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Abstract: In order to improve the electrochemical performance of the NiCo2O4 material, Ni ions
were partially substituted with Cu2+ ions having excellent reducing ability. All of the electrodes were
fabricated by growing the Ni1−xCuxCo2O4 electrode spinel-structural active materials onto the graphite
felt (GF). Five types of electrodes, NiCo2O4/GF, Ni0.875Cu0.125Co2O4/GF, Ni0.75Cu0.25Co2O4/GF,
Ni0.625Cu0.375Co2O4/GF, and Ni0.5Cu0.5Co2O4/GF, were prepared for application to the oxygen
evolution reaction (OER). As Cu2+ ions were substituted, the electrochemical performances of the
NiCo2O4-based structures were improved, and eventually the OER activities were also greatly
increased. In particular, the Ni0.75Cu0.25Co2O4/GF electrode exhibited the best OER activity in a 1.0 M
KOH alkaline electrolyte: the cell voltage required to reach a current density of 10 mA cm−2 was
only 1.74 V (η = 509 mV), and a low Tafel slope of 119 mV dec−1 was obtained. X-ray photoelectron
spectroscopy (XPS) analysis of Ni1−xCuxCo2O4/GF before and after OER revealed that oxygen
vacancies are formed around active metals by the insertion of Cu ions, which act as OH-adsorption
sites, resulting in high OER activity. Additionally, the stability of the Ni0.75Cu0.25Co2O4/GF electrode
was demonstrated through 1000th repeated OER acceleration stability tests with a high faradaic
efficiency of 94.3%.

Keywords: oxygen evolution reaction; Cu substitution; spinel structure; oxygen vacancy

1. Introduction

With the increase in environmental pollution due to excessive use of fossil fuels, studies on new
energy conversion and storage systems such as water decomposition devices, fuel cells, and batteries
are actively being conducted. In particular, hydrogen energy produced by water splitting is an ideal
clean energy and has the advantage of having the largest energy efficiency per unit mass compared to
other energy sources [1]. In general, electrolysis of water includes a hydrogen evolution reaction (HER)
and an oxygen evolution reaction (OER). In particular, the OER process requires high over-potential,
which negatively affects the overall reaction process [2]. It is known that noble metal materials can
reduce the over-potential, and in fact, noble metals such as Ir and Ru are already used as efficient
electrode active materials [3,4]. However, these noble metals are limited to commercialization on a
large scale due to their high price and low reserves, so it is urgent to develop an OER electrode active
material with low cost, high efficiency, and high stability for efficient hydrogen production. Recently,
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Co-based bimetal oxides having a spinel structure as a non-noble metal active material have attracted
wide attention in the field of energy storage and conversion.

As an electrode active material for OER, many transition metal compounds having various ligands
such as oxide, hydroxide, and phosphide are used [5–7], of which Co-based metal oxide is the most
promising OER electrode active material available in alkaline media. Moreover, doping a metal ion
such as Ni or Fe with a Co-based oxide can further improve electrocatalytic performance. Among them,
NiCo2O4 has high electrical conductivity and stability, attracting much attention from scientists, and is
known as a reliable OER electrode active material with excellent repeatability [8]. The general structural
formula of a unique spinel structure such as NiCo2O4 is ACo2O4, where A is a divalent metal ion such
as Ni, Fe, Mn, Mg and Zn, and a cubic packing structure connected to O, where Co3+ and A2+ ions are
respectively the centers of octahedral and tetrahedral [9]. Nickel-cobalt bimetal oxide (NiCo2O4) is a
material that has been studied extensively for a long time and shows ideal electrochemical performance
in super capacitors or batteries such as LiB [10], Zn-Air [11], and Li-Air [12]. Recently, NiCo2O4 has
been quite favored in OER, HER, ORR(Oxygen Reduction Reaction), and alcohol oxidation reactions
by several researchers [13–16]. It has been found so far that the electrode potential required to drive a
current density of 10 mA cm−2 in a NiCo2O4 electrode active material loaded on a Ni foam support is
about 360 mV [17]. Although many researchers are changing the synthetic method and the support to
change the high conductivity and active surface area, it has been found that the intrinsic activity of the
NiCo2O4 electrode active material has not improved significantly.

