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Diabetes is a common metabolic illness characterized by hyperglycemia and is

linked to long-term vascular problems that can impair the kidney, eyes, nerves,

and blood vessels. By increasing protein glycation and gradually accumulating

advanced glycation end products in the tissues, hyperglycemia plays a

significant role in the pathogenesis of diabetic complications. Advanced

glycation end products are heterogeneous molecules generated from non-

enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the

glycation process. Protein glycation and the buildup of advanced glycation end

products are important in the etiology of diabetes sequelae such as retinopathy,

nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes

complications occurs via a receptor-mediated signaling cascade or direct

extracellular matrix destruction. According to recent research, the

interaction of advanced glycation end products with their transmembrane

receptor results in intracellular signaling, gene expression, the release of

pro-inflammatory molecules, and the production of free radicals, all of

which contribute to the pathology of diabetes complications. The primary

aim of this paper was to discuss the chemical reactions and formation of

advanced glycation end products, the interaction of advanced glycation end

products with their receptor and downstream signaling cascade, andmolecular

mechanisms triggered by advanced glycation end products in the pathogenesis

of both micro and macrovascular complications of diabetes mellitus.
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Introduction

Diabetes mellitus (DM) is a chronic metabolic condition

marked by hyperglycemia caused by abnormalities in insulin

production, action, or both (Punthakee et al., 2018). It is

associated with both acute and long-term vascular

complications affecting the eye, kidney, nerves, and blood

vessels which are the major causes of mortality and morbidity

(Forbes and Cooper, 2013). Exposure to a hyperglycemic

environment is the underlying cause of the pathogenesis of

diabetic complications by activating or raising the rate of

several metabolic pathways such as; the polyol pathway, the

Protein Kinase C (PKC) pathway, and the production of

advanced glycation end products (AGEs) (Park et al., 2019).

AGEs are heterogeneous substances formed by irreversible

non-enzymatic interactions between reducing sugars and

proteins, lipids, or nucleic acids, a process known as glycation

(Perrone et al., 2020). AGEs can be exogenous (derived from

food) or synthesized in the body endogenously (Vadakedath and

Kandi, 2018). Exogenous AGEs can be found in meals (especially

in western diets) as a result of cooking or food processing.

Cooking circumstances (high temperatures for an extended

period of time, low hydration, and high pH) generate huge

numbers of several classes of AGEs (Mastrocola et al., 2020).

Endogenous AGEs are majorly produced via the complex

Maillard reaction, in which aldehyde groups on reducing

sugars such as glucose, fructose, and ribose undergo a series

of non-enzymatic reactions to the terminal amino groups of

proteins, nucleic acids, and phospholipids, resulting in the

formation of reactive carbonyl compounds (Fishman et al.,

2018).

Glycation is a spontaneous and slow process under

physiological conditions because it does not involve an

enzyme catalyst; it requires several days or weeks to get

completed (Rabbani and Ahn, 2019). AGEs, on the other

hand, are actively generated and accumulate in the circulating

blood and numerous tissues in the case of chronic hyperglycemia

(Ahmad et al., 2014; Vadakedath and Kandi, 2018). Recently,

both exogenous and endogenous AGEs have been implicated in

the development of diabetic vascular problems in several

investigations (Uribarri et al., 2015; Rhee and Kim, 2018).

One of the potential mechanisms linking inflammation-related

diabetes consequences such as atherosclerosis is exogenous AGE-

induced extracellular matrix (ECM) alteration (Garay-Sevilla

et al., 2021). Aside from atherosclerosis, AGE accumulation in

ECM is thought to be important in other DM complications, as it

has been linked to an increased risk of retinopathy and renal

failure (Koska et al., 2018). However, the scope of this paper is on

endogenous AGEs and their contribution to diabetic

complications.

