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The primary and secondary damage to neural tissue inflicted by traumatic brain injury is a leading cause of death
and disability. The secondary processes, in particular, are of great clinical interest because of their potential
susceptibility to intervention. We address the dynamics of tissue degeneration in cortico-subcortical circuits
after severe brain injury by assessing volume change in individual thalamic nuclei over the first six-months
post-injury in a sample of 25 moderate to severe traumatic brain injury patients. Using tensor-basedmorphom-
etry, we observed significant localized thalamic atrophy over the six-month period in antero-dorsal limbic nuclei
as well as in medio-dorsal association nuclei. Importantly, the degree of atrophy in these nuclei was predictive,
even after controlling for full-brain volume change, of behavioral outcome at six-months post-injury. Further-
more, employing a data-driven decision tree model, we found that physiological measures, namely the extent
of atrophy in the anterior thalamic nucleus, were themost predictive variables of whether patients had regained
consciousness by six-months, followed by behavioral measures. Overall, these findings suggest that the second-
ary non-mechanical degenerative processes triggered by severe brain injury are still ongoing after the first week
post-trauma and target specifically antero-medial and dorsal thalamic nuclei. This result therefore offers a poten-
tial window of intervention, and a specific target region, in agreement with the view that specific cortico-
thalamo-cortical circuits are crucial to the maintenance of large-scale network neural activity and thereby the
restoration of cognitive function after severe brain injury.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Traumatic brain injury (TBI) is a leading cause of death and severe
disability in the United States (Coronado et al., 2011; MacKenzie,
2000), and has long been projected to be a leading cause of death and
disability in the world (Murray and Lopez, 1997). The principal mecha-
nisms of TBI typically include focal brain damage due to contact injury
types resulting in contusion, laceration, intracranial hemorrhage, and
diffuse brain damage due to acceleration/deceleration injury types
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resulting in diffuse axonal injury (DAI) or brain swelling (Werner and
Engelhard, 2007). However, the damage inflicted by TBI, as well as the
potential outcome, crucially depends not only on the local effects of the
primary insult, but also on the secondary, delayed, non-mechanical pro-
cesses consequent to axonal damage and Wallerian degeneration (Hall
et al., 2005). These secondary processes, which in humans can take
from several hours to days (Christman et al., 1994), involve necrotic
and apoptotic death cascades in brain regions distal to the primary site
of the trauma, assumed to result from membrane failure and disruption
of ionic homeostasis inducing rapid degradation of the neuronal cyto-
skeleton and its cytoplasmic constituents (Povlishock and Katz, 2005).
This aspect of neuronal damage is particularly relevant in the clinical set-
ting because, unlike the site of primary damage, which is typically only
susceptible to preventive measures, secondary processes might be sus-
ceptible to therapeutic intervention (Werner and Engelhard, 2007). Un-
derstanding themechanisms of secondary insult, aswell as the regions of
the brain most affected by it, might therefore offer novel strategies for
therapeutic interventions in TBI survivors.
ved.
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Table 1
Patient demographics, behavioral scores, acute-to-chronic percent brain volume change
(PBVC) and days post-injury at which acute and chronic MRI scans (MRIA and MRIC, re-
spectively) were performed.

Pat Age Sex GCS GOSe PBVC (%) MRIA MRIC

1 31 M 9 3 2.18 2 201
2 33 M 12 4 −3.02 3 238
3 20 M 4 4 2.34 12 195
4 25 M 14 8 −0.66 1 200
5 45 M 14 8 −2.3 2 176
6 34 M 7 4 −1.36 4 261
7 62 F 7 3 −2.12 5 194
8 60 M 3 3 −4.06 2 204
9 29 F 14 8 −0.74 12 138
10 64 M 3 2 −7.2 23 199
11 45 M 6 3 −1.2 4 430
12 25 M 14 7 0.15 32 209
13 60 M 14 3 −4.05 3 194
14 23 M 3 8 −1.62 1 162
15 17 M 3 4 −4.63 2 181
16 47 M 12 6 2.06 28 182
17 41 M 3 2 −1.73 1 202
18 18 M 12 4 1.32 10 176
19 34 M 8 3 −4.77 3 186
20 25 F 8 5 −2.65 1 184
21 54 M 3 5 −1.23 24 207
22 40 M 3 5 0.95 2 182
23 16 M 3 3 −7.93 2 194
24 16 M 3 5 2.76 2 196
25 27 F 3 2 −5.7 2 246
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One region of the brain particularly vulnerable to secondary mecha-
nisms is the bilateral thalamus, an area that due to its central location is
relatively more protected from direct impact in TBI (Fearing et al.,
2008). Indeed, the thalamus has been shown in animal models to be a
site of retrograde neuronal apoptosis after cortical damage (Martin
et al., 2001; Natale et al., 2002) within the first few days post-trauma
(Hall et al., 2005). The important role of the thalamus in TBI has also
been shown by reports demonstrating associations between subcortical
lesion volume and 1 to 4 years post-injury performance across several
neuropsychological tests (Babikian et al., 2005). Furthermore, at the
high end of severity, thalamic circuits are considered to play a central
role in permanent vegetative states (Monti, 2012). Post-mortem exam-
inations have shown that 80 to 100% of patients in permanent vegeta-
tive state exhibit widespread thalamic damage (Adams et al., 2000).
Indeed, damage to the thalamo-cortical axis has been reported to be
sufficient to induce a vegetative state (VS) even in the presence of intact
cortico-cortical connectivity (Boly et al., 2009). Conversely, direct or
indirect stimulation of the thalamus has been associatedwith functional
improvements in both moderate (Kang et al., 2012) and severe (Schiff
et al., 2007; Yamamoto et al., 2013) TBI survivors.