In this study, in order to improve the electrochemical performance of the NiCo2O4 electrode
active material, Ni ions were partially substituted with Cu ions having excellent reducing ability.
In 1999, Tavares and his colleagues concluded that the substitution of Cu(II) in the NiCo2O4 spinel
lattice leads to significant changes in surface composition and oxygen evolution [18]. Meanwhile,
Mugheri et al. also reported OER performance on NiCo2O4/CuO electrode active material: 0.5 g of
CuO on NiCo2O4 showed a low starting potential of 1.46 V, and a current density of 10 mA cm−2

was achieved at an electrode potential of 230 mV, and the durability was maintained for 35 h [19].
On the other hand, due to the similar physical properties of Ni and Co, the preparation of nickel-cobalt
bimetal oxide of NiCo2O4 is relatively simple and a pure phase structure is easily formed. Synthesis
methods vary from sol–gel, chemical precipitation, spray pyrolysis, and electrospinning methods,
but many researchers have been the solvothermal or hydrothermal synthesis methods, which are
a relatively efficient method to produce NiCo2O4 nanomaterials [20,21]. In addition, nanoparticles
of NiCo2O4 have various morphologies such as nanowires, nanorods, nanosheets, nanoparticles,
hollow nanospheres, and 3-D nanoflowers, and the electrochemical properties vary depending on
the morphologies [22,23]. In our study, the graphite felt (GF) electrode support was hydrothermally
treated with metal precursors of electrode active materials in synthetic solution. An electrode made
by stably growing NiCo2O4 or Ni1−xCuxCo2O4 nanoparticles on a GF support was used as a water
electrolysis catalyst. Moreover, instead of Ni in the NiCo2O4 spinel structure, Cu was partially
substituted, the optimal amount was confirmed, and the OER performance was checked to investigate
their correlation.

2. Materials and Methods

2.1. Fabrications of NiCo2O4/GF and Ni1−xCuxCo2O4/GF Electrodes

OER electrodes are manufactured by growing active material nanoparticles on the surface of the
support electrode by the hydrothermal method as shown in Scheme 1A GF030 (Graphite Felt (GF),
3 mm, CeTech Co., Wuri Dist., Taichung City, Taiwan) was used as an electrode support, and was
cut to a width × length × thickness of 10 mm × 10 mm × 1.5 mm. As shown in Scheme 1B, the GF
was thermally stabilized by heating at 800 ◦C at a rate of 5 ◦C min−1 using a thermogravimetric
analyzer (TGA, TGA-N1000, Sinco, Daejeon, Korea) under air atmosphere. As a result, it was confirmed
that there was almost no decrease in mass to a temperature of 500 ◦C [24]. Before the nanoparticles
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were coated, in order to remove the oil film or organic impurities on the surface of the electrode support,
it was heated up to 450 ◦C at a rate of 10 ◦C min−1 in an electric furnace and held at 450 ◦C for 3 h.
After cooling, the surface was etched by ultrasonic treatment for 30 min in a strong acid solution to
facilitate coating of the electrode active material. After washing with deionized water and ethanol
several times, it was dried in a vacuum oven at 110 ◦C for 6 h.
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Scheme 1. (A) Synthesis of Ni1−xCuxCo2O4/graphite felt (GF). (B) Graphite felt air atmosphere
TGA analysis.

First, the hydrothermally fabrication method of the NiCo2O4/GF electrode is as follows: 10 mmol
of Ni(NO3)2·6H2O (≥98%, Junsei, Tokyo, Japan) and 20 mmol of Co(NO3)2·6H2O (≥98%, Junsei, Tokyo,
Japan) were dissolved in 50 mL distilled water for 1 h. Into the uniformly mixed solution, 0.2 mol
of urea (≥98%, Junsei, Tokyo, Japan) was added and stirred for 2 h at room temperature. The GF
support electrode was put into this solution, and was sonicated for 6 h to allow the solution to
sufficiently penetrate into the support electrode. The final solution is transferred to an autoclave,
and the temperature is raised to 120 ◦C at a heating rate of 5 ◦C min−1 and maintained for 3 h. After the
reaction is completed, it is cooled to room temperature and opened to confirm that the electrode active
material is coated on the support electrode. It was confirmed that the surface of the obtained electrode
was coated with a light purple color, which was washed several times with water and ethanol and
then dried at 70 ◦C for 12 h. Finally, the NiCo2O4/GF electrode fabrication is completed through the
calcination step at 350 ◦C for 3 h in an air atmosphere.

In the next step, Ni1−xCuxCo2O4/GF (x = 0.125, 0.25, 0.375, and 0.5) electrodes were also made in
the same way as NiCo2O4/GF electrode fabrication. Of Ni(NO3)2·6H2O 8.75, 7.50, 6.25, and 5.00 mmol,
1.25, 2.50, 6.25, and 5.00 mmol of Cu(NO3)2·6H2O (≥98%, Junsei, Tokyo, Japan), and 0.02 mol of
Co(NO3)2·6H2O were dissolved in 50 mL of distilled water and stirred for 1 h. Of urea 0.2 mol was
added to the uniformly mixed solutions and stirred for 2 h at room temperature. Here, the GF support
electrodes were put in the solutions, and those were ultrasonic treated for 6 h. The final solutions
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containing GF support electrodes were transferred to autoclaves, heated to 120 ◦C at a rate of 5 ◦C min−1

