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Abstract

The study of molecular dynamics simulations is largely facilitated by analysis and visuali-

zation toolsets. However, these toolsets are often designed for specific use cases and

those only, while scripting extensions to such toolsets is often exceedingly complicated.

To overcome this problem, we designed a software application called AViS which focuses

on the extensibility of analysis. By utilizing the dataflow programming (DFP) paradigm,

algorithms can be defined by execution graphs, and arbitrary data can be transferred

between nodes using visual connectors. Extension nodes can be implemented in either

Python, C++, and Fortran, and combined in the same algorithm. AViS offers a comprehen-

sive collection of nodes for sophisticated visualization state modifications, thus greatly

simplifying the rules for writing extensions. Input files can also be read from the server

automatically, and data is fetched automatically to improve memory usage. In addition, the

visualization system of AViS uses physically-based rendering techniques, improving the

3D perception of molecular structures for interactive visualization. By performing two case

studies on complex molecular systems, we show that the DFP workflow offers a much

higher level of flexibility and extensibility when compared to legacy workflows. The soft-

ware source code and binaries for Windows, MacOS, and Linux are freely available at

https://avis-md.github.io/.

Introduction

The study of molecular behaviour through analysis and visualization of Molecular Dynamics

(MD) simulations is becoming more widely adopted with the increasing processing power of

modern computers. A large number of software was developed for this purpose, each with a

give-and-take balance between analysis and visualization flexibility. For example, analysis-

focused libraries such as MDAnalysis [1] [2], MDTraj [3], and cpptraj [4] provide the neces-

sary toolsets to analyze complex molecular systems to extract relevant information, while

some analysis software such as VMD [5], AVOGADRO [6], PyMOL [7], and VESTA [8], apart

from their analysis capabilities, also provide tools to visualize the results. While most analysis
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software offer very extensive analysis capabilities, and they allow complex modifications and

extensions to the framework, a deep knowledge of their respective scripting interfaces are

required, and hard constraints applied to valid scripts are a hurdle for novice users, even those

well versed in bare-bone analysis programming. Therefore, common analysis methods such

as hydrogen bonds or Common Neighbor Analysis are often provided in most applications

and new algorithms are seldom implemented for integration with the software, except for

advanced users. Other software such as OVITO [9] uses a combined visual workflow of analy-

sis and visualization, and enabling complicated techniques to be separated and applied in

steps. However, a large dependency on the API is still required when writing custom modules,

and the flexibility of data transfer between functions is somewhat limited. In this paper, we

seek to improve these limitations by proposing an Analysis and Visualization Software (AViS)

application from scratch which utilizes the dataflow programming (DFP) paradigm and allows

for graphical designing and debugging of algorithms. This study also demonstrates the flexibil-

ity and API simplicity of AViS and DFP in the analysis and visualization of MD data. By using

AViS, we are able to simplify and accelerate various analysis and visualization tasks, as

described in the sections that follow.

Methods

Software overview

AViS is an OpenGL-based application written in C++. The software is portable and runs

natively on various Microsoft Windows / macOS / Linux versions. As an integrated software

application, AViS provides a unified environment for analysis and visualization. The user

interface of AViS is shown in Fig 1.

Analysis

Application of dataflow programming. As existing analysis paradigms lack flexibility,

we designed AViS with the DFP paradigm in its analysis framework, implemented as execu-

tion graphs. An execution graph contains multiple nodes, which are evaluated in order and

their outputs are passed on to other nodes. Due to the black-box nature of DFP, users do not

need to control data conversion and copying, and thus a combination of nodes implemented

in different languages in the same graph is allowed. Therefore, new nodes can be created by

the user using either Fortran, Python, or C++. Each node exposes its input/output variables in

the user interface (UI), which can then be connected to any counterpart with a compatible

type. In addition to integer and floating-point values, AViS also supports the data transfer of

multi-dimensional variable-length arrays. A list of internal nodes provided by AViS is shown

in S1 Table. Various examples of analyses using this software can be found in the documenta-

tion pages.

Scripting. Due to the multi-language compatibility, a generic and easy-to-understand for-

mat must be enforced for analysis scripts. In this case, we specifically designed the software

with no API whatsoever; all relevant code is appended by the internal pre-processor. This

makes writing scripts for AViS extremely easy as the user does not have to learn about any

application-specific function calls or data structures. As a replacement, we require that all vari-

ables that the user wishes to expose to other nodes be preceded with a short comment. An

example of valid analysis scripts written in Fortran, Python, and C++ is shown in S1, S2 and

S3 Appendices, respectively, and they can be used together, as shown in S1 Fig. Compilers

available in the system are used for compilations, with support for gcc, clang, MSBuild and

Python 3.7. AViS can still work with other languages even if certain compilers are not
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available. A summary of comment syntax for each language is shown in S4 Appendix through

S6 Appendix.