In what follows, we employ tensor-based morphometry (TBM;
Thompson et al., 2000) to assess the dynamics of structural change
within individual thalamic nuclei occurring between the acute and
chronic phases of moderate to severe TBI. Tensor-based morphometry,
a technique related to deformation-based morphometry (Ashburner
et al., 1998), employs deformations obtained from nonlinear registra-
tion of two brain images (e.g., an individual anatomical image to a
follow-up image, or to an anatomical template) to infer 3D patterns of
statistical differences in brain volume or shape between two images
(Ashburner and Friston, 2000; Ashburner et al., 1998; Chung et al.,
2001, 2003; Wang et al., 2003). In the past 15 years, this technique
has been successfully applied to measure structural neuroanatomical
changes over time, including mapping of growth patterns in the devel-
oping brain (Chung et al., 2001; Thompson et al., 2000), degenerative
rates in Alzheimer's disease and other forms of dementia (Fox and
Freeborough, 1997; Fox et al., 1996, 1999, 2000, 2001; Freeborough
and Fox, 1997; Freeborough et al., 1996; O'Brien et al., 2001;
Studholme et al., 2001), as well as tumor growth (Lemieux et al.,
1998) and multiple sclerosis lesions (Ge et al., 2000; Rey et al., 2002).
As detailed below, we will show that the degree of structural change
(namely, atrophy) within specific dorsal and anterior sections of the
thalamus predicts 6-month change in behavioral outcome measures.
Our approach differs from virtually all previous studies in two key
aspects. First, our longitudinal design allows us to look at the dynamics
of thalamic structural change in the first 6months post-TBI. Second, we
focus on individual nuclei within the thalamus, as opposed to consider-
ing it as a unitary structure, a degree of resolution that is very important
considering that specific regions of the thalamus may play a key role in
severe brain injury (Schiff, 2010).

2. Materials and methods

2.1. Patient population

A convenience sample of 25 acute TBI patients (21 male, 4 female;
mean age 35.6 years, SD = 15.25) was enrolled in the study (see
Table 1 for individual patient demographic, behavioral scores and
acute-to-chronic percent brain volume change). Patientswere recruited
during a time-span of 30 months as part of the UCLA Brain Injury
Research Center (BIRC) activity. The main inclusion criterion was an
admission Glasgow Coma Scale (GCS; Teasdale and Jennett, 1974)
score of ≤8, or an admission GCS of 9–14 with computerized tomogra-
phy (CT) brain scans demonstrating intracranial bleeding. The main ex-
clusion criteria were GCS N14 with a non-significant head CT, history of
neurologic disease or TBI, brain death, and unsuitability to enter theMRI
environment (e.g., due to any nonMRI-safe implant). Informed written
assent was obtained from the patient's legal representative. The study
was approved by theUCLA institutional reviewboard. Informed consent
was obtained from surrogates as per state regulations.

2.2. Experimental design

Each patient underwent two structural MRI scans, one shortly after
the ictal event (henceforth, “acute”), and one at an approximate
6 month interval (henceforth, “chronic” or “follow-up,” interchange-
ably). The specific day on which the acute scan occurred depended
upon the decision of medical personnel blinded to the aims of this
study, and was mainly driven by the patient being stable enough to un-
dergo the session, and general patient safety concerns. (The day of the
chronic scan was mainly driven by contingent factors such as patient
transportation to the hospital, patient availability, and scheduling.) In
addition, patients also underwent two behavioral assessments. An ini-
tial GCS assessment was conducted acutely in the emergency room
(post-resuscitation), and a Glasgow Outcome Scale extended (GOSe
Wilson, 1998) assessment was conducted at follow-up. Acute data ac-
quisition occurred between 1 and 32 days post-injury, with 72% of the
patients being scanned within 5 days and the remaining 28% being
scanned between 10 and 32 days. The median acute scan occurred on
day 3. Follow-up scanning occurred between 138 and 430 days post-
injury, with 72% of the patients being scanned before 202 days, and
the remaining between 204 and 430days. The median chronic data ac-
quisition occurred at the 195-daymark. The temporal distance between
acute and chronic scans ranged between 126 and 426days, with 76% of
the patients being re-scanned within 200days from the acute visit, and
only the remaining 6 being scanned at a longer interval (between 201
and 426days). The median inter-scan interval was 183days.