and maintained for 3 h. After completion of the reaction, the mixtures were cooled to room temperature,
and it was confirmed that the electrode active materials were well loaded on the support electrodes.
It was convinced that the electrode active materials were coated on the support electrode surfaces,
since the electrode surfaces turned from light purple to light brown. In particular, the brown colors of
the electrode surfaces were noticeable according to the content of Cu. The electrodes were washed
several times with water and ethanol, and then dried at 70 ◦C for 12 h. Finally, a Ni1−xCuxCo2O4/GF
electrodes were obtained through calcination processes at 350 ◦C for 3 h in air atmospheres. The amount
of active materials loaded on the GF support electrode was 10 mg, which was constant for all electrodes.

2.2. Evaluation of Physicochemical Properties of Electrodes

Crystal structures of the Ni1−xCuxCo2O4 active material grown on the GF support electrode were
confirmed by XRD (Miniflex, Rigaku, Tokyo, Japan) using nickel-filtered Cu Kα radiation (30 kV,
15 mA) in the 2θ range of 20–90◦. The surface morphologies of these active materials were observed
with a Hitachi S-4100 field emission scanning electron microscope (SEM). Energy dispersive X-ray
spectroscopy (EDS) and EDS elemental mapping were performed by EDAX (EX-250, Horiba, Tokyo,
Japan) to know the composition of the elements constituting the Ni1−xCuxCo2O4 active materials.
The determinant analysis and SAED pattern for the best performing active material were investigated
with a high-resolution transmission electron microscopy (HR-TEM, FEI’s Titan G2 STEM, FEI Company,
Hillsboro, Oregon, USA) instrument. The oxidation states of the elements present in the electrode active
materials before and after the OER reaction were confirmed using X-ray photoelectron spectroscopy
(XPS, K-Alpha Compact XPS, Al Kα 1486.6 eV, Thermo Scientific, Waltham, MA, USA).

2.3. Electrochemical Characterizations of Electrodes

All electrochemical measurements were performed with an electrochemical cell test system
(IVIUMnSTAT, Ivium technologies, Eindhoven, Netherlands) at room temperature of 25 ◦C.
The electrochemical OER activity was performed using a standard 3-electrode type electrochemical
device, and was performed in an alkaline electrolyte (1.0 M KOH, pH = 14). Here, Ni1−xCuxCo2O4/GF
as a working electrode, Hg/Hg2Cl2 (saturated caramel electrode, SCE) as a reference electrode, and a
Pt wire having a thickness of 0.2 mm as a counter electrode were used, respectively. Linear sweep
voltammetry (LSV) measurements were performed at a scan rate of 5 mV s−1 at 1.0 M KOH (pH = 14).
Electrochemical impedance spectroscopy (EIS) measurements were made by applying an amplitude
range of 5 mV at frequencies ranging from 100 kHz to 0.01 Hz. Electrochemically active surface area
(ECSA) measurements were performed at varying scan speeds from 10 to 100 mV s−1 in the 0.967–1.067
VRHE range. The long-term stability test was confirmed by measuring the change in voltage by applying
a current of 10 mA cm−2. To calculate the Faradaic efficiency, a closed reactor was constructed and
used for the OER reaction, and the gases inside the reactor were sampled for 4 h at 30 min intervals
using a microsyringe. The sampled gases were injected into gas chromatography (GC, Master GC,
Scinco, Daejeon, Korea) equipped with a thermal conductivity detector (TCD), and the amount of
oxygen gas generated after the OER reaction was analyzed. The measured potential was converted to
reversible hydrogen electrode potential (VRHE) using the following calibration equation [25].

VRHE = VSCE + 0.241 + 0.059 × pH (1)

3. Results and Discussion

3.1. Physicochemical Properties of Ni1−xCuxCo2O4 Electrode Active Materials Grown on GF

XRD patterns of Ni1−xCuxCo2O4 electrode active materials grown on the support electrode surface
are compared in Figure 1. NiCo2O4 was consistent with the cubic spinel structure (JCPDS card no.
01-073-1702) with a space group of Fd-3m, peaks corresponding to (111), (220), (311), and (400) facets
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were observed at 2-theta = 18.9◦, 31.2◦, 36.7◦, and 44.6◦ [26]. NiCo2O4 is a p-type semiconductor having
a band gap of 2.1 eV, and is a ferrimagnetic material having a number of oxidation–reduction states
and excellent electrical conductivity. Ni cations occupy octahedral sites, whereas Co cations coexist
in tetrahedral and octahedral sites, so they can be expressed in the form of [Co2+][Ni3+Co3+]O4 [27].
In a conventional unit cell of the AB2O4 spinel structure, O atoms are arranged in a face centered
cubic lattice, and there are tetrahedral (8A) sites and octahedral (16B) sites available for the cations.
If metal atoms occupy the 8A sites and Co atoms occupy the 16B sites, then the structure is named
normal spinel. Conversely, if M atoms occupy half of the 16B sites, while Co atoms occupy the 8A
sites and the left half of the 16B sites, then the structure is named inverse spinel. Therefore, it can be
said that NiCo2O4 has a typical inverse spinel structure [28]. Here, if a part of the Ni metal is replaced
with Cu2+ ions, the Cu2+ ions do not occupy the Ni2+ sites, but are substituted at the tetrahedral sites
of Co2+, and the Co ions occupying the tetrahedral sites move to the octahedral sites of the empty
Ni3+ [29]. In conclusion, Ni1−xCuxCo2O4 crystals in which Ni is partially substituted with Cu can
be accurately expressed as (Co2+