To allow for interoperability between languages, C++ and Fortran scripts are edited inter-

nally before being compiled and loaded as dynamic libraries. Additional code is inserted in

place of the comments, so the line numbers in the error messages will still match the original

file. For Fortran scripts, subroutines that expose the shape and contents of arrays to AViS are

automatically generated and appended. This allows AViS to interact with multi-dimensional

variable-length arrays in Fortran scripts, with no effort on the user’s part. For Python, all vari-

ables are accessed directly using the Python C API, and arrays use the Numpy [10] C API.

Attributes. Compared to classic data processing pipelines and single-file analysis work-

flows, the graph workflow provides a higher level of freedom for data transfer. As data flow is

defined solely in the UI, very generic scripts and algorithms may be written, without special

Fig 1. Application screenshot. A screenshot of AViS, with its analysis and visualization modes. (a) Analysis mode of

AViS. The graphical algorithm to compute the hydrogen bonds and density profile of carbon nanotubes are set up. (b)

Visualization mode of AViS. The system as well as the results of the analysis is visualized. Various realtime effects such

as Bloom, Ambient Occlusion, and Depth of Field are also applied to the 3D view.

https://doi.org/10.1371/journal.pone.0231714.g001
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consideration of the data source. To ease the analysis of values assigned to each atom, such as

order parameter values, AViS also allows for the definition of an arbitrary number of “attri-

butes” in the UI. The values can be read from, and written to, at any point in the execution.

Operations with attributes are defined in the graph UI, so complicated algorithms involving

the reuse of multiple variables can be achieved easily. Attributes are also useful for algorithm

debugging purposes as they allow for the visualization of intermediate outputs.

Data input

As many different types of simulation software give rise to a variety of file formats, it is vital

that AViS supports as many formats as possible. AViS natively supports the importing of con-

figuration and trajectory files from popular formats such as GROMACS [11], LAMMPS [12],

and Protein Data-Bank [13] files. Other formats can also be expanded for AViS by writing a C

plugin and putting the compiled library in the designated folder. Data from the trajectories

can then be accessed from scripts using the input nodes, as shown in S2 Fig. A generic Space-

Separated Values (SSV) format is also available for loading trajectories containing arbitrary

attributes without writing a plugin. An example file is shown in S7 Appendix. By importing

attributes, users can perform analysis on complex molecules without being constrained by the

existing attribute list of the software or the file formats. An example of this usage for a system

of liquid crystals as shown in S3 Fig, where the orientation vectors are imported as the rotx,

roty, and rotz, attributes and may be analyzed and visualized without the need for software

extensions. The data import and analysis frameworks are entirely seperated, so different files

written in different formats can be easily analysed using the same analysis graph.

Visualization

As graphics cards become more powerful, visualization programs should exploit the capabili-

ties of the hardware with the newest methods and APIs. AViS uses the OpenGL 3.3 standard,

which is the most recent version that is also supported on most computers. All atoms and

bonds are drawn as sprites using ray-tracing methods, and all polygon meshes, such as protein

strips, are generated on-the-fly using shaders. The lighting model is physically-based and uses

pre-processed radiance maps and a Fresnel term [14], improving the 3D perception of mole-

cules. The deferred rendering method is adopted for the rendering path to allow for sophisti-

cated lighting techniques and improved performance of the UI. Details of the rendering

procedure are shown in S4 Fig. By combining these methods, we are able to achieve interactive

to real-time frame-rates on typical computers, even for systems with millions of atoms. As the

deferred rendering path saves intermediate results, we further improve performance of the

interface by only redrawing the parts of the rendering path that are required. For example,

when the user changes the lighting intensity, the geometry buffer is retained and only the light-

ing buffer is recalculated. The intermediate buffers also allow for sophisticated lighting effects

such as Depth-of-Field and Screen-Space Ambient Occlusion.