2.3. MRI data acquisition

T1-weightedMP-RAGE images (TR=2250ms, TE=2.99ms, FA=9°,
FOV=256×240×160mm, resolution=1mm3 isovoxel)were acquired
on a 3T Siemens Tim Trio scanner at the Ronald ReaganMedical Center
at UCLA.



Fig. 1. ROI parcellation of thalamus (ICBM Thalamic Atlas; Mazziotta et al., 2001). Abrv.: AN,
anterior nucleus; VAN, ventral anterior nucleus; VLN, ventral lateral nucleus; VPLN, ven-
tral posterolateral nucleus; DMN, dorsomedial; LDN, lateral dorsal nucleus; LPN, lateral
posterior nucleus; PlvN, pulvinar nucleus; MGN, medial geniculate nucleus; LGN, lateral
geniculate nucleus. (VPMN, ventral posteromedial nucleus, not shown.)
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2.4. Data analysis

2.4.1. Tensor-based morphometry. Longitudinal analysis of tissue vol-
ume change was performed employing tensor-based morphometry
(Thompson et al., 2000). Quantitative maps of longitudinal local tissue
compression or expansion were derived from Jacobian maps of the
nonlinear image registration of each subject's acute and chronic MRI
scans (Hua et al., 2010a, 2011; Leow et al., 2006, 2009; Lu et al., 2011;
Thompson et al., 2000). The Jacobian map is the determinant of the
Jacobianmatrix of a deformation field and encodes the local volume dif-
ference between the source and target image (Leow et al., 2007). Jacobi-
an maps were derived in accordance with previous studies (Ashburner
et al., 1998, 2003; Fox and Freeborough, 1997; Leow et al., 2005a,
2005b; Studholme et al., 2001; Thompson et al., 2000). First, an initial
linear registration was performed to align each subject's follow-up
scan to their acute scan (using a 9 degrees of freedom registration;
Jenkinson et al., 2002). Second, using the LONI pipeline processing envi-
ronment (Dinov et al., 2009; Rex et al., 2003), the linearly aligned brains
were registered via an intensity-based approach using a high-
dimensional, elastic, non-linear algorithm (Leow et al., 2005a, 2005b),
an approach considered to be more accurate than feature-based
methods (Chen et al., 2003). The registration algorithmemployed amu-
tual information (MI) cost function and the symmetrized Kullback–
Leibler (KL) distance as a regularizing term (Hua et al., 2009, 2010a,
2010b; Yanovsky et al., 2008, 2009), a procedure that has been shown
to be equivalent to considering both the forward and backward map-
ping in image registration (Leow et al., 2007). The KLMI procedure is in-
corporated into a multi-scale bundle that uses multiple grid sizes to
compute both regional and local deformations. Our implementation
used 300 iterations at 32×32 grid with no iterations at 64×64 because
the finer resolution step reduced quality of nonlinear registration and
the 32×32 grid capturedmost of the information for registration. Final-
ly, the determinant of each subject's deformation field (also referred to
as the Jacobianmatrix)was calculated to obtain awithin subject Jacobian
map representing regions of tissue expansion or contraction. As sug-
gested by prior literature, we took the natural logarithm of the Jacobian
determinant values to decrease unevenness in the range of positive and
negative values (Ashburner et al., 1998; Cachier and Rey, 2000; Leow
et al., 2005a, 2005b; Woods, 2003).

2.4.2. Percent brain volume change. In order to parcel out the effect of full
brain acute-to-chronic volume change on our local analysis of thalamic
volume change, we independently estimated two-timepoint percent-
age brain volume change (PBVC) using SIENA (Smith et al., 2001,
2002), part of the FSL software (Smith et al., 2004). SIENA first extracts
brain and skull images from the two-timepoint whole-head input data
(Smith, 2002). The two brain images are then aligned to each other
using the skull images to constrain the registration scaling (Jenkinson
and Smith, 2001; Jenkinson et al., 2002) and resampled into the space
halfway between the two. Next, tissue-type segmentation is carried
out (Zhang et al., 2001) in order to find brain/non-brain edge points.
The perpendicular edge displacement between the two timepoints is
then estimated for each edge. Finally, the mean edge displacement
is converted into a (global) estimate of percentage brain volume
change.