1−xCu2+
x)tet(Ni3+

1−xCo3+
1+x)octO4. All of Ni1−xCuxCo2O4 materials

substituted with Cu2+ in the XRD pattern also showed cubic spinel crystals with a space group of
Fd-3m. However, these coincide with the peaks at 2-theta = 19.1◦, 31.4◦, 37.0◦, and 45.1◦ corresponding
to (111), (220), (311), and (400) facets of CuCo2O4 (JCPDS No. 00-001-1155), which are shifted at a
higher angle compared to the peaks of the NiCo2O4 crystals [30]. This is due to the different bond
distances and angles between Metal-O due to the different radius of Cu, Co, and Ni ions. According
to Bragg’s equation, the shift of the peak at a high angle by substitution of Cu means that it has a
smaller d-spacing [31]. Meanwhile, it is well known, the degree of spinel inversion, defined as the
proportion of Ni ions on the Oh site, was found to be critical for high conductivity [32]. Therefore,
how much the Ni3+ occupied at the octahedral site changes due to Cu substitution will be a factor in
measuring conductivity.
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Figure 1. XRD pattern of synthesized Ni1−xCuxCo2O4 active materials.

Figure 2 shows the morphologies of the GF surface and Ni1−xCuxCo2O4 electrode active materials
grown on the GF surface. The surface of the pure GF support electrode was smooth overall, and scratches
were partially visible on the surface. From this, it was confirmed that the support electrode surface
was well etched through heat and acid treatment in the precoating treatment step. On the surface of
the NiCo2O4/GF electrode, small nanorods corresponding to 500 nm in length grew sprawling like
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dense hairs. However, as Cu was substituted for Ni, the nanorod shaped particles disappeared and
the particles with angular plate appeared. The rod and plate shape were mixed until the substitution
amount of Cu was 0.375 mol, and the crystal growth was not high compared to NiCo2O4. It seems
that irregular crystals with various sizes and various particle shapes were grown on the GF surface
by partially inhibiting the growth between Ni-O-Co as Cu was substituted at the Ni site during
the crystal growth process. As a result, it is believed that the irregularity of the crystal shape can
lower the activation energy of the reaction by increasing the surface area and the number of reaction
active sites [33]. However, in the Ni0.5Cu0.5Co2O4/GF electrode where Cu and Ni were added 1:1,
regular Ni0.5Cu0.5Co2O4 particles with a square plate with a thickness of 70–150 nm and a width of
700 nm were grown on the GF support electrode. It has been confirmed that these largely grown particles
are expected to be a factor to lower the electrode performance by increasing the surface resistance.
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Figure 3 shows the HR-TEM image, lattice fringe, SAED pattern, and element mapping image,
which measured and dispersing it in ethanol solvent after scraping off the Ni0.75Cu0.25Co2O4 electrode
active materials grown on the support electrode surface. Figure 3a shows the image of the dispersed
Ni0.75Cu0.25Co2O4 particles. The particle size could not be confirmed clearly in the SEM photograph of
Figure 2, but in the HR-TEM photograph, it was confirmed that the Ni0.75Cu0.25Co2O4 was composed
of very small nanocrystals, and the size was about 10–20 nm. Figure 3b shows the lattice fringes in
the selected area. The most clearly visible grating is a (220) facet having an interplane distance of
2.87 Å, a characteristic surface of the spinel structure [34]. Figure 3c shows the SAED (selected area
diffraction) pattern at the same point as Figure 3a. The reciprocal of the distance from the center to the
spot corresponds to the distance between the lattices, and (111), (220), (311), (400), and (511) facets were
identified. It was found that Ni0.75Cu0.25Co2O4 particles are polycrystals in which various single crystals
are mixed in various orientations [35]. In Figure 3d, the composed elementals in Ni0.75Cu0.25Co2O4

