
lable at ScienceDirect

Contemporary Clinical Trials Communications 5 (2017) 116e122
Contents lists avai
Contemporary Clinical Trials Communications

journal homepage: www.elsevier .com/locate/conctc
Personalized medicine enrichment design for DHA supplementation
clinical trial

Yang Lei a, Matthew S. Mayo a, Susan E. Carlson b, Byron J. Gajewski a, *

a Department of Biostatistics, The University of Kansas Medical Center, School of Medicine, Mail Stop 1026, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
b Department of Dietetics and Nutrition, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
a r t i c l e i n f o

Article history:
Received 24 June 2016
Received in revised form
23 November 2016
Accepted 3 January 2017
Available online 27 January 2017

Keywords:
Enrichment design
Subgroup analysis
Overall type I error
Power
* Corresponding author.
E-mail addresses: leiyang07@gmail.com (Y. Lei), mm

scarlson@kumc.edu (S.E. Carlson), bgajewski@kumc.e

http://dx.doi.org/10.1016/j.conctc.2017.01.002
2451-8654/© 2017 The Authors. Published by Elsevier
a b s t r a c t

Personalized medicine aims to match patient subpopulation to the most beneficial treatment. The
purpose of this study is to design a prospective clinical trial in which we hope to achieve the highest level
of confirmation in identifying and making treatment recommendations for subgroups, when the risk
levels in the control arm can be ordered. This study was motivated by our goal to identify subgroups in a
DHA (docosahexaenoic acid) supplementation trial to reduce preterm birth (gestational age<37 weeks)
rate. We performed a meta-analysis to obtain informative prior distributions and simulated operating
characteristics to ensure that overall Type I error rate was close to 0.05 in designs with three different
models: independent, hierarchical, and dynamic linear models. We performed simulations and sensi-
tivity analysis to examine the subgroup power of models and compared results to a chi-square test. We
performed simulations under two hypotheses: a large overall treatment effect and a small overall
treatment effect. Within each hypothesis, we designed three different subgroup effects scenarios where
resulting subgroup rates are linear, flat, or nonlinear. When the resulting subgroup rates are linear or flat,
dynamic linear model appeared to be the most powerful method to identify the subgroups with a
treatment effect. It also outperformed other methods when resulting subgroup rates are nonlinear and
the overall treatment effect is big. When the resulting subgroup rates are nonlinear and the overall
treatment effect is small, hierarchical model and chi-square test did better. Compared to independent
and hierarchical models, dynamic linear model tends to be relatively robust and powerful when the
control arm has ordinal risk subgroups.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

An important trend in treatment paradigm is personalized
medicine, which is aimed to match patients to the most beneficial
treatments. Patient populations are heterogeneous even in the
same study. Characteristics vary between individuals, such as de-
mographics, life style, genetic variants, etc. These varied charac-
teristics can potentially impact the treatment effects on different
individuals or subsets of patient populations.

It is important to distinguish the subgroups that benefit from
novel treatment relative to control (e.g. standard of care)and sub-
groups that don't benefit or might even unnecessarily be exposed
to a hazardous side effect [1]. Our research was motivated by our
ayo@kumc.edu (M.S. Mayo),
du (B.J. Gajewski).

Inc. This is an open access article u
goal to design a clinical trial to identify subgroups in a trial to
supplement pregnant women with docosahexaenoic acid (DHA) to
reduce the rate of preterm births (PTB, gestational age<37 weeks).
This is the first step in an enrichment design where a certain sub-
group will be identified and the succeeding steps will distinguish
the treatment effect within the selected (enriched) subpopulation
[2].

Berry et al. (2013) discussed three clinical trial models assuming
four subgroups of patients under an adaptive framework: Simon's
Optimal Two-Stage model, a Bayesian independent model, and a
Bayesian hierarchical model [3]. They showed that the hierarchical
model could provide additional power and reduction in sample size
compared to other two methods but acknowledged that hierar-
chical modeling could make finding a single effective subgroup
more difficult, if there was only one [3].