Clinical studies have revealed a link between the

accumulation of endogenous AGEs and the occurrence of

FIGURE 1
Activation process of NF-κB transcription factor through an AGE-RAGE signaling pathway. Activation of RAGE through AGE interaction
transduces a signal for the phosphorylation of IkB by IKK. Phosphorylated IkB then could be detached from the cytosolic NF-kB transcription factor.
Multiple genes such as cytokines, chemokines, and adhesionmolecules are activatedwhen active and free NF-kB translocate into the nucleus. These
proteins trigger oxidative stress, inflammation, and cellular damage, all of which contribute to diabetic complications.
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vascular problems in diabetes individuals (Koska et al., 2017). As

indicated in Table 1, a significant association between AGEs and

diabetic complications has been demonstrated. Furthermore, the

measurement of AGEs in the tissue or circulation might be

considered a promising biomarker and suggested as a

predictor of diabetic complications (Simó-Servat et al., 2018).

However, the precise biochemical processes underlying the

pathophysiology of AGE-induced diabetic complications need

to be elucidated. Hence, the focus of this paper was to

compressively discuss; the chemical reactions and formation

of AGEs, the interaction between AGE with their receptor and

downstream signaling cascade, and molecular pathways induced

by AGEs in the pathogenesis of both micro and macro-vascular

complications of DM.

Biochemistry of AGEs

Biosynthesis of AGEs

The synthesis of AGEs is a complicated molecular process

involving a multistep reaction. The whole process in the

formation of AGE is called the Maillard reaction (Popova

et al., 2010). Louis-Camille Maillard (1878–1936) developed

the process in 1912, reporting that mixes of amino acids and

sugars become intensely brown at high temperatures. After

40 years, chemist John E. Hodge discovered the mechanism of

the Maillard reaction (Hellwig and Henle, 2014). It is a series of

cascade reactions that occurs between free amino groups of

proteins, peptides, and amino acids with carbonyl groups of

reducing sugars (Perrone et al., 2020). This reaction has three

distinct stages: early, intermediate, and late. A reducing sugar,

such as glucose, combines non-enzymatically with the free amino

group of protein to create the Schiff base in the early stages of the

Maillard process. The Schiff base is then subjected to a

rearrangement process, yielding a more stable molecule

known as the Amadori product. In an intermediary stage,

dehydration, oxidation, and other chemical events

progressively degrade the Amadori product (keto-amine) to a

variety of reactive carbonyl and dicarbonyl molecules such as

glyoxal, methylglyoxal (MGO), and deoxyglucosones (Zhang

et al., 2010; Tsekovska et al., 2016; Kim et al., 2017).

Dicarbonyl compounds are the primary precursors for the

synthesis of several key flavor products, heterocyclic

compounds, and polymers. The highly electrophilic nature of

these dicarbonyl compounds makes them react relatively faster

with guanidine, arginine, lysine, and sulfhydryl functional

moieties of proteins to produce different irreversible adducts

(Allaman et al., 2015). Through polymerization, oxidation,

dehydration, and cyclization events, nearly irreversible

compounds known as AGEs are generated in the late or final

stage of the Maillard reaction (Tsekovska et al., 2016). The

properties of the participating reactants are one of the factors

that affect the Maillard reaction. For instance, the

FIGURE 2
General mechanism of AGEs in diabetic chronic complications. Hyperglycemia is the most common cause of the synthesis of endogenous
advanced glycation products in diabetic patients. The general mechanism of advanced glycation end-products in diabetic vascular complications is
due to the activation of multiple signal transduction pathways as a result of RAGE/AGE interaction or through cross-link formation with cellular
proteins. Activation of RAGE leads to the activation of Nox-1, ERKs, Janus kinase, MAPK, and activation of NF-κB. When those pathways are
activated, oxidative stress (decreased NOS, increased ROS, and increased NADPH oxidase) and inflammatory factors are activated. Cross-link
(adduct) formation on the other hand altered the three-dimensional structure of protein consequently impairing cellular function. As a result of the
combined effect, diabetic vascular complications such as retinopathy, neuropathy, nephropathy, and atherosclerosis develop.
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monosaccharide fructose is more reactive in vitro than glucose

(Yu et al., 2018). AGE molecules have the capacity to interact

with certain proteins, leading to cross-links that impair the

function of the body’s cells and tissues (Indyk et al., 2021).

Although the Maillard reaction is the most common process

for the synthesis of AGEs, there are also other minor pathways,

such as the polyol pathway and lipid peroxidation (Kuzan, 2021).