particle were confirmed by the STEM-element mapping image analysis, and the intensity of the color
is proportional to the element concentration. Elements were evenly distributed on the particles, and no
entangled elements were visible. Table 1 shows the atomic composition of the elements present in the
assembled electrodes. The component concentrations present in most of the electrodes were almost
stoichiometrically similar to the amount added during the preparing process. In particular, the atomic
ratio of the constituent elements was Ni:Cu:Co:O = 10.3(3.1):3.2(1.0):28.0(8.8):59.9(18.7), which was
almost quantitatively consistent with the molar ratio of the atoms (Ni:Cu:Co:O = 3:1:8:16) of the
synthesized Ni0.75Cu0.25Co2O4 particles.
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Figure 3. TEM image of Ni0.75Cu0.25Co2O4/GF electrode (a), HR-TEM images of the electrode surface
(b), SAED patterns (c), and STEM-EDS mapping for all elements (d).

Table 1. Atomic compositions on Ni1−xCuxCo2O4/GF electrodes obtained by the EDS analysis.

Sample
Atomic (%) Ni Cu Co O C

Graphite Felt - - - 10.49 89.51

NiCo2O4/GF 7.46 - 14.88 29.82 47.84

Ni0.875Cu0.125Co2O4/GF 6.70 0.98 15.40 31.00 45.92

Ni0.75Cu0.25Co2O4/GF 5.51 1.70 14.98 32.11 45.70

Ni0.625Cu0.375Co2O4/GF 4.59 2.74 14.62 29.27 48.78

NiCuCo2O4/GF 3.93 3.52 14.83 29.64 48.08



Nanomaterials 2020, 10, 1727 8 of 19

3.2. Electrochemical Properties of Ni1−xCuxCo2O4 Electrode Active Materials Grown on GF

Among the properties of catalysts used for electrochemical water decomposition, one of the
important factors is the high electrochemically active surface area (ECSA) [36]. To predict ECSA,
cyclic voltammetry (CV) was measured by varying the scan rate in the potential range of the
non-faradaic region, and the current densities as a function of potential are plotted in Figure 4.
In general, the rectangular shape of CV curve mean electrolyte ions accumulated on the electrode
surface (electric double layer formation), indicating pure capacitive energy storage. When the redox
current density is large in the same voltage range, the electroactive capacity is also large [37]. As the
CV cycle increased, the redox current density in all samples increased. The redox current density
increased as Cu was substituted, and it was found that the current density of Ni0.75Cu0.25Co2O4

increased drastically when the redox reactions occurred.
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The current density differences (Janodic–Jcathodic, ∆J) in all of electrodes are shown in Figure 5.
The linear trend line slope was plotted with the values obtained in Figure 4 to measure the double layer
capacitance (Cdl, double-layer capacitance, ESCA) and compared. The Cdl of GF calculated from the
slope was calculated to be 21.2 mF cm−2, and the Cdl value increased as a whole in the electrode active
material coated on the GF surface. Especially for Ni0.75Cu0.25Co2O4/GF showed the highest ECSA value
of 97.6 mF cm−2, compared to the electrodes of NiCo2O4/GF (39.6 mF cm−2), Ni0.875Cu0.125Co2O4/GF
(62.8 mF cm−2), Ni0.625Cu0.375Co2O4/GF (71.8 mF cm−2), and Ni0.5Cu0.5Co2O4/GF (61.9 mF cm−2).
From these results, we predicted that Ni0.75Cu0.25Co2O4/GF will show a higher catalytically active site
and will show excellent electrochemical catalyst performance [38].
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Figure 5. Current density differences depending on scan rate for all electrodes.

To compare the OER activity of the electrodes, LSV (linear scan voltammetry) curves were
measured for all electrodes, and the results are shown in Figure 6a. In general, the electrolytic reaction
describes the OER reactivity of the electrode by comparing the electrode potential at a current density
of 10 mA cm−2 [39]. In order to reach a current density of 10 mA cm−2 at the GF support electrode,
an overvoltage of 1.87 V is required. In Ni1−xCuxCo2O4/GF electrodes, electrode potentials were
obtained with 1.81 (η = 575 mV), 1.76 (η = 533 mV), 1.74 (η = 509 mV), 1.75 (η = 521 mV), and 1.79 V
(η = 548 mV) in NiCo2O4/GF, Ni0.875Cu0.125Co2O4/GF, Ni0.75Cu0.25Co2O4/GF, Ni0.625Cu0.375Co2O4/GF,
and Ni0.5Cu0.5Co2O4/GF electrodes, respectively. In particular, the Ni0.75Cu0.25Co2O4/GF electrode
showed the lowest electrode potential, which means that it shows the best OER activity. Figure 6b
shows the Tafel slope value derived from the LSV curve, and the Tafel slope shows the unique
properties of the electrochemical catalytic electrode. The Tafel slope is the value of the electrode
potential required when 10-fold electrons flow, and it is reported that the lower this value, the better
the water-oxidation kinetics [40]. In Figure 6b, the Tafel slope of GF showed 325 mV dec−1, and the
Ni0.75Cu0.25Co2O4/GF electrode, which expressed the lowest electrode potential in the LSV curve, also
showed the lowest Tafel slope with 119 mV dec−1. For the NiCo2O4/GF electrode 173 mV dec−1, 154 mV
dec−1 for the Ni0.875Cu0.125Co2O4/GF electrode, 125 mV dec−1 for Ni0.625Cu0.375Co2O4/GF electrode,
and 158 mV dec−1 for Ni0.5Cu0.5Co2O4/GF electrode were respectively obtained. These values were
consistent with OER performance. Table 2 summarizes and compares the results of using noble or
non-noble metal electrodes to recognize whether the electrochemical performance of Ni1−xCuxCo2O4