2.4.3. Thalamus parcellation. For each patient, right and left thalami
were segmented into 11 structurally defined regions of interest (ROI)
on the basis of the ICBM Deep Nuclei Probabilistic Atlas (see Fig. 1;
Mazziotta et al., 2001). ROIs included the anterior nucleus (AN), ventral
anterior (VAN), ventral lateral (VLN), ventral posteromedial (VPMN),
ventral posterolateral (VPLN), dorsomedial (DMN), lateral dorsal (LDN),
lateral posterior (LPN), pulvinar (PlvN), medial geniculate (MGN), and
lateral geniculate (LGN) nuclei. Individual ICBM thalamic labels were
registered to eachpatient's acuteMP-RAGE image, and the corresponding
Jacobian map values were averaged within each ROI. To ensure accurate
registrationof the ICBM thalamic labels to each subjects space, the follow-
ing 3-step procedure was implemented: (1) Each subject's acute scan
was registered to the MNI152 space employing a subcortically tuned al-
gorithm (“first flirt,” part of the FSL suite; Jenkinson and Smith, 2001)
that uses a subcortical mask for weighting; (2) The MNI152 image was
then registered to the ICBM Template image; (3) The two matrices
obtained from steps 1 and 2 were concatenated, inverted and applied
to the ICBM thalamic labels in order to transform them into individual
subject space. All resulting ROIs were visually inspected to ensure regis-
tration effectiveness.

2.4.4. Statistical analysis. TBM scores for each nucleus were analyzed
using Stata (version 12, Stata Corp., 2011 College Station, TX, USA). Be-
cause 8 of the 11 ROI exhibited non-normal distributions of TBM scores
(p b 0.05; AN, LDN, VAN, PLN, PMN, MGN), according to a Shapiro–
Francia test for normality, and other 2 were marginally non-normal
(p≈ 0.085; DMN, PlvN) analyses on single nuclei are carried out with
non-parametric methods. First, we assessed, for each nucleus indepen-
dently, whether there was a significant acute-to-chronic TBM change
(i.e., atrophy/expansion), using a sign test. Second,we assessedwhether
the degree of atrophy or expansion within each nucleus (independent-
ly) was associated with the six-month GOSe using a Spearman's ρ rank
correlation coefficient. In light of the significant correlations between
TBM nuclei scores, prior to using thalamic data for regression purposes,
all ROIs were entered into a Principal Component Analysis (PCA, with
varimax rotation of the loadingmatrix; Kaiser, 1958). The top 3 compo-
nents (accounting for 89% of the variance) were retained for further
analysis and entered into a robust regression predicting the six-month
GOSe together with several covariates including patient age, gender,
GCS score, ROI hemisphere laterality, acute-to-chronic PBVC, and days
post-injury of each of the acute and chronic scans.

2.4.5. Decision tree induction. Lastly, to characterize the relative impor-
tance of demographic, behavioral and physiological data in predicting
recovery of consciousness, we entered age, gender, GCS, individual
ROI Jacobian data, ROI hemisphere laterality, and acute-to-chronic
PBVC in a decision tree model attempting to predict whether a patient
had regained consciousness (i.e., GOSe≥3) by the 6-month assessment
or not (i.e., GOSe=2). Decision tree induction and cross-validation was
performed using RapidMiner (Mierswa et al., 2006). Classification trees
are decision trees derived using recursive data-partitioning algorithms



Table 2
Description of each nucleus' average (M), standard deviation (SD),minimumandmaximum
acute-to-chronic change. p-Value refers to a sign test assessing whether the average six-
month change is significantly different from zero. ‘**’ indicates p≤0.05 Bonferroni corrected.

Nucleus M SD Min Max p-Value

AN −15.26 19.69 −58.94 20.34 b0.001**
LDN −13.86 15.73 −62.45 10.33 b0.001**
DMN −6.35 11.14 −34.48 11.72 0.015
VAN −4.27 10.97 −34.85 18.18 0.015
VLN 0.77 9.16 −25.88 24.95 n.s.
VPMN 2.97 6.41 −9.28 26.34 0.033
VPLN 3.76 7.90 −13.01 31.34 b0.001**
LPN −3.64 10.01 −37.68 21.56 0.033
LGN 2.00 11.18 −24.93 33.68 n.s.
MGN 5.31 8.91 −14.24 38.57 0.003**
PlvN −2.24 8.54 −28.74 19.32 n.s.
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that classify each observation into oneof the class labels for the outcome
(in our design: VS or better; cf. Shmueli et al., 2010). Binary classifica-
tion trees are induced “top–down” by starting with all the data and
partitioning it into two subsets (a left and a right daughter node). In
turn, each sub-partition (or daughter node) is further split into left
and right daughters. The process is repeated recursively until the tree
cannot be partitioned further due to lack of data or some stopping crite-
rion is reached (Ishwaran and Rao, 2009). The type of partitioning con-
sidered here is univariate in the sense that splits are performed along
one unique dimension (i.e., variable). The dimension along which to
split the data, at each iteration, is chosen on the basis of so-called “impu-
rity” algorithms, which is to say, algorithms thatmeasure how homoge-
neous the induced partitions are with respect to the outcome variable.
The more homogeneous the observations within each branch of the
tree, with respect to the outcome variable, the purer it is, hence the bet-
ter the partitioning. Here, the variable along which to partition the data
at each iteration was thus induced on the basis of an information gain
criterion (Quinlan, 1987), an algorithm that uses the concept of entropy
to quantify impurity (Rokach andMaimon, 2005). In this setting, entro-
py can be thought of as the degree of uncertainty concerningwhether a
given patient falls in the six-month GOSe group. The un-partitioned
dataset has the highest level of entropy, since all patients, whether
they are VS or better, fall in the same group. The perfectly partitioned
dataset, in which all patients with a GOSe of 2 are in one branch of the
tree and all other patients are in a different branch, would have the
least entropy. At each split, then, information gain is the change (possi-
bly the reduction) in entropy afforded by partitioning the observations
into two sub-groups determined by one of the attributes (e.g., GCS
scores, or degree of atrophy in an ROI). To avoid over-fitting and to
improve generality of the result, we employed pruning and pre-
pruning in order to exclude splits with low or non-significant infor-
mation gain (Fürnkranz, 1997). Assessment of the accuracy of the in-
duced tree was performed using an exhaustive leave-one-out k-fold
cross-validation, as implemented in Rapid Miner. In this approach,
the decision tree is built on the basis of n− 1 observations, and its
accuracy is assessed by testing the induced tree on the nth observation
(the one that had been left out). This procedure is repeated by holding
out once, in turn, each observation.