We followed their four-group design in this study. The four-
group design is an example for illustration and can be general-
ized to different settings. The hierarchical model does not require
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the entities to be related [3].
In practice it is common to classify subjects into different risk

levels of subpopulations. We classified the four subgroups accord-
ing to their risk levels assuming they are receiving placebo or
standard of care (control arm). Our study extended Berry et al.
(2013) and aimed to identify a more efficient design from a pro-
spective perspective to achieve the highest level of confirmation in
identifying and making recommendations for subgroups [4], given
the fact that the risk subgroups can be ordered in the control arm.

Two major considerations on subgroup analysis in clinical trial
designs are: preserving Type I error and improving power [1].
Testing each hypothesis in a multi-group study inflates the overall
Type I error rate. Multiplicity adjustment is required to preserve the
overall Type I error rate [5]. We calibrated [6] the operating char-
acteristics in simulations to ensure the overall Type I error rate was
close to 0.05 (one-sided) in all designs that used different statistical
models.

Approaches to improve statistical power in subgroup analysis
include: using available information from previous studies [5] and
borrowing information across subgroups [3]. We did a meta-
analysis that contained data from nine DHA supplementation tri-
als across the world to obtain informative priors. Then informative
priors were applied to three different models: independent model
(IM), hierarchical model (HM), and dynamic linearmodel (DLM). All
methods were compared to the chi-square test to see the benefit of
each model in the trial design.

2. Methods

2.1. Prior distributions

In subgroup analysis, a prior distribution is assumed for
subgroup-specific treatment effect [5]. There are advantages and
disadvantages of using both non-informative and informative
priors. When historical data for the control arm are consistent with
current study data, using informative priors constructed from
previous complete trials can improve testing power and generate
robust results [7].

For the meta-analysis from nine completed DHA supplementa-
tion trials, five were included in a review study conducted by the
Cochrane Collaboration: Denmark 1992, England 1995, Europe
2000, Netherlands 1994, and USA 2003 [8]. Besides these we
included four other trials: KUDOS (Kansas University DHA Out-
comes Study) 2013 [11], DOMInO (DHA to Optimize Mother Infant
Outcome, Australia) 2010 [9], Mexico 2015 [12], and NICHD (Eunice
Kennedy Shriver National Institute of Child Health and Human
Development, USA) 2010 [13]. The data from these studies are
summarized in Table 1.

We used a hierarchical model with relatively weak priors to
obtain future prior distributions. Let Pij denote proportion of pre-

term birth in the ith study (i ¼ 1, …9) and jth arm (j ¼ 0,1;
Table 1
Number of preterm babies and sample sizes in completed trials.

Study Treatment Control

Preterm birth Total Preterm birth Total

Denmark 1992 9 266 15 267
England 1995 22 113 19 119
Europe 2000 152 394 167 403
Netherlands 1994 8 32 10 31
USA 2003 14 142 17 149
KUDOS 2013 12 154 13 147
DOMINO 2010 88 1202 67 1197
Mexico 2015 32 365 30 365
NICHD 2010 82 434 83 418
0 ¼ control, 1 ¼ treatment). We modeled

qij ¼ log

 
Pij

1�Pij

!
� Nðm; tÞ, where t is the precision (1/variance),

with relatively weak hyper priors: m � Nð�2; 0:5Þ and
t � Gamma ð1; 1Þ. Future priors for m and t were derived from the
averaged methods of moment estimators in the posterior distri-
butions from the treatment arm and control arm.

In this way we obtained informative priors m � Nð�1:91; 1:28Þ
and t � Gammað4:6361; 3:622Þ (details in Appendix). Based on
these prior distributions, the median of the proportion is 12.8%.
This estimation is reasonable and consistent, as the current preterm
birth rate in the US is about 11.4% [14]. We applied these infor-
mative priors onmodels for analyzing data simulated under several
different treatment effect assumptions.