electrode is high or low. The overpotential was widely distributed from 241 to 540 mV, and the
Tafel values were also varied from 53 to 238 mV dec−1. When nickel foam was used as a support
electrode, the electrochemical performance was relatively excellent, whereas when a carbon electrode
was used, it was significantly reduced. This is because the carbon electrode has a lower conductivity
than the metal electrode. In addition, the performances vary depending on the shapes of graphite,
but it is confirmed that the electrochemical performance was slightly lower than when using other
carbon support electrodes because electrolyte wettability was lowered when GF was used. In the end,
the performance in this study using GF was not largely improved in this reason.
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Figure 6. Linear scan voltammetry (LSV) curves for oxygen evolution reaction (OER) polarization of
Ni1−xCuxCo2O4/GF (a) and Tafel plots (b).

Table 2. Comparison of electrochemical performances for noble or non-noble metal electrodes.

Sample Support Overpotential (j = 10 mA cm−2) Tafel Slope
(mV dec−1)

Ref.

Ni0.75Cu0.25Co2O4 Graphite Felt 509 mV 119 This work

Co-P Graphite Felt 530 mV
(j = 5 mA cm−2) 133 [41]

CuS/CuFeS2 Carbon Felt 400 mV 171 [42]

NiCu(I) Ni foam 252 mV 54 [43]

NiFe2O4 Ni plate 520 mV 223 [44]

CuFe2O4 Ni plate 540 mV 238 [44]

Fe-Co(OH)2 Glassy Carbon 290 mV 69 [45]

NiCo2S4/RGO Glassy Carbon 366 mV 65 [46]

NiCo2O4/CoNx-NMC
NMC (Nitrogen doped
Mesoporous Carbon)

Glassy Carbon 370 mV 99 [47]

(Co0.21Ni0.25Cu0.54)3Se2 Glassy Carbon 241 mV 53 [48]

FeCoNi alloy N-doped graphene 288 mV 57 [49]

RuO2 Glassy Carbon 300 mV 54 [49]

IrO2 Glassy Carbon 314 mV - [50]

Electrochemical impedance spectroscopy (EIS) was performed to investigate the charge transfer
properties of the electrode, in Figure 7. Generally, the size of the semicircle of the Nyquist plot
is assigned to the charge transfer resistance (Rct) [51]. Table 3 shows the Rs (solution resistance)
and Rct values for all of electrodes. The Rct value was found to be 10.39 Ω, which was the highest
value in the support electrode GF, and greatly decreased to 1.814 Ω in the NiCo2O4/GF electrode.
Particularly, in the electrode substituted with 0.25 mol of Cu, the size of the electrode active material
was reduced, and they were thinly and evenly grown on the electrode surface, and eventually the
charge transfer resistance was significantly reduced to 0.728 Ω in the Ni0.75Cu0.25Co2O4/GF electrode.
However, when Cu was replaced with more than that, the size of the electrode active material increased
and the thickness of the plate-like particles thickened. As a result, the active area of the electrode
surface decreased, and eventually the charge transfer resistance increased again to 1.631 Ω in the
Ni0.5Cu0.5Co2O4/GF electrode.
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Table 3. Resistance behavior for all electrodes.