The polyol pathway contains two enzymatic reactions catalyzed

by aldose reductase (AR) and sorbitol dehydrogenase. Aldose

reductase, the rate-limiting enzyme, reduces glucose to sorbitol at

the expense of reduced nicotinamide adenine dinucleotide

phosphate (NADPH), while, sorbitol dehydrogenase converts

sorbitol to fructose at the expense of NAD+ leading to reduced

nicotinamide adenine dinucleotide (NADH) production (Tang

et al., 2012; Mathebula, 2015). Then the accumulated fructose can

then be transformed into 3-deoxyglucose and fructose-3-

phosphate, both of which are extremely powerful non-

enzymatic glycation agents (Gugliucci, 2017). However, not

only the polyol pathway (endogenous fructose), but

consumption of fructose-rich diets (exogenous fructose) can

also result in the formation of fructose-mediated AGEs

(Sotokawauchi et al., 2019). Another process implicated in the

synthesis of endogenous AGEs and protein cross-linking is lipid

peroxidation. Lipid peroxidation is a process in which oxidants

such as free radicals deteriorate lipids that contain a carbon-

carbon double bond (Ayala et al., 2014). Oxidative stress-induced

increased production of reactive aldehydes can occur because of

lipid peroxidation and glycoxidation. Consequently, protein

cross-linking, oligomerization, and the production of protein

oxidation adducts occur (Moldogazieva et al., 2019).

The normal physiological rate of AGEs synthesis is

proportional to the rate of protein turnover and oxidative

stress. Long-lived proteins (such as collagen and elastin) are

more vulnerable to glycation (Guo and Xu, 2017). The extent of

AGEs synthesis in vivo is also increased by substrate availability

(i.e., monosaccharides). As a result, their rate of production is

accelerated in hyperglycemic conditions (Khalid et al., 2022).

Although there are, several AGEs compounds that have not been

TABLE 1 Clinical and observational studies demonstrating the association between tissue or circulating AGEs and/or RAGE with diabetic chronic
complications.

Author (s) Year Country/
setting

Study subjects Study design Sample/
measurement

Major findings

Barriquand, Romain,
et al. (Barriquand et al.,
2022)

2022 France 196 T1 DM patients Cross-sectional
study

Tissue/skin AF Increased circulation/tissue AGEs were
associated with both micro and macrovascular
complications in DM patients

Farhan, Sinan, et al.
(Farhan and Hussain,
2019)

2019 Jordan 50 T2 DM patients Comparative cross-
sectional study

Serum/ELISA DM patients with complications had
significantly higher serum levels of AGEs and
AGEs/RAGE ratio than patients without
complications and healthy controls. AGEs can
be an early predictor of Reno-vascular
complication

Takayanagi, Yuji, et al.
(Takayanagi et al.,
2020)

2020 Japan 229 DM patients and
165 healthy controls

Comparative cross-
sectional study

Tissue/skin AF AGEs were independently associated with the
progression of diabetic retinopathy

Kopytek, Magdalena,
et al. (Kopytek et al.,
2020)

2020 Poland 126 T2 DM patients Prospective
observational study

Serum/ELISA Accumulation of AGEs in DM patients is
associated with the severity of aortic stenosis

Thomas, Merlin, et al.
(Thomas et al., 2015)

2015 A multi-
centered study

3,763 T2 DM patients Case-cohort study Serum/ELISA Increased levels of AGEs and soluble RAGE
are independently associated with new onset
or worsening of nephropathy in DM patients

Hangai, Mari, et al.
(Hangai et al., 2016)

2016 Japan 122 T2 DM patients Cross-sectional
study

Tissue/skin AF Accumulation of AGEs was positively
correlated with coronary artery calcification

Chawla, Diwesh, et al.
(Chawla et al., 2014)

2014 India 75 T2 DM patients Cross-sectional
study

Serum/ELISA
and PCR

AGEs level and RAGEmRNA expression were
significantly higher in patients with vascular
complications than without complication

Rigalleau, V, et al.
(Rigalleau et al., 2015)

2015 France 418 T2 DM patients Cross-sectional
study

Tissue/skin AF Accumulation of AGEs was independently
associated with chronic kidney disease and
macroangiopathy

Paul J et al.
(Beisswenger et al.,
2013)