In the place of a scripting interface, AViS provides a comprehensive collection of operation

nodes. These nodes allow arbitrary script inputs/outputs to interact with the loaded data and

visualization state. For example, the following non-exhaustive operations can be performed

using nodes:

• Querying all positions of current atoms that are visible or in a certain region

• Modifying the color/radius/visibility of atoms

• Creating bonds between atoms
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Results and discussion

Two case studies are used to demonstrate the flexibility and extensibility of AViS. Here, we

look at the formation of Lennard-Jones (LJ) droplets and clathrate hydrates. We choose these

systems as their analysis process is complex enough to show the capabilities of AViS. As the

total file sizes of the two simulations considered are about 7 and 14 Gigabytes, respectively, the

data for both simulations are prepared on a remote file storage system. However, we show that

analysis and visualization can still be performed on them by utilizing the remote file handling

capability of AViS. All scripts used in these studies are provided as supplementary information,

implemented in C++. Some scripts are also translated to Python and Fortran for reference.

The analysis results remain consistent when replacing nodes with one generated from a differ-

ent language. We encourage the reader to refer to the comments in each script detailing the

implementation for each analysis step.

Analysis flexibility

For the first case study, we performed the tracking of nucleated clusters in a LJ droplet sys-

tem [15]. As the tracking of clusters requires the implementation of complex recurrent

algorithms and extensive use of temporary variables, this case study is intended to test the

flexibility of the analysis framework of AViS. For this study, we performed a simulation of

10976 LJ atoms using FDPS [16], and recorded a total of 10,000 snapshots over a simulation

time of 21.5 ns.

First, we identified the largest nucleated cluster in the final snapshot. The flexibility of DFP

allows us to split up the algorithm into different generic functions, as shown in Fig 2(a). We

used three different functions written in C++. Their contents are listed as follows:

• list_neighbors: Create a neighbor-list for each molecule with a user-defined cutoff.

• group_list: Apply a unique ID to each group of connected molecules.

• mode_mask: Label the molecules with the ID that appears most often.

The results of each step are saved as a different attribute for debugging, with their visualiza-

tion results shown in Fig 3. By splitting the algorithm into separate nodes, we are able to visu-

ally debug the results of each step. This is considerably easier than implementing the whole

algorithm in one function.

Next, we tracked the formation of the identified cluster by devising a recurrent algorithm

that updates the cluster label based on the next snapshot. The visual representation of the algo-

rithm is shown in S5 Fig. First, the cluster IDs for the current frame are computed. Next, the

number of molecules in each cluster that is labeled as a cluster in the previous frame are

counted. Finally, the cluster with the largest number of counted molecules is identified as the

main cluster, and the labels are updated accordingly. If the count is 0, the cluster has dissi-

pated, and so the labels are cleared. This algorithm is implemented in a new node:

• track_cluster: Update the labels based on current cluster groups.

As this algorithm still requires the grouping of clusters in each snapshot, we exploit the

flexibility of the graph system by reusing the grouping functions in the previous step. The com-

plete setup is shown in Fig 2(b). To make the algorithm recurrent, the same attribute (curren-
t_label) is set as both the input and output target of the track_cluster node, which is allowed in

AViS. An additional attribute is also used to save the output for the whole trajectory, whose

results are shown in Fig 4.
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Finally, we applied a gradient to each molecule based on its formation time, where atoms

would fade to red as they join the cluster, and fade to blue when they leave. This is achieved by

using a second recurrent function centered on a new node:

• labels2colors: Update the color of atoms based on their label.

By running the setup forward through time, as shown in Fig 2(c), atoms fade into red or

blue as they join or leave the cluster. However, we also require that atoms that are about to join

a cluster fade from blue and vice versa. This is easily achieved in AViS by running the exact

same algorithm backwards by setting the appropriate option. This shows the advantage of

exposing the algorithm as nodes, in that it allows for changes in the execution flow without

Fig 2. The analysis setup for LJ droplets. (a) The largest cluster identification algorithm setup. (b) The cluster

tracking algorithm setup. (c) The color graduation algorithm setup.

https://doi.org/10.1371/journal.pone.0231714.g002
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modifying the code. The attributes created from both loops are then combined, resulting in

the output as shown in Fig 5.

Other common processes in cluster analysis include finding the largest cluster at

every point in time. As we already have all the components, we simply plug the group_ids
into themode_mask node. We can also offset the camera to point to the labeled cluster by

calculating its center with a self-evident script and passing the result to the Set Camera Cen-
ter node.

To conclude, this case study showed that by using AViS’ graph system, algorithms that

involve loops over multiple modules that are otherwise difficult to achieve can be easily imple-

mented. As the module implementations are completely isolated, each function can also be

written with little to no reference to others, thus speeding up the analysis procedure.