Factor
Sample Graphite Felt NiCo2O4 Ni0.875Cu0.125Co2O4 Ni0.75Cu0.25Co2O4 Ni0.625Cu0.375Co2O4 Ni0.5Cu0.5Co2O4

RS (Ω) (Solution
Resistance) 2.960 2.768 2.627 2.654 2.613 3.012

Rct (Ω) (Charge Transfer
Resistance) 10.39 1.814 1.250 0.728 1.613 1.631

Total resistance (Ω) 13.35 4.582 3.877 3.382 4.226 4.643

3.3. Evaluation of the Durability of the Electrode

The long-term durability of the electrode serves as an important factor in evaluating the
electrochemical material [52]. The stability of all electrodes was evaluated by applying a current of
10 mA cm−2 through chronopotentiometry for a total of 10 h, and the results are shown in Figure 8A.
In the electrode coated with the electrode active material, the potential was maintained stably over time,
but the GF support electrode showed an unstable potential until about 2 h, and it can be seen that the
overpotential greatly increased after that. This can be attributed to the oxidization of the surface of the
GF by continuous reaction [53]. Figure 8B shows the results for 100 h to further confirm the long-term
stability of the Ni0.75Cu0.25Co2O4/GF electrode, which showed the highest performance. The initial
stable voltage was maintained, and there was no significant difference in potential even after 100 h
of reaction. It is judged that in the electrode coated with the electrode active material containing Cu,
the OH− intermediate formed on the electrode surface was rapidly oxidized by oxygen to suppress
oxidation of the electrode surface, and as a result, a stable performance could be maintained [54].
Continuous accelerated stability testing is an important factor in evaluating the durability of the
OER. Thus, the LSV curves for 1000 cycles at the Ni0.75Cu0.25Co2O4/GF electrode are presented in
Figure 8C. Up to 300 cycles, the OER performance was rather improved, and gradually decreased from
400 cycles, but there was little change in performance from 700 cycles. This result means that the partial
introduction of Cu into the lattice of NiCo2O4 not only improves the electrochemical performance of
NiCo2O4, but also has a pretty positive effect on stability.
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As a result of calculation, the Faraday efficiency of about 94.3% was exhibited at the 
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applied electrons were used for the oxygenation reaction without other side reactions except for 
experimental error. 

Figure 8. Chronopotentiometry of all electrodes for 10 h at 10 mA cm−2 (A), Chronopotentiometry
for 100 h on the Ni0.75Cu0.25Co2O4/GF electrode (B), and 1000th cycled LSV curves for the
Ni0.75Cu0.25Co2O4/GF electrode (C).

In order to know the difference between the actual efficiency and the theoretical efficiency of
the Ni0.75Cu0.25Co2O4/GF electrode, an OER electrolysis reaction was performed while applying a
current of 10 mA cm−2 for 4 h. At this time, the amount of oxygen generated was measured, and the
theoretically calculated amount was compared with the actually generated amount. The theoretically
calculated amount of oxygen was calculated using the following equation from Faraday’s law [55].

nO2(theoretical) =
Q
nF

=
I × t
nF

=
0.01 A × 14400 s

4× 96485.3 s·A·mol−1
= 3.73× 10−4 mol (2)

where nO2 is the theoretically calculated amount of O2, Q is the amount of applied charge, n is the number
of electrons participating in the OER reaction (4 electrons), F is the Faraday constant (96485.3 s A mol−1),
i is the applied current (0.01 A), and t is the reaction time (14,400 s). Faraday efficiency is calculated
using the following equation.

Faradaic e f f iciency =
nO2(measured)

nO2(theoretical)
(3)

As a result of calculation, the Faraday efficiency of about 94.3% was exhibited at the
Ni0.75Cu0.25Co2O4/GF electrode as shown in Figure 9, and this value means that almost all of the
applied electrons were used for the oxygenation reaction without other side reactions except for
experimental error.
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In order to confirm the change in the oxidation state of the active elements after the 1000th OER
cycle in the Ni0.75Cu0.25Co2O4/GF electrode showing the best performance, Figure 10A shows the
XPS results before and after the OER reaction in the Ni0.75Cu0.25Co2O4/GF electrode. In addition,
the XPS result before the OER reaction in the NiCo2O4/GF electrode was compared with those. At the
Ni0.75Cu0.25Co2O4/GF electrode before the OER reaction, peaks which corresponding to 2p3/2 and 2p1/2

electron spins of Cu2+ were identified at 934.1 eV and 954.0 eV, respectively [56]. The difference in
the separated binding energy was 19.9 eV, similar to the value reported in the literature, 19.8 eV [57].
In addition, a satellite peak was appeared at 940–943 eV, which is a peak caused by the transfer of
3d electrons (d–d transfer) between the metal and the ligand, and is a major factor in confirming the
presence of Cu2+ [58]. In the electrode after the reaction, the peaks of Cu 2p3/2 and Cu 2p1/2 shifted to
933.4 eV and 953.4 eV, respectively. We were convinced from the slight decrease in the binding energy
after the 1000th OER reaction that Cu2+ ions were attracted the electrons, which emitted by oxidation of
OH− ions during the OER reaction. This is probably evidence that the evolution of oxygen in the spinel
lattice occurs at the oxygen site linked to Cu2+. That is, as Cu2+, which has a higher potential than
Ni2+ and Co2+, is spontaneously reduced, oxygen vacancies are formed around it, and the vacancies
easily adsorbed water or OH−, which in turn improves OER performance. In the Ni 2p XPS spectrum
of the NiCo2O4/GF electrode, peaks that correspond to Ni2+ 2p3/2, Ni3+ 2p3/2, Ni2+ 2p1/2, and Ni3+