2013 USA 103 T1 DM patients Cross-sectional
study

Plasm/Liquid
chromatography

Diabetes nephropathy patients had
significantly higher levels of AGEs. AGEs may
also be early indications of diabetic
nephropathy

Ying, Lingwen et al.
(Ying et al., 2021b)

2021 China 1006 T2 DM patients Cross-sectional
study

Skin/AF AGEs via skin AF is a potential marker of
carotid atherosclerosis in T2 DM patients

Abbreviations: AF, Auto-fluorescence; ELISA, enzyme linked immunosorbent assay; PCR, polymerase chain reaction.
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well characterized, carboxymethyl-lysine (CML) and pentosidine

have been the most described and studied AGEs so far (Ng et al.,

2013a; Ashraf et al., 2014; Ashraf et al., 2015). They are insoluble,

yellow-brown in appearance, and have fluorescent features that

allow them to be detected in circulation and tissues. In general,

AGEs can be classified as fluorescent or non-fluorescent based on

their features (Haddad et al., 2016).

AGE and its receptor (RAGE) interaction

AGE receptors are known as receptor advanced glycation

end-products (RAGEs), which are signal transduction receptors.

It is a multi-ligand trans-membrane protein belonging to an

immunoglobulin superfamily that is encoded by a gene on

chromosome 6 and has 394 amino acids (Chawla and Kumar

Tripathi, 2019). RAGE gene expression is abundant in many

tissues and cells, including the vasculature, lung, heart, brain

tissue, smooth muscle cells, monocytes/macrophages, and

endothelial cells (Perrone et al., 2020). The full length of

RAGE is the most well-studied isoform and has three

domains; extracellular, transmembrane, and cytosolic domains

(Chuah et al., 2013). Alternative splicing of mRNA of RAGE also

leads to an additional RAGE isoform called soluble or secretary

RAGE (sRAGE) which is a freely circulating form lacking a trans-

membrane domain and not involved in the pathogenesis effect of

AGEs (Ng et al., 2013b). Rather, they bind to AGEs to ensure

endocytosis and degradation for the removal of AGEs (Kay et al.,

2016).

The interaction of AGE and RAGE is critical in the

pathophysiology of many diseases, including diabetes

complications. The activation of RAGEs by AGEs transduces

various signals, including those from the mitogen-activated

protein kinases (MAPKs), extracellular signal-regulated

kinases (ERKs), and Janus kinase, resulting in inflammatory,

angiogenic, proliferative, and apoptotic responses (Chawla and

Kumar Tripathi, 2019). The most frequently researched AGE

receptor isoform is full-length RAGE, which is abundantly found

on vascular endothelial cells. Through the activation of nuclear

factor (NF-κB), the recognition of AGE by RAGE in endothelial

cells accelerates the production of oxidative stress, different

cytokines, and growth factors, culminating in the generation

of inflammation (Rhee and Kim, 2018). The AGE/RAGE

signaling cascade also increases the formation of reactive

oxygen species (ROS) by activating certain signaling pathways

such as TGF-α and NADPH-oxidase 1 (Nox-1). ROS-induced

oxidative stress can alter a variety of intracellular components,

including cellular membrane proteins, lipids, and DNA

(Bongarzone et al., 2017). NF-κB is a universal transcription

factor normally found in an inactive form in the cytoplasm

bound to its inhibitor protein called IκB (Sivandzade et al.,

2019). As illustrated in Figure 1, phosphorylation of IκB by a

kinase protein called IκB kinas (Ikk), results in the separation of

IκB from NF-κB. Then NF-κB trans-locates to the nucleus and

binds to a specific region of DNA, triggering the development of

numerous cytokines, chemokines, cell adhesion molecules,

interleukins, TGF, pro-inflammatory proteins, and pro-

apoptotic genes (Huang and Hung, 2013; Hinz and

Scheidereit, 2014; Suryavanshi and Kulkarni, 2017).