Fig 3. Visualization of the attribute results of the largest cluster identification algorithm. (a) The number of neighbors of each molecule.

The color shifts from blue to red with an increasing number of neighbors. (b) The cluster index of each molecule. Each color corresponds to an

unique cluster index. (c) The label mask for the largest cluster. The largest cluster is colored red.

https://doi.org/10.1371/journal.pone.0231714.g003

Fig 4. Visualization of the results of the tracking algorithm. In this algorithm, the main cluster is tracked backwards through time and colored red. (a) The final

snapshot. The largest cluster is labeled. (b) The snapshot during the instant two clusters have combined. The clusters still share a common label. (c) The snapshot

before the two clusters combined. The largest of the two is tracked and labeled.

https://doi.org/10.1371/journal.pone.0231714.g004
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Visualization flexibility

The Mutually Coordinated Guest (MCG-1) algorithm for the study of the growth of methane

clathrate hydrates was presented by Barnes et al. [17]. For effective analysis of the results, we

would like to change the appearance of atoms based on the results, as well as create bonds

forming the hydrate-like structures. Therefore, high interoperability between analysis and

visualization modules is required. In this study, we used a portion of the same data created by

the authors of the MCG-1 algorithm [18], which contains a mixture of 2944 water atoms and

512 methane atoms, over 8000 frames.

The MCG algorithm looks for the structure shown in S6 Fig. The algorithm is split into sep-

arate modules for ease of debugging, with each module explained below. The completed analy-

sis graph is shown in Fig 6.

Several nodes are created for this case study, one for each step of the algorithm:

• filter_guests: Find pairs of guests within 9Åof each other.

• filter_waters: Find water molecules that are 45˚ between each guest pair.

• hbonds_filtered: Find hydrogen bonds between selected water molecules.

Fig 5. The results of the color graduation algorithm. A color gradient is applied so that atoms are colored blue to red based on how near they are to being a part

of the main cluster. The same snapshots from Fig 4 is used. (a) A subcluster turns green right before merging with the tracked cluster (b). (c) A small green cloud

surrounds the tracked cluster, indicating the constant flux of particles.

https://doi.org/10.1371/journal.pone.0231714.g005

Fig 6. The complete setup for the second case study. The analysis setup for the hydrate formation case study, namely

the MCG-1 algorithm.

https://doi.org/10.1371/journal.pone.0231714.g006
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• reconnect_water: Change O-H bonds to O-O bonds.

• find_links: Look for bonds making up a n-chain polygon. In this study, n is set to 5.

• register_hydrate: Assign a unique label for caged guests and their oxygen atom structures.

Additionally, the following operational nodes provided in AViS are used for modifications

on the visualization state:

• Extra Bonds: Create additional bonds between atoms.

• Show Range: Hide atoms with an attribute value outside of a specified range.

• Set Radius Scale: Modify the radius of atoms.

As with the first case study, splitting the algorithm into parts allowed us to visually debug

the validity of each step. As with the previous case study, all atom properties such as masks are

saved as attributes, one of which can be seen in Fig 7(a). Also, the bonds created can be easily

switched between O-H (Fig 7(b)) and O-O (Fig 7(c)) by simply changing the input source of

the Extra Bonds node. This further shows the advantage of exposing critical functions in the

UI instead of as an API.

By running the algorithm across the whole trajectory, the progression of the formation of

hydrates can be visualized as shown in Fig 8. AViS automatically caches the result for each

step, so when the calculation is finished, all results can be visualized in the window directly,

including dynamic bonds, visibility, and size changes.

Additionally, a crucial step in hydrate nucleation analysis is identifying the formation time

of the initial cluster by plotting the value of the order parameter through time. This can be

achieved in AViS by using the Plot Data node set to the Lines (Accumulate)mode, taking the

order parameter value as input. The output of the node is shown in S7 Fig, which shows the

point of hydrate formation at approximately frame 2000.

To conclude, this case study showed that by exposing essential functions in the UI, changes

to the visualization state can be made instantly, with no need for recompilations or API

Fig 7. The intermediate results of the hydrate analysis. Large spheres are methane molecules, while small connected spheres are O and H atoms of water

molecules. (a) Water molecules identified by the MCG-1 algorithm are colored red. (b) Cage bonds are drawn in yellow in the form of O-H bonds. (c) Cage bonds

are drawn in yellow in the form of O-O bonds. AViS is able to change between (b) and (c) by simply switching the connection of nodes.

https://doi.org/10.1371/journal.pone.0231714.g007
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lookups. As a result, visual debugging of algorithms can be performed easily, without extensive

and potentially complex changes to the code.