2.2. Statistical models in trial designs

We used four risk subgroups for illustration but the conclusion
applies more generally. We assumed equal sample size of 250
subjects in each subgroup in both control and treatment arm. Two
hypotheses were considered. The first represents large overall
treatment effect. The overall PTB rates are 8% vs. 4% in control and
treatment arm respectively. The second represents small overall
treatment effect. The overall PTB rates are 8% vs. 6% in control and
treatment arm respectively. These percentages are consistent with
the results from our previous DHA supplementation trial [9]. The
control arm in both hypotheses has the same structurewith ordinal
PTB rates in the four subgroups (4%, 6%, 10%, and, 12% respectively,
see Ref. [10]).

Within each hypothesis, we designed three different scenarios
where the resulting rates in the treatment arm are linear, flat, or
nonlinear across the risk-ordered subgroups (Table 2). Within each
scenario we compared the power among three models.

2.3. Independent model

We followed Berry et al. (2013) and examined an independent
model [3]. In this model, we presented a Bayesian model with no
borrowing from subgroups but we did borrow information from
previous studies by applying the informative priors obtained
through meta-analysis. We modeled the rate in each subgroup
within each arm separately through:

qij ¼ log

 
Pij

1� Pij

!
; i ¼ 0;1; j ¼ 1;2;3;4

The prior distribution for qij is:

qij � Nð � 1:91; 1:28Þ
This informative prior results in mean proportion close to 12.8%

but it can generate a proportion ranges from about 0.8% to 60%.
Table 2
Preterm birth rates in subgroups in simulated effects and scenarios.

Scenario Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4

Control arm
8% (control arm) 4% 6% 10% 12%
Treatment arm: effect is large
4% (linear) 2% 3% 5% 6%
4% (flat) 4% 4% 4% 4%
4% (nonlinear) 1% 6% 3% 6%
Treatment arm: effect is small
6% (linear) 4% 5% 7% 8%
6% (flat) 6% 6% 6% 6%
6% (nonlinear) 1% 6% 6% 11%
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2.4. Hierarchical model

This is another model that was examined in Berry et al. (2013)
[3]. This model integrates the heterogeneous information from
each subgroup. The hierarchical model assumes the four subgroups
are exchangeable and allowed borrowing information across the
four subgroups. In this wemodel qij with a normal distributionwith
unknown mean and precision

qij � Nðmi ; tiÞ i ¼ 0;1; j ¼ 1;2;3;4

By introducing a hierarchy to model the unknown mean and
precision, the model borrows information from previous studies
and the current data across the four subgroups.

mi � Nð�1:91; 1:28Þ

ti � Gamma ð4:6361; 3:622Þ
Bigger t indicates more pooling and information borrowing

across the subgroups and smaller t represents less pooling, or more
heterogeneity across the subgroups. Our priors from meta-analysis
show significant heterogeneity from the data in previously con-
ducted clinical trials and we think it is reasonable to keep this
heterogeneity in our simulation analysis to apply to a general
population.

2.5. Dynamic linear model

Dynamic linear model is another model that has an intrinsic
hierarchical structure. Unlike the hierarchical model that we dis-
cussed in the previous section, the dynamic linear model does not
assume exchangeability of the four subgroups and borrows more
information from adjacent subgroups.

The motivation is that this model might be more efficient since
the four groups have ordinal risk levels at baseline so the correlation
betweenadjacent subgroupsmight be larger. Therefore thedynamic
linear model might capture the trend better. In this model, the first
subgroup has a prior we obtained through meta-analysis, and the
other subgroups have a hierarchical structure, with a common
precision and a mean related to the neighborhood means [15].