3. Results

3.1. Behavioral assessments

Patients' admission GCS score ranged between 3 and 14, with 64% of
patients falling in the severe range (i.e.,≤8). Themedian GCS scorewas
7 while the mode was 3. At follow-up, GOSe scores ranged between 2
and 8 with a median of 4 and a mode of 3. All patients with a severe
acute GCS exhibited 6-month GOSe scores indicating lower moderate
disability or worse (i.e., GOSe ≤ 5; cf. Table 1). Of these patients, half
were in a vegetative state or lower severe disability state (i.e., GOSe
equal to 2 or 3, respectively) at 6-months post-injury. The remaining
patientswere in a state of upper severe disability or lowermoderate dis-
ability (i.e., GOSe equal to 4 or 5, respectively). One patientwith a severe
acute GCS progressed, by 6-months post-injury, to upper good recovery
(i.e., GOSe=8). Of the patientswith an acute GCSof 9 ormore, 4were in
a severe disability state (evenly split between upper and lower severe
disability; i.e., GOSe=3 or 4, respectively), 4 progressed to make good
recovery (evenly split between upper and lower good recovery;
i.e., GOSe=7 or 8, respectively), and 1 patient progressed to a state of
upper moderate disability (i.e., GOSe=6).

3.2. Neuroimaging results

Acute to chronic volume change data for each nucleus are report-
ed in Table 2 and Fig. 2. Collapsing across all patients, several nuclei
presented an acute-to-chronic volume change significantly different
from zero. Nonetheless, only 4 nuclei were statistically significant
after Bonferroni correction for multiple comparisons; namely, the
AN and LDN ROIs exhibited severe atrophy over time, while the
VPLN and MGN exhibited small, but significant, tissue expansion.

As shown in Fig. 3, however, only for a few ROIs the degree of
atrophy was significantly correlated with the six-month outcome.
When corrected for multiple comparisons, only one nucleus exhibited
a significant association with the six-month GOSe, the AN, which corre-
lated positively with the outcomemeasure (ρ=0.46, pb0.001). Consid-
ering that the TBM values in this nucleus aremostly negative (cf., Table 2
and Fig. 3), this association is best interpreted as implying that the less
the atrophy in this nucleus the better the outcome. The DMN and LDN
also exhibited the same pattern of associationwith the outcomemeasure
(ρ = 0.31, p ≈ 0.03, for both ROIs), although neither met family-wise
Bonferroni criterion. One ROI exhibited the reverse association (although
it did not reach Bonferroni criterion). Namely, the MGN exhibited a
significant negative correlation with the six-month GOSe score
(ρ=−0.34, p≈0.02). Considering that values in this ROI are mostly
positive (cf., Table 2 and Fig. 3), this association is best interpreted as
implying that the less the tissue expansion in this region the better the
outcome. Finally, the VLPN also exhibited this same pattern of associa-
tion, but was only marginally significant at the individual test level
(ρ=−0.27, p≈0.06), and thus also did not survive family-wise statisti-
cal correction.

When all ROIs were entered into a PCA, the data reduction proce-
dure returned 3 components cumulatively accounting for 89% of the
total variance. The first component captured the postero-lateral and
ventro-lateral aspect of the thalamus, including the LPN, VPLN, VPMN,
PlvN and MGN ROIs. The second component grouped anterior and dor-
sal aspects of the thalamus, encompassing the AN, DMN, LDN, and VAN
nuclei. Finally, the last component captured the LGN ROI, as well as the
VLN (although this last one contributed almost equally to the first com-
ponent). The three components were entered in a robust regression to
predict the outcome score (GOSe) at 6months post-injury. In addition,
we entered in the regression several covariates: the initial GCS score,
age, gender, ROI hemisphere laterality, as well as the acute-to-chronic
PBVC to parcel out overall brain atrophy occurring between the two
time-points. We also included as covariates the days post-injury at
which each scanwas performed in order to account for the known asso-
ciation between time and atrophy, and for the across patient variance in
the day of examination. The results of the regression indicated that the
model was significant (F(10,39)=7.64, pb0.001) and exhibited a good
data fit (R2 = 0.44), as computed by the appropriate iteratively re-
weighted least squares procedure (see Street et al., 1988). In particular,
the second component (namely, the anterior and medial-dorsal ROIs)
was significantly related to the six-month outcome measure (β̂=0.27,
p=0.045) entailing that the less the atrophy in these regions, the higher
the chances of a better six-month GOSe. Neither of the remaining tha-
lamic components appeared to be predictive of the outcome measure.
The acute-to-chronic PBVC also exhibited a positive relationship with