AGEs in the pathogenesis of diabetic
complication

The chief causes of mortality and morbidity in diabetes are

vascular complications, particularly microvascular and

cardiovascular complications (Barrett et al., 2017). As

previously stated, AGE cross-links are permanent and

irreversible complexes generated when glucose binds to target

proteins. As a result, once generated, AGEs will remain and

continue to harm the tissue until the proteins involved are

destroyed (Guo and Xu, 2017). AGEs can interact with the

RAGE receptor to cause a variety of adverse outcomes

including oxidative stress, apoptosis, and inflammation, as

well as build the so-called “hyperglycemia memory” (Khalid

et al., 2022). Although additional mechanisms, such as

oxidative stress and epigenetic modifications, are implicated in

the pathophysiology of hyperglycemic memory (currently

metabolic memory), AGEs are the key contributors to

metabolic memory (Zhan et al., 2022). Glycation and

oxidative stress are inextricably related processes that are

frequently referred to as glycoxidation. AGEs enhance the

generation of reactive oxygen species (ROS) and impede

antioxidant mechanisms; nonetheless, certain AGEs are

formed naturally under oxidative conditions (Nowotny et al.,

2015). Furthermore, AGE appears to be the primary driver of

microvascular problems in DM for at least two reasons: First,

AGE has various intra- and extracellular targets. Second,

regardless of hyperglycemia level, Age-related intracellular

glycation of mitochondrial respiratory chain proteins has been

shown to produce additional reactive oxygen species, creating a

vicious cycle that promotes AGE synthesis (Chilelli et al., 2013).

As shown in the Figure 2 the general mechanisms by which AGEs

contribute to all types of diabetic complications are either;

receptor-mediated signaling cascade (AGE/RAGE cell surface

interaction) or damage to the extracellular matrix through their

cross-linking nature (Singh et al., 2014). Hence, understanding

the mechanisms underlying accelerated diabetic complications is

essential to uncover so that targeted therapeutic strategies might

be developed.

AGEs in diabetic retinopathy

Diabetic retinopathy (DR) is the most prevalent cause of

blindness in people with DM, and it is characterized by lesions
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within the retina caused by changes in vascular permeability,

capillary micro-aneurysm, loss of pericytes, and excessive

development of new blood vessels (angiogenesis) (Shin et al.,

2014). Recent epidemiological investigations have demonstrated

that AGEs are linked to both the prevalence and severity of DR in

diabetic patients (Beisswenger et al., 2013; Ying et al., 2021a). A

significant association between skin AGEs and DR staging in

T2DM patients was also reported, and skin AGE levels could

substantially predict the degree of DR (Zhang et al., 2022).

Chronic hyperglycemia exposure causes AGE buildup in the

retina (Alan, 2018). Accumulation of AGEs in the retinal

endothelial microcirculation contributes to premature closure

(occlusion) of capillaries (Xu et al., 2018). Furthermore, they

generate an increase in intracellular cell adhesion molecules

(ICAM), which mediates retinal capillary leukocyte adherence

and the collapse of the inner blood-retinal barrier, culminating in

retinal injury (Moore et al., 2003; Alan, 2018).

Increasing pieces of evidence suggested that mRNA of RAGE

is highly expressed in retinal cells of diabetic patients due to

increased AGEs (Rujman Khan, 2016). Circulating AGE levels

are positively linked with RAGEmRNA expression and oxidative

indicators in patients with type 2 DM (Chawla et al., 2014). This

means that RAGE expression could be enhanced in settings

where ligands and inflammatory mediators accumulate (Yaw

et al., 2013). It has been demonstrated that in a ligand-enriched

environment (AGE accumulation), RAGE expression may rise

and proinflammatory processes may be exacerbated (Senatus and

Schmidt, 2017). The binding of AGE to RAGE triggers critical

signaling pathways such as tyrosine phosphorylation of Janus

kinase (JAK)/signal transducers and activators of transcription

(STAT), activation of protein kinase C, and oxidative stress via

NF-κB (Ott et al., 2014). Finally, it increases the expression of

adhesion molecules and the production of cytokines including

tumor necrosis factor-alpha (TNF-α) and vascular endothelial

growth factor (VEGF) (Safi et al., 2014). Cytokines such as IL-α,
IL-β, and IL-6 are mediators of inflammation in the retina

whereas; VEGF is involved in the formation of new blood

vessels (angiogenesis) in the retinal endothelium, which

contributes to proliferative retinopathy (Gui et al., 2020).

AGEs, on the other hand, independently promote the

secretion of IL-6 from retinal cells, which can lead to

neovascularization by boosting VEGF expression (Alan, 2018).