For the first subgroup, we have the observation equation [16]:

qi1 � Nð�1:91; 1:28Þ; i ¼ 0;1

For the other subgroups, we have the state equation [16]:

qij � N
�
qi; j�1; ti

�
; i ¼ 0;1; j ¼ 2;3;4
and

ti � Gamma ð4:6361; 3:622Þ
The second subgroup directly borrows information from the first

and the third. The third subgroup directly borrows information from
the second and the fourth. The first subgroup directly borrows in-
formation from previous studies and the second subgroup. However,
since the borrowing process is dynamic, the subgroups not adjacent
directly impact each other through an indirect borrowing mecha-
nism. This structure allows subgroups to borrow more information
from adjacent subgroups which locally smooths the trend.

2.6. Computation

In each scenario, 1000 simulated trials were used; that is we
simulated Bernoulli draws under each of the scenarios and sample
sizes. We assumed the treatment and control arms each had four
subgroups and each subgroup had 250 patients. The PTB rates in
the four subgroups under the control arm were ordered and
represented the risk levels assuming subjects were receiving pla-
cebo or standard of care. The PTB rates in the four subgroups under
the treatment arm represented the risk levels after treatment, e.g.,
DHA supplementation. Data were simulated from binomial distri-
bution based upon the proportions in each scenario using R 3.2.2.
All Bayesian computations were performed using Open Bayesian
inference Using Gibbs Sampling (OpenBUGS) from within R 3.2.2.

3. Results

3.1. Calibrating cutoff for equal type I error across models

Trial success was defined as the posterior probability that the
PTB rate in the control arm is bigger than that in the treatment arm
is greater than a cutoff value d: PrðPc > Pt jdataÞ> d. In simulations
the power function is defined as the average trial success rate
across simulations. In the null hypothesis both the control arm and
the treatment arm have overall PTB rates of 8% and the average
success rate is the Type I error rate. Since we have four subgroups,

the overall Type I error rate is 1�
Y4
i¼1

ð1� aiÞ, where ai is the Type I

error rate for the ith subgroup. In the null hypothesis, both the
control and treatment arms have the same PTB in their subgroups.

The four risk subgroups have PTB rates of 4%, 6%, 10%, and 12% in
both arms. Using iterations of simulation under the case of no
treatment effect, we tuned the d value in each method separately to
ensure each method's overall Type I error rate is close to 0.05,
which resulted in approximate Type I error rates of 0.0127 in each
subgroup (therefore overall Type I error is 1-(1-0.0127)4 ¼ 0.05.
These iterations resulted in slightly different d values for the in-
dependentmodel, hierarchical model, and dynamicmodel of 0.985,
0.985, and 0.98 respectively.

3.2. Power for large overall effect

First we examined the overall PTB rate is 8% in the control arm
and 4% in the treatment arm, indicating a large overall treatment
effect. Within this setting, we tried different structure of PTB rates
in the treatment arm to mimic different subgroup effects (Table 2).
First we simulated a scenario where the resulting rate in the
treatment arm is quite linear all four subgroups: 2%, 3%, 5%, and 6%
correspondingly. Accordingly, each subgroup experienced a 50%
reduction in PTB rate.

Second we simulated the resulting rate in the treatment arm as
flat in all four subgroups: 4%, 4%, 4%, and 4%. Here there is no effect
in the first subgroup and the last subgroup has the biggest treat-
ment effect. Since the first subgroup has no effect at all, the average
success rate we obtained for this subgroup is a Type I error rate for
this subgroup analysis.

Third we simulated resulting rates in subgroups in the treat-
ment arm are non-linear: 1%, 6%, 3%, and 6% correspondingly. We
let the second subgroup have no treatment effect while the other
three subgroups have treatment effects. Therefore the average
success rate we obtained from the second subgroup is the Type I
error rate for this subgroup.

We noticed that the three models had reasonable Type I error
rates. The Type I error rates in the second subgroup independent,
hierarchical, and dynamic linearmodels (DLM) are 0.006, 0.011, and
0.055 respectively.