Fig. 2. Average TBM values for each thalamic nucleus across all patients. Cold colors mark
regions of tissue atrophy,warm colorsmark regions of tissue expansion. Brighter colors in-
dicate regions presenting greater volume change. (This visualization was obtained by
assigning to each of the ROIs shown in Fig. 1 the average TBM value across patients; and
not by transforming individual patient data into a common template.)

400 E.S. Lutkenhoff et al. / NeuroImage: Clinical 3 (2013) 396–404
the follow-up outcome measure (β̂=0.17, p=0.014). Considering that
PBVC ismostly negative (cf. Table 1), this relationship is best interpreted
as indicating that the less the acute-to-chronic atrophy, the better the
chances of a higher 6-month GOSe. Two other covariates appeared to
be significantly related to the six-month GOSe score: post-resuscitation
GCS (β̂=0.09, p=0.029) and age (β̂=−0.03, p=0.013). As expected,
the former measure correlated positively with the six-month outcome,
entailing that a less severe GCS score was indicative of a better outcome,
whereas the latter correlated negatively, indicating that the older the
Fig. 3. Scatterplots depicting the distribution of ROI tensor-based morphometry values as a fun
cient ‘ρ’ is reported, for each variable; ‘***’ indicates p b 0.001; ‘*’ indicates 0.05≤ p≤ 0.01; ‘†’ i
patient the worse the GOSe measure. Finally, we note that although
only marginally, the days post-injury of the acute scan also correlated
positively with the follow-up GOSe (β̂=0.04, p=0.058). This positive
marginal association demonstrates that it was important to include the
temporal variables in the analysis. Nonetheless, it is difficult to interpret
an association according to which the later a patient underwent the
acuteMRI scan, the better the behavioral outcomemeasure. Thismargin-
al association might thus be spurious, or reflect some other factor which
might have had itself an association with the choice of day of scanning
(which, as stated in the Materials and methods section, was decided in-
dependently by medical personnel blind to the aims of this study). At
present we cannot distinguish between the two possibilities.

The binary decision tree induced over the data is depicted in Fig. 4.
Overall, the decision tree achieved 84% accuracy in differentiating
patients who remained in a VS at six months (i.e., GOSe of 2) versus pa-
tients who regained consciousness. As shown in the figure, two attri-
butes including physiological and behavioral measures formed the
basis of the decision tree: volume change in the anterior nucleus ROIs
and the post-resuscitation GCS score. The TBM measurement in the
AN was the most important attribute, itself separating patients into
two groups (approximately 61% and 39% for the left and right branches,
respectively) according to whether they exhibited extreme atrophy in
this ROI (with threshold value of−16.74%). Patientswhodid not exhib-
it extreme atrophy in the AN all regained consciousness, exhibiting a
score of 3 or more in the 6-month GOSe. Of the patients who exhibited
extreme atrophy in the AN, those with a post-resuscitation GCS of at
least 5 also regained consciousness. Of the patients who exhibited
extreme atrophy in the AN and an initial GCS of 4 or less, 80% failed to
regain consciousness, while 20% did. In other words, all patients who
failed to regain consciousness presented extreme atrophy in the AN
and an initial GCS of 4 or less. There was, however, a small fraction of
patients with this same neurophysiological and behavioral profile who
did regain consciousness. Further research and larger samples will have
to address which factor(s) might have contributed to this small uncer-
tainty. Taken together, this multivariate and data driven methodology
is in good agreement with the hypothesis-driven analysis described
ction of the six-month GOS (with confidence ellipsis). Spearman's rank correlation coeffi-
ndicates p=0.06; ‘n.s.’ indicates not significant.



Fig. 4. Binary decision tree classifying patients who did not regain consciousness
(i.e., 6-month GOSe of 2; “−”) versus patients who did regain consciousness (6-month
GOSe≥ 3;“+”). (AN, anterior nucleus; GCS, Glasgow Coma Scale).
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above, and provides a (preliminary) flow-chart integrating and ranking
the importance (in our data) of behavioral and quantitative physiological
metrics of brain change. This highlights the relative predictive power of
the collected variables and suggests the power of pooling together mul-
tiple sources of information.