It was also demonstrated that AGEs could enhance mRNA

expression of TNF-α but reduce eNOS mRNA expression in

human endothelial cells, which may contribute to vascular

dysfunction in DM (Rashid et al., 2004).

Recently, RAGE gene variants (gene polymorphism) have

been associated with DR by altering RAGE gene expression,

albeit there are some contradictory studies (Tao et al., 2017). For

instance, 2245 G/A RAGE gene polymorphisms were associated

with the development of DR in the Malaysian population (Ng

et al., 2012a). 374 T/A RAGE gene polymorphismmight be also a

risk factor for DR among Pakistani T2 DM patients (Qayyum

et al., 2021). On the other hand, another study conducted on

Malaysian DM patients reported that -429 T/C and -374 T/A

gene polymorphism in the promoter region of the RAGE gene

were not associated with DR (Ng et al., 2012b). There was also no

association between 1704 G/T and 2184 A/G RAGE gene

polymorphism and retinopathy susceptibility in DM patients

(Ng et al., 2012c). Hence, more research is required to determine

the relationship between RAGE gene polymorphism and DR.

AGEs also play an important part in the loss of lens

transparency (cataract formation) (Hashim and Zarina, 2017).

A cataract is one of the most common causes of vision

impairment in diabetics. Glycation of lens proteins

(crystallins) has been identified as one of the mechanisms

causing diabetes cataracts. AGEs cause permanent alterations

in structural proteins, causing lens protein aggregation and the

creation of high-molecular-weight aggregates, which causes light

dispersion and impairs vision (Rujman Khan, 2016). In vitro

investigations also revealed that AGEs in pericytes promote

apoptosis by increasing the activity of caspase-3 due to a

reduction in the Bcl/Bax ratio (Safi et al., 2014). Because

pericytes play a vital role in the maintenance of microvascular

homeostasis, their loss can cause endothelial cell damage and

angiogenesis in the retinal blood vessels, resulting in diabetic

retinopathy (Huang, 2020).

AGEs in diabetic nephropathy

Diabetic nephropathy (DN) is the leading cause of end-stage

renal failure in diabetic people (Lin et al., 2018). Clinically, it is

defined by the development of proteinuria, followed by a gradual

reduction in the glomerular filtration rate over time. It is also a

substantial risk factor for macrovascular problems if left

untreated (Parwani, 2017; Lin et al., 2018). AGE levels in

renal tissue have been found to correlate with DN. AGEs

disrupt the balance between synthesis and degradation of

glomerular basement membrane extracellular matrix (ECM)

components, particularly collagen (Anil Kumar et al., 2014).

The cross-linking of AGE with collagen in the basement

membrane will contribute to membrane thickening, impaired

filtration, and eventually loss of glomerular function (Pasupulati

et al., 2016).

AGE-RAGE axis also plays an important role in DN. TGF-β
expression is stimulated by AGE-RAGE signaling in podocytes,

tubular cells, and mesangial cells (Ott et al., 2014). TGF-β is

expressed via the JAK/STATA signaling pathway and is a pro-

fibrotic factor that increases the production of type IV collagen,

laminin, and fibronectin, causing basement membrane

thickening (Singh et al., 2014). The other mechanism of DN

is through cross-talk between AGEs and Rennin-Angiotensin-

Aldosterone System (RAAS). RAS components include renin,

angiotensin I, angiotensin-converting enzyme (ACE), and

angiotensin II, which is predominantly recognized to regulate
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fluid balance (Lin et al., 2018). Angiotensin II causes mesangial

and tubular epithelial cell hypertrophy and acts via the

angiotensin II type 1 receptor (AT1R). AGEs, on the other

hand, increase AT1R expression, which increases Angiotensin

II activity (Parwani, 2017).

Furthermore, AGE also induces renal inflammation and

fibrosis. Activation of RAGE induces the expression of various

cytokines in kidney cells as well. These cytokines, in turn,

promote monocyte chemoattractant protein-1 (MCP-1)

production in renal cells, which is related to monocyte/

macrophage infiltration into the cell (Nowotny et al., 2015).