In the comparison of the three models, we focused on power in
subgroup analysis. Dynamic linear model has the highest power in
subgroup analysis in all scenarios and subgroups except for the first
subgroup in the non-linear scenario (Table 3). In the non-linear
scenario, the proportions in the second subgroup are 0.06 for
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both control and treatment arm. In this case, dynamic linear model
has a slightly higher Type I error rate than other models but the
error rate is still acceptable (Table 3).

In the following paragraphs we focus on each model's power to
captures the most affected subgroup. The criterion here is power to
detect the treatment effect in the subgroup with the largest abso-
lute risk reduction.

The dynamic linear model has the highest power in capturing
the most affected subgroup in all three situations. This is important
because it represents the capability to identify or confirm the most
beneficial subgroup. In the situation where the rates in the four
subgroups of the experimental arm are linear, the power to capture
the most affected subgroup in independent, hierarchical, and dy-
namic linear models is 0.548, 0.578, and 0.595 respectively. A
regular chi-square test with Bonferroni adjustment has a power of
0.541 to capture the most affected subgroup. In the situationwhere
the rates in the four subgroups in the experimental arm are flat, the
power to capture the most affected subgroup in independent, hi-
erarchical, and dynamic linear models is 0.879, 0.891, and 0.917
respectively. The chi-square test has a power of 0.857 to capture the
most affected subgroup. In the situation where the rates in the four
subgroups in the experimental arm are non-linear, the power to
capture the most affected subgroup in independent, hierarchical,
and dynamic linear models is 0.848, 0.861, and 0.889 respectively.
The chi-square test has a power of 0.827 in capturing the most
affected subgroup. In a nutshell, the dynamic linear model in-
creases power to capture the most affected subgroup compared to
the other three methods where the overall treatment effect is large
(Table 3). In addition to providing the power to capture the most
affected subgroup, the dynamic linear model appears to be
powerful and robust in other subgroup analysis.
3.3. Power for small overall effect

We also examined when the overall PTB rate is 8% in the control
arm and 6% in the treatment, indicating a small overall treatment
effect. Again, we tried different structure of PTB rates in the treat-
ment arm to mimic different subgroup effects (Table 2). In the first
scenario the rates in the four subgroups in the treatment arm are
linear or ordinal: 4%, 5%, 7%, and 8% respectively.

In the second scenario the rates in the four subgroups in the
treatment arm are flat: all 6%. In this situation, there is no effect in
the second subgroup and a negative effect in the first subgroup. In
the last situation the rates in the four subgroups in the treatment
arm are non-linear: 1%, 6%, 6%, and 11% respectively.
Table 3
Power in subgroup analysis when the overall treatment effect is large (8% vs. 4%).

Scenarios Subgroup Control Treatment Power (250 subje

True P True P DLM IM

Linear 1 4% 2% 0.169 0.09
2 6% 3% 0.462 0.21
3 10% 5% 0.599 0.45
4* 12% 6% 0.595 0.54

Flat 1 4% 4% 0.017 0.00
2 6% 4% 0.227 0.09
3 10% 4% 0.823 0.69
4* 12% 4% 0.917 0.87

Non-linear 1 4% 1% 0.316 0.31
2 6% 6% 0.055 0.00
3* 10% 3% 0.889 0.84
4 12% 6% 0.702 0.59

*Most affected subgroup as defined by absolute risk.
True P: assumed preterm birthrate.
DLM: dynamic linear model.
IM: independent model.
HM: hierarchical model.
Chi-sq: chi-squared test.
When the second subgroup has no treatment effect while the
other three subgroups had treatment effects, but the effects varied
among the three subgroups. Therefore the average success rate we
obtained from the second subgroup is the Type I error rate for this
subgroup. The Type I error rates in the second subgroup for inde-
pendent, hierarchical, and dynamic linear models are 0.009, 0.013,
and 0.031 respectively. The three models had reasonable Type I
error rate.