4. Discussion

In this report, we have examined the relation between acute-to-
chronic structural change within the subregions of the thalamus and
behavioral change in a group of moderate to severe TBI patients. As
reported in previous research, thalamus is significantly affected by TBI
on a global basis (Adams et al., 2000; Babikian et al., 2005; Fearing
et al., 2008). Our nucleus-wise analysis, however, allowed us to isolate
different patterns of structural change. Specifically, we find that the
antero-dorso-medial aspect of the thalamus is the target of localized tis-
sue atrophy, consistent with the finding that these same regions appear
to be particularly atrophied in chronic vegetative state and minimally
conscious state patients (Fernández-Espejo et al., 2010), and with a re-
cent proposal discussing the crucial role of the thalamus in the recovery
of awareness and cognitive function after severe brain injury (Schiff,
2010). Our data therefore support the view that, perhaps because of
their connectivity geometry, some aspects of the thalamus are crucial
to sustaining functional integration through long-range cortico-cortical
pathways as well as cortico-striatopallidal-thalamocortical loop connec-
tions (Schiff, 2008). Indeed, there is a remarkable overlap between
the regions known to be directly interconnected with the antero-
dorso-medial aspect in the thalamus and medial and lateral prefron-
tal cortices which, when metabolically dysfunctional, are considered
to be the hallmark of chronic vegetative states after severe brain in-
jury (Laureys, 2005). Consistent with this view, the thalamo-frontal
connectivity has been reported to be restored upon recovery of a
patient's behavioral responsiveness after protracted unconscious-
ness (Laureys et al., 2000), and some pharmacologic interventions
have been shown to induce behavioral ameliorations concurrently
with a restoration of frontal metabolism (Brefel-Courbon et al.,
2007). Similarly, the successful increase in behavioral responsive-
ness of some patients with impairments of consciousness after
deep brain stimulation to the (central) thalamus (Schiff et al., 2007)
has been interpreted as following a functional restoration of thalamo-
cortical circuits (Schiff, 2008, 2010).

The anterior nucleus,which is encased between the armsof the rostral
segments of the internalmedullary lamina is reciprocally connectedwith
the limbic cortex including the anterior cingulate gyrus, retrosplenial area
and pre- and para-subiculum (Kaitz and Robertson, 1981; Robertson and
Kaitz, 1981). This region is believed to play an important role in learning
andmemory (Gabriel et al., 1983) since lesions in this area are known to
impair mnestic functions (inducing diencephalic amnesia; Van der Werf
et al., 2003), possibly through a disruption of neural plasticity processes
in distal limbic brain regions (Dumont et al., 2012). In particular, damage
to this region induces severe anterograde and temporally graded retro-
grade amnesia, along with impaired subjective memory, resembling pa-
tients with hippocampal system injury (Hampstead and Koffler, 2009).
Furthermore, lesions in this region have also been associated with im-
paired regulation of affective responses to environmental conditions,
through its connection with medial prefrontal limbic regions (Dupire
et al., 2013). From a connectivity as well as a structural point of view,
the lateral dorsal nucleus, which is also encased within the two rostral
arms of the internal medullary lamina, is very similar to the anterior nu-
clei (vanGroen et al., 2002), although the projections from the entorhinal
cortex, presubiculum and parasubiculum to the lateral dorsal nucleus
might be denser (Saunders et al., 2005). Sharing its connection geometry
with the anterior nucleus, the lateral dorsal nucleus is also considered to
be part of the thalamo-hippocampal system, and therefore important for
recollection (Cipolotti et al., 2008). Overall, these two nuclei appear to be
themajor thalamic recipients of projections from limbic cortex (Kaitz and
Robertson, 1981). The dorsomedial nucleus, which is particularly large in
humans (Nieuwenhuys et al., 2008), represents the main subcortical
structure that projects to the prefrontal cortex (PFC), and is reciprocally
connected with lateral orbitofrontal, medial frontal/cingulate, and lateral
prefrontal cortex (Klein et al., 2010). From a functional point of view, this
nucleus is believed to play a key role in regulating the cognitive functions
of prefrontal cortex (Rotaru et al., 2005), and to therefore participate, per-
haps mostly through its connection to dorsolateral prefrontal cortex, in
higher cognitive functions (Watanabe and Funahashi, 2004) including
various types of memory and the construction of prospective infor-
mation (Watanabe and Funahashi, 2012) as well as executive func-
tioning (Van der Werf et al., 2003). Furthermore, the DMN has also
been involved in aspects of consciousness because of its role (togeth-
er with the intra-laminar group) in the generation of absence sei-
zure-like episodes in rodents (Banerjee and Snead, 1994; Kato
et al., 2008). The ventral anterior nucleus is reciprocally connected
with the premotor sections of frontal cortex, including the frontal eye
fields (Brodmann area 8) and the supplementary motor area (SMA),
as well as prefrontal cortex, and particularly the anterior cingulate
gyrus. In addition, this nucleus also receives afferent connections from
the substantia nigra pars compacta and the globus pallidus pars
medialis, completing a cortico-subcortical circuit crucial formotor plan-
ning (Nieuwenhuys et al., 2008).