In addition, AGEs also induce podocytopathy. Glomerular

podocytes are specialized cells that act as a size-selective

filtration barrier, regulating the entry of plasma proteins into

the urine from circulation. RAGE activation in podocytes

promotes NF-κB signaling, which causes zinc finger protein

production called homeobox-2 E-box binding (ZEB2)

(Pasupulati et al., 2016). ZEB2 is a transcription factor that

regulates the epithelial-mesenchymal transition by inhibiting

E-cadherin (an epithelial marker) and activating N-cadherin

(a mesenchymal marker). Podocytes may undergo epithelial-

mesenchymal transition and detach from the basement

membrane, resulting in a drop in podocyte count per

glomerulus and proteinuria (Loeffler and Wolf, 2015). A

significant association between AGEs, particularly CML, with

podocyte injury and proteinuria was also observed in DM

patients, which contributed to impaired kidney function

(Nishad et al., 2021). However, the precise signaling

mechanisms of NF-κB/ZEB2 in podocytes still need to be

explored.

AGEs in diabetic neuropathy

Diabetic neuropathy is a phenomenon characterized by

segmental demyelination and axonal degradation in both the

somatic and autonomic divisions of the peripheral nervous

system (Salahuddin et al., 2014). It causes functional

abnormalities such as decreased nerve transmission and blood

flow, which increases the risk of lower extremity amputations in

diabetics throughout the course of their lives (Amin and Doupis,

2016). The generation of AGEs in peripheral nerves has recently

been identified as an additional risk factor for diabetic

neuropathy development. The glycation of myelin is increased

in diabetes. Glycated myelin is vulnerable to macrophage

phagocytosis and induces macrophages to release proteases,

which may contribute to nerve demyelination (Khangholi

et al., 2015). It has been also observed that AGE modification

of important axonal cytoskeletal proteins such as tubulin,

neurofilament, and actin results in axonal atrophy/

degeneration and decreased axonal transport (Sugimoto et al.,

2008). Furthermore, in vitro studies revealed that oxidative stress

increases the glycation of the Na+/K+ ATPase protein. Glycation

of Na+/K+ ATPase may cause it to lose activity, resulting in a

decrease in motor nerve conduction velocity (Singh et al., 2014).

AGEs are elevated in the presence of distal sensorimotor

polyneuropathy (DSPN) among T2 DM patients, and AGEs

are linked with the severity of DSPN, according to

observational studies (Papachristou et al., 2021). Decreased

relative muscle strength was also observed in patients with

T2 DM with elevated serum levels of AGEs (Wu et al., 2022).

AGEs in diabetic atherosclerosis

Atherosclerosis is the most serious long-term diabetes

complication, defined by the deposition of atherosclerotic

plaque on the interior of artery walls, leading to blockage of

blood flow and, finally, myocardial infarction/cardiomyopathy

(Nowotny et al., 2015). Increased glycation of Apolipoprotein-B

and phospholipid components of low-density lipoprotein (LDL)

particle occurs in diabetes. Apo B, a surface protein of LDL, is

glycated at a positively charged lysine residue in the receptor-

binding domain. Glycated LDL is thus not recognized by the LDL

receptor, yet its absorption by macrophages is increased. This

could hasten the production of foam cells seen in diabetics (Knott

et al., 2019). Glycation, on the other hand, increases the turnover

of high-density lipoprotein (HDL) and lowers its efficiency

during reverse cholesterol transfer. Furthermore, glycation of

HDL decreases the activity of paraoxonase, an HDL-associated

enzyme that prevents LDL oxidation and monocyte adherence to

endothelial cells. Both of which are critical early stages in the

production of atherosclerotic plaques (Komplikacija and Tipa,

2015).

It has been reported that AGE-RAGE signaling generates

oxidative stress and inhibits endothelial cell-derived nitric oxide

(NO). Endothelial dysfunction, an early hallmark of

atherosclerosis, could be exacerbated by impaired endothelial

cell-derived NO production and/or bioavailability (Yamagishi

and Matsui, 2018). The cross-linking of AGEs with extracellular

matrix proteins like collagen and elastin has also been linked to

arterial stiffness. Through their interaction with RAGE, AGEs

also increase the synthesis of vascular endothelial growth factor

(VEGF) in endothelial cells. VEGF then promotes pathologic

angiogenesis in the atheroma and exacerbates plaque

inflammation (Rhee and Kim, 2018).