The results of subgroup power analysis were summarized in
Table 4. In the scenariowhere the treatment arm subgroup rates are
linear, the power to capture the most affected subgroup in inde-
pendent, hierarchical, and dynamic linear models is 0.254, 0.253,
and 0.258 respectively. A regular chi-square test with Bonferroni
adjustment has a power of 0.226 to capture the most affected
subgroup.

In the scenario where the treatment arm subgroup rates are flat,
the power to capture the most affected subgroup in independent,
hierarchical, and dynamic linear models is 0.555, 0.551, and 0.628
respectively. The chi-square test has a power of 0.541 to capture the
most affected subgroup. In the second subgroup analysis in the flat
scenario, the treatment effect is negative. Independent, hierarchi-
cal, and dynamic linear models performwell but the chi-square test
cannot capture this trend unless we discern the results from
comparing the control and treatment arms (Table 4). However, in
practice we can look at the direction of association to assist in this
limitation of the chi-square test.

In the scenario where the treatment arm subgroup rates are
non-linear, the power to capture the most affected subgroup in
independent, hierarchical, and dynamic linear models is 0.32,
0.461, and 0.304 respectively. The chi-square test has a power of
0.462 to capture the most effected subgroup. Therefore the chi-
square test and the hierarchical model perform well to capture
the most affected subgroup when the resulting subgroup rates are
nonlinear (Table 4). When the resulting subgroup rates are quite
linear or flat, the dynamic linear model still outperforms the other
three methods. In other subgroup analysis, the dynamic linear
model appears to be robust and powerful.
4. Discussion

We did a sensitivity analysis using 500 subjects per subgroup.
The comparisons between the statistical models remained similar
with increased capability to confirm futility or success of subgroups
(Tables 3 and 4). We assumed ordinal risk subgroups in the control
arm have equal sample sizes. The general population may have
cts/group) Power (500 subjects/group)

HM Chi-sq DLM IM HM Chi-sq

7 0.188 0.176 0.401 0.3 0.426 0.349
1 0.283 0.266 0.681 0.496 0.596 0.519
8 0.475 0.452 0.878 0.811 0.823 0.777
8 0.578 0.541 0.889 0.866 0.887 0.860
7 0.019 0.013 0.023 0.012 0.029 0.013
5 0.132 0.112 0.323 0.188 0.272 0.214
2 0.708 0.652 0.98 0.958 0.962 0.932
9 0.891 0.857 0.997 0.997 0.997 0.993

0.515 0.463 0.769 0.753 0.867 0.788
6 0.011 0.013 0.039 0.015 0.026 0.013
8 0.861 0.827 0.998 0.995 0.995 0.988
2 0.624 0.541 0.916 0.883 0.903 0.860



Table 4
Power in subgroup analysis when the overall treatment effect is small (8% vs. 6%).

Subgroup Control Treatment Power (250 subjects/group) Power (500 subjects/group)

True P True P DLM IM HM Chi-sq DLM IM HM Chi-sq

Linear 1 4% 4% 0.007 0.005 0.012 0.0125 0.019 0.014 0.024 0.013
2 6% 5% 0.06 0.021 0.034 0.0399 0.085 0.055 0.08 0.061
3 10% 7% 0.19 0.161 0.147 0.1491 0.385 0.342 0.337 0.294
4 12%þ 8% 0.258 0.254 0.253 0.2259 0.528 0.481 0.512 0.447

Flat 1 4% 6% 0 0 0 0.112a 0 0 0 0.214a

2 6% 6% 0.025 0.017 0.023 0.0125 0.013 0.012 0.017 0.013
3 10% 6% 0.354 0.291 0.266 0.276 0.635 0.565 0.559 0.536
4 12%þ 6% 0.628 0.555 0.551 0.541 0.902 0.876 0.886 0.86

Non-linear 1 4% 1% 0.304 0.32 0.461 0.462 0.764 0.748 0.84 0.788
2 6% 6% 0.031 0.009 0.013 0.0125 0.031 0.009 0.019 0.013
3 10%þ 6% 0.307 0.296 0.281 0.2761 0.593 0.584 0.585 0.536
4 12% 11% 0.052 0.039 0.037 0.0293 0.06 0.052 0.056 0.04