Overall, we find that different classes of thalamic nuclei
(Nieuwenhuys et al., 2008) are affected by severe traumatic brain injury,
and that the degree of atrophy in a specific subset of thalamic nuclei is
correlated with a patient's behavioral outcome at six months post-
injury. On the one hand, association nuclei (i.e., DMN) and limbic nuclei
(i.e., AN, LDN)were the site of tissue atrophy, and exhibited increased at-
rophy in patientswith poor six-month behavioral outcome. On the other
hand, we find that two sensory nuclei (i.e., MGN and VPLN) underwent
little, but systematic, tissue expansion over the first six months post-
injury. Their association with the behavioral outcome, however, was
not very strong (neither survived Bonferroni criterion, and the VPLN cor-
related only marginally with the GOSe when individually tested; p =
0.06— see the Results section). Consistentwith this pattern, the principal
component in which both nuclei were included was not significantly re-
lated to the outcome measure either. Nonetheless, thalamic expansion
following brain injury has been reported previously in conjunction
with acute and secondary delayed processes triggered by brain injury
(Osteen et al., 2001; Pierce et al., 1998). In particular, the medial genicu-
late nucleus and the ventro-posterior aspect (among others) of the ro-
dent thalamus were found to be enlarged due to calcium accumulation
reflecting secondary cell death (Osteen et al., 2001). While previous
studies have also shown that pathologies such as necrotic neurons, mac-
rophages, reactive astrocytes and cellular debris, can selectively affect in-
dividual nuclei (Bramlett et al., 1997), at present we can only speculate
about the importance of the specific cytoarchitectonics of each nucleus
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in determining the dynamic cascade of neural events triggered by severe
brain injury.

As discussed above, the nuclei exhibiting severe atrophy receive
afferent connections and project efferent fibersmainly tomedial limbic,
andmedial and lateral prefrontal cortices, regions at the heart of several
cognitive functions spanning memory, executive functions, and aware-
ness— capacities central to a normal brain and the disruption of which
is consistent with very low performance on a GOSe assessment (al-
though the mediating factor of motor impairments, which might be as-
sociated with VAN atrophy, cannot be discounted here; cf. Bekinschtein
et al., 2008).

Finally, it is worth closing with a note of caution concerning some
limitations of the present study. First, whilewe have adopted thewidely
employed “nuclear” view of the thalamus, this approach is not
uncontroversial (see Sherman and Guillery, 2001 for discussion).
Specifically, it does not account for the fact that each individual nucleus
or nuclear subdivision can host a variety of intermingled relay cell types
which might be differently susceptible to brain injury. Similarly, our
approach is also blind to the fact that thalamic nuclei are likely to differ
in both extrinsic connectivity (e.g., different laminar organization of
thalamocortical projections; cf., Herkenham, 1980) as well as intrinsic
organization (e.g., distribution of different excitatory and inhibitory
metabotropic receptors), a set of differences which might bear some
explanatory power relevant to the uneven role of different nuclei in cog-
nitive recovery after TBI. Second, it is not possible for us to differentiate
among different modes of firing of thalamic cells (i.e., in tonic versus
burst mode), a characteristic of thalamic neurons that is likely to play
a key role in its function. Finally, we stress that our findings are bound
by the specific methodological choices. On the one hand, we are
bound by the structural atlas we chose which, although based on
an extremely large number of individual datasets, does not allow
us to evaluate some specific subregions of the thalamus, such as the
anterior and posterior intralaminar nuclei, which have been pro-
posed to be central to recovery after TBI (by visual inspection these
nuclei appear to be included within the AN and DMN ROIs; Schiff,
2008). Furthermore, even though the use of an atlas based on a
large population is likely to properly label ROIs, on average, this
approach is necessarily introducing greater variance than if we had
defined ROIs on the basis of more detailed individual neuroanatom-
ical images (which were not available in this setting). On the other
hand, we are also bound, with respect to the precision of our mea-
surement, by the use of the GOSe scale, which although very fitting
in this setting, does not have the fine-grained resolution afforded
by other scales often employed in severe TBI (e.g., Coma Recovery
Scale — Revised; Giacino et al., 2004).

In sum, our findings address secondary processes following severe
brain injury, and in particular structural changes across different thalam-
ic nuclei. According to our data, substantial secondary non-mechanical
damage triggered by severe trauma occurs well after the first week
post-injury (although we cannot tell at which point within our two-
timepoint sampling), suggesting a temporal window within which
intervention might be possible. Furthermore, our results suggest a
clear role for specific subregions of the thalamus within its anterior
and medio-dorsal aspects in TBI outcome, consistent with the view
that these specific sections of the thalamus are crucial to awareness
and to maintaining neuronal firing patterns across long-range
cortico-cortical as well as cortico-subcortical loops crucial to global
network activity and recovery post severe brain injury (Schiff, 2008,
2010).
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