From our case studies, we can say that our software is useful for students or researchers

who would like to visually inspect their algorithm’s results easily, or when designing and

tweaking the algorithm itself, as changing and debugging parameters are very easily acheived,

and the independance between functions make it very easy to rearrange, reuse, and understand

snippets of code. However, such frameworks do suffer from a lower execution speed compared

to raw analysis code, and the optimization of DFP code is a research topic we are currently

tackling. We do think though that by using AViS to design analysis code, a lower performance

in exchange for a much faster debugging time is acceptable for non-expert researchers.

Conclusions

We have introduced Dataflow Programming for the analysis of MD data by creating AViS and

demonstrated its flexibility in two complex case studies. We also showed that by abstracting

the analysis scripts, we are able to substantially reduce the complexity of user code, while

retaining the ability to interact with the visualization system. We believe that the DFP method

has great potential, and while manual parallelization of single nodes using OpenMP is possible,

we expect future work on parallelization of graph executions to further improve analysis per-

formance. The source code, binaries for Windows, Linux, and MacOS, as well as documenta-

tion of AViS, are hosted on Github at https://avis-md.github.io.

Supporting information

S1 Table. Examples of in-built nodes provided by AViS. Custom nodes can be implemented

by the user to interact with internal nodes, regardless of language.

(PDF)

S1 Appendix. A valid fortran analysis script that generates a sine wave.

(PDF)

S2 Appendix. A valid Python analysis script that differentiates an array.

(PDF)

Fig 8. The progression of hydrate formation in the trajectory. Unidentified and identified methane molecules are colored blue and green respectively, and

unindentified water molecules are not visualized. Snapshots (a), (b), and (c), are taken at arbitrary frames throughout the trajectory. AViS caches the results of each

analysis frame, so modifications including radius, color, and additional bonds can be animated.

https://doi.org/10.1371/journal.pone.0231714.g008
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S3 Appendix. A valid C++ analysis script that applies an exponential decay to a signal.

(PDF)

S4 Appendix. Comment syntax for Fortran scripts.

(PDF)

S5 Appendix. Comment syntax for Python scripts.

(PDF)

S6 Appendix. Comment syntax for C++ scripts.

(PDF)

S7 Appendix. An example of a SSV file with rotational and potential attributes. Each entry

in the first line represents the type of data in each column.

(PDF)

S1 Fig. Multi-language support for analysis. AViS handles data transfer between Fortran,

Python, and C++ scripts automatically, including arrays as seen here.

(PDF)

S2 Fig. Accessing molecular data from scripts. The molecular data of the loaded configura-

tion and trajectory can be accessed using the input nodes. The positions and velocities of the

current visible frame, as well as of the whole trajectory can be accessed, as well as additional

attributes that are imported, if available. The input values update to the data for each frame

over the trajectory when the graph is executed for all frames.

(PDF)

S3 Fig. Visualization and analysis of molecules with attribute data. (a) By importing the ori-

entation data as attributes with the Generic SSV format, liquid crystal molecules can be visual-

ized without the need to write a custom plugin or importer. In this figure, a color gradient is

also applied based on the roty attribute. (b) Individual attributes can be used in analysis by uti-

lizing the Get Attribute node.

(PDF)

S4 Fig. The rendering pipeline. (a) Bounding quads are generated using a vertex shader. (b)

(c) Surface information channels are generated using ray-tracing in a fragment shader. (d) A

Physically-based Rendering (PBR) shader combines the channels into the final image. (e) By

utilizing deferred shading, UI overlays and image effects can be added without re-drawing the

whole scene, thus improving performance.

(PDF)

S5 Fig. The visual representation of the tracking algorithm. (a) The current frame. (b) The

next frame. (c) The number of particles belonging to the previous cluster is counted. (d) The

labels are updated for the cluster with the largest count.

(PDF)

S6 Fig. MCG-1 algorithm representation. A visual representation of the mutually coordi-

nated guest order parameter used in the case study on clathrate hydrates. The algorithm is pre-

sented by Barnes et al. [17]).

(PDF)

S7 Fig. The value of the order parameter across the whole trajectory. By recording the

number of classified molecules every step, we can identify the point of hydrate formation at

about frame 2000.

(PDF)
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