When AGE binds to receptors, it causes oxidative stress,

nuclear factor (NF-κB) activation, and the synthesis of adhesive

molecules and vascular cell adhesion molecules (VCAM-1),

resulting in greater permeability of endothelial cells and a

more intense invasion of lipids in the sub-endothelium

(Milstone et al., 2016). AGEs in DM also activate the RAGE/

toll-like receptor 4 (TLR4) pathway in plaque macrophages.

Delta-like ligand 4 (DLL4) expression is promoted by

activated RAGE/TLR4 signaling. Dll4 expression on

macrophage-treated vascular smooth muscle cells (VSMCs)
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results in contractile-phenotypic conversion via the Notch

pathway, which contributes to atherosclerosis (Xing et al.,

2022). Additionally, AGE-RAGE interaction in monocytes-

macrophages increases the synthesis of the following

mediators: interleukin-1 (Il-1), tumor necrosis factor (TNF-a),

platelet-derived growth factor (PDGF), and insulin-like growth

factor-1 (IGF-1), all of which play a role in the pathogenesis of

atherosclerosis (Komplikacija and Tipa, 2015). Furthermore,

oxidative stress induced by AGE-RAGE signaling has been

demonstrated to reduce the expression levels of Adenosine

triphosphate Binding membrane Cassette transporter A1

(ABCA1) in cultured macrophages and eventually suppress

cholesterol efflux from macrophages to Apo-A1 of High-

Density Lipoprotein (HDL), ultimately impairing the reverse

cholesterol transport system (Yamagishi and Matsui, 2018).

Given the detrimental effects of AGEs, ongoing studies are

being carried out to develop molecules that can suppress the

AGE-RAGE signaling pathway (Hong Sheng et al., 2017a). Drugs

clinically approved for other indications such as statins, anti-

hypertensive medicines, and anti-diabetic therapies are the most

recent promising anti-AGEs-RAGE signaling agents (Nenna

et al., 2015). Nevertheless, the clinical evidence on the anti-

AGE-RAGE antagonizing action of these medications is still

limited to certain drug classes (Jud and Sourij, 2019). Statins

have been demonstrated in studies to increase sRAGE levels by

triggering RAGE shedding. Hence they suppress pro-

inflammatory disease-promoting ligand/RAGE pathways

(Quade-Lyssy et al., 2013). Although its exact molecular

mechanism is not clearly elucidated, atorvastatin has been

shown to have a direct inhibitory effect on AGE-RAGE

expression in the aorta of rats, indicating that it may protect

against diabetes-related atherosclerosis (Xu et al., 2014). It was

observed that in DR patients on antihyperglycemic and

antihypertensive medications, both NF-κB p65 and circulating

MCP-1 levels, which are pro-inflammatory markers, were

significantly reduced (Ng et al., 2013c). It is hypothesized that

inhibiting the AGE-RAGE axis may be more advantageous in the

early stages of diabetes, delaying the advancement of related

vascular complications (Hong Sheng et al., 2017b). Furthermore,

in recent years, natural compounds rich in bioactive elements

(phytochemicals) have been shown to interact with AGEs and

their related mediators via multiple signaling cascades, thereby

limiting and inhibiting the course of diabetes (Parveen et al.,

2021). The results of ongoing and future clinical trials may aid in

defining the best therapeutic target for AGEs in diabetes

complications.

Conclusion

Hyperglycemia promotes the development of AGEs in

diabetic patients. Increased glycation and AGE accumulation

in tissues and serum contribute significantly to the

pathophysiology of diabetic vascular problems such as

retinopathy, nephropathy, neuropathy, and atherosclerosis.

Recent evidence focused on the molecular mechanism of

AGE-RAGE axis cellular signaling in diabetic complications

besides their impact on long-lived extracellular proteins

through non-receptor-mediated mechanisms. Several chemical

compounds are produced that appear to stimulate intracellular

signal transduction pathways for the production of pro-

inflammatory and pro-sclerotic cytokines, thereby increasing

oxidative stress and gene expression and leading to the

development and progression of diabetic vascular

complications. In the future, these mechanisms and molecular

pathways may be the source of new therapeutic targets to prevent

vascular complications in diabetes mellitus patients.
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