þMost affected subgroup as defined by absolute risk reduction.
True P: assumed preterm birthrate.
DLM: dynamic linear model.
IM: independent model.
HM: hierarchical model.
Chi-sq: chi-squared test.

a The power calculated from the one-sided Chi-square test cannot distinguish the direction of treatment effect. However, in practice we can look at the direction of as-
sociation to assist in this limitation of the chi-square test.
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unequal-sized strata for similar ordinal risk levels. However, in
clinical trial designs, it is still possible to selectively include par-
ticipants to create balanced numbers in each subgroup. T.

Predetermined subgroup sample sizes decrease the risk of
insufficient statistical power at the end of study [17]. At the current
stage of subgroup analysis, it is not necessary to meet the power
requirement in general statistical analysis. Once the most affected
subgroups are identified through efficient designs, we can “enrich”
the interested subgroups, i.e., recruit more subjects from the
interested subgroup populations and stop recruiting certain sub-
groups that are futile. The final statistical analysis will be based
upon all stages' recruitment.

We used relatively weak priors in our statistical models. It is
desirable to use subgroup specific priors if previous data are
available. The choice of relatively weak priors instead of vague
priors was so that the designed clinical trial would use all the in-
formation available currently. The results would not likely be sen-
sitive unless a case occurred where we had a big treatment effect
that reduced the PTB to 0.00. Then we would not have a proper
posterior for IM, HM, and DLM. The cut-points would have to
change if we used vague priors. If the subgroup data are not
consistent with the informative priors, the result could result in
decreased power, particularly if d values are not adjusted [6].

Dynamic linear models provide us flexibility, increased power,
and natural interpretation to model a trend if there is a real trend,
even the trend is non-linear. One important assumption in dynamic
linear models is normality in both the observation and the state
equations. Extension of dynamic linear model to model discrete
outcomes usually brings additional computational difficulties [16].
However, a Bayesian approach can embrace theflexibilityof dynamic
linear models without suffering the drawbacks through the MCMC
techniques.With the computational advantages, a Bayesian dynamic
linear model can accommodate time-varying parameters, outliers,
and irregular changes [18]. This can be considered for future studies.
5. Conclusions

In clinical trial designs with subgroup analysis, it is important to
preserve a low Type I error rate and improve power to capture the
most affected subgroup. Informative priors are one way to increase
power. When informative priors from historical data are consistent
with current study data, they represent a more powerful
mechanism.
Another way to increase power is through model selection.

Models that used independent and hierarchical models have been
discussed in previous studies [3]. Other efficient models may exist if
we have ordinal risk subgroups. We compared the dynamic linear
model, independent model, and hierarchical model. All these
models can be tuned to have desirable operating characteristics in
terms of overall Type I error rate. The main comparisons were
executed among the three methods. The dynamic linear model
outperformed the other models in most scenarios with various
structures of subgroup effects. We conclude that the dynamic linear
model is relatively robust and efficient. This study shows that when
the subgroups have certain structure, more efficient models may
exist in clinical trials.
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Appendix 1. Prior calculation details

The posterior mean for m is �1.872 in the control arm
and �1.944 in the treatment arm. The posterior mean for t is 1.273
in the control arm and 1.287 in the treatment arm. The standard
deviation for t is 0.5874 in the control arm, and 0.6015 in the
treatment arm. The methods of moment estimator for m is calcu-
lated as ð�1:872�1:944Þ

2 ¼ �1:91: The estimator for t is calculated as
1:273þ1:287

2 ¼ 1:28: The a and b estimators in the distribution of t �
Gamma ða; bÞ are derived from equations: a

b
¼ 1:28 and.

a
b
2 ¼ 0:58742þ0:60152

2 ¼ 0:3534:

Appendix 2. Simulation code
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