

Aij=Aji. A directed graph produces an asymmetric adjacency

matrix with complex eigenvalues. We consider both asymmetric

and symmetric matrices in deriving the approximate spectra of

networks in this work, that represent directed and undirected

graphs, with Aij=Aji, and Aij~Aji, respectively.

We establish the main results in this paper using the following

theorems from random graph theory and random matrix theory.

Spectrum of an Uncorrelated Random Graph
An Erdös-Renyi uncorrelated random graph is a graph of N

nodes where the probability for any two pairs of vertices in the

graph being connected is the same, p, and these probabilities are

independent variables [8]. Thus, the entries have a common

expectation (mean) value of p with a variance of s2. The main

classically known results about the spectrum of uncorrelated

random graphs that are of relevance in the present work relate to

the distribution of its eigenvalues (see Ref. [25]). First, as the

number of nodes N grows, the principal eigenvalue (the largest

eigenvalue l1) grows much faster than the second eigenvalue with

limN?? (l1=N)~p with probability 1, whereas for every Ew1=2,

limN?? (l2=NE)~0. The same relationship holds for the smallest

eigenvalue lN . For every w1=2, limN?? (lN=NE)~0. Thus, if

SkiT is the average degree of a vertex, then the largest eigenvalue

l1 scales as pN and the other eigenvalues l2, . . . ,lN scale as s
ffiffiffiffiffi
N
p

.

These results were presented in a more detailed form in [26] for

undirected graphs or symmetric random matrices. In [26], a

matrix A was considered with independent random variables Aij ,

i§j, bounded with a common bound K . The common bound

implies that all DAij DƒK for all i and j. For iwj, the Aij were

considered to have a common expectation value p and variance

s2, and the expectation value of Aii was considered to be n. Then,

Aij for ivj was defined by Aij~Aji. The numbers K ,p,s2,n are

held fixed as N??, and the mean expected values of the largest

eigenvalue and the limits of the bulk distribution of the other

eigenvalues were studied.

From the results of [26], if pw0 then the distribution of the

largest eigenvalue of the random symmetric matrix A~(Aij) can

be approximated in order 1=
ffiffiffiffiffi
N
p

by a normal distribution of

expectation

(N{1)pznzs2=p ð18Þ

and variance 2s2. Further, with probability tending to 1, as

N??,

max
i§2

Dli Dv2s
ffiffiffiffiffi
N
p

zO(N1=3 log N): ð19Þ

If the expectation value of the diagonal elements n is 0, as is the

case with adjacency matrices of graphs with no self-connections,

then the second term in Eq. (18) vanishes. If n~p, as is the case

with adjacency matrices of graphs with self connections allowed,

then the first two terms become pN. If the variance is restricted to

be small, then the contribution of the third term in Eq. (18) is

small. Then, in general, the leading term pN (for networks with

self-connections allowed) or (N{1)p (for networks with no self-

connections) makes the biggest contribution to the largest

eigenvalue. Figure 9 shows the eigenvalue distribution of 100

random graphs with N~1024,p~0:1, and analytical predictions

from Eqs (18) and (19).

If the common expectation value p~0, then

max
1ƒiƒn

Dli Dv2s
ffiffiffiffiffi
N
p

zO(N1=3 log N), ð20Þ

implying that all the eigenvalues will be contained by the limits

specified in Eq. (20). We note here that the for directed graphs

with asymmetric matrices, this bound is known to be O(s
ffiffiffiffiffi
N
p

),
because in an undirected graph each value appears twice due to

the condition Aij~Aji.
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