2p1/2 appeared respectively at the binding energies of 854.9, 857.0, 872.2, and 874.8 eV [59]. In the
Ni 2p XPS spectra of the Cu-containing Ni0.75Cu0.25Co2O4/GF electrode, they were found at 855.2,
857.3, 872.4, and 874.8 eV, respectively. As Cu was introduced, the binding energy of Ni moved to
the slightly higher (Ni3+). This is because some of the Ni2+ present in the tetrahedral site moves to
the octahedral site by the introduction of Cu and forms a stronger bond with oxygen [60]. In the
spectrum of the Ni0.75Cu0.25Co2O4/GF electrode after the OER reaction, peaks were observed at 855.1,
856.8, 872.1, and 874.4 eV, respectively. This is a decrease of about 0.1–0.4 eV from the binding energy
before the reaction. Moreover, the area of the peak of Ni2+ increased significantly compared to that
before the reaction, which means that Ni3+ (maybe NiOOH) is being reduced to Ni2+ during the OER
reaction. In the Co 2p XPS spectrum of NiCo2O4/GF, peaks corresponding to Co3+ 2p3/2, Co2+ 2p3/2,
Co3+ 2p1/2, and Co2+ 2p1/2 were identified at 779.1, 780.3, 794.1, and 795.6 eV, respectively. From this
result, we were convinced that Co3+ and Co2+ coexisted in this sample [61]. As Cu2+ was introduced,
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Co2+ present in the Td site was oxidized to Co3+ while moving to the Oh site, so the proportion of
Co3+ increased [62]. Therefore, the peaks at the Ni0.75Cu0.25Co2O4/GF electrode before the reaction
appeared at 779.8, 780.9, 794.8, and 796.3 eV, and these shifted to a higher binding energy of about
0.3–0.7 eV compared to the NiCo2O4/GF electrode. In the Ni0.75Cu0.25Co2O4/GF electrode after the
reaction, these peaks shifted to slightly higher binding energies of 780.1, 781.2, 795.1, and 796.4 eV,
respectively. However, the shift was too small. This means that CoOOH was changed to Co2O3 rather
than a change from Co2O3 to CoO during the OER reaction. For O 1s in the NiCo2O4/GF electrode,
peaks corresponding to M-O, oxygen defects and M-OH, and physically adsorbed H2O were identified
at 529.4, 531.2, and 533.1 eV, respectively [63]. As Cu was introduced, the peak areas for M-O and
M-OH were greatly increased. This means that oxygen defects have already occurred in the spinel
lattice due to the introduction of copper before the OER reaction. In the Ni0.75Cu0.25Co2O4/GF electrode
after the OER reaction, the area of peaks for M-OH and C=O-OH increased over a wide range. This is
predictable evidence that oxygen vacancies are formed in the lattice due to the introduction of Cu,
and that OH− is easily adsorbed to the defect sites. Figure 10B shows the overall reaction cycle of
the OER reaction occurring on the electrode surface. From the stepwise reactions occurring at the
interface between the active material of the electrode and the electrolyte during the OER reaction,
we can recognize a series of processes in which O2 and electrons are generated as the 4OH− ions in the
electrolyte are oxidized. In addition, through this cycle, it was confirmed that the oxidation–reduction
processes of active metals were consistent with XPS results.
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Based on the above results, the mechanism of the predictable OER reaction was expressed in
Scheme 2, and the OER mechanism occurring in the basic solution is simplified as follows [64].

M + OH−→M-OH (4)

MOH + OH−→MO + H2O (l) (5)
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2MO→ 2M + O2(g) (6)

MO + OH−→MOOH + e− (7)

MOOH + OH−→M + O2(g) + H2O (l) (8)

Overall reaction: M + 4OH−→M + O2 (g) + 2H2O + 4e− (9)
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Scheme 2. Mechanism of OER on the surface Ni0.75Cu0.25Co2O4/GF electrode in alkaline solution.

First, with the introduction of Cu2+, oxygen vacancies were formed in the Ni1−xCuxCo2O4

(or Ni-Cu-Co-Ovac) spinel structure due to the relative redox potential difference between Cu2+, Ni2+,
and Co2+. In the first step reaction, OH− ions in the electrolyte were adsorbed to oxygen vacancies
formed on the surface of the material, generating one electron, and the Ni-Cu-Co-Ovac surface becomes
(Ni-Cu-Co)-OH. In the second step, H2O was generated while another OH− ion of the electrolyte
removed H+ ions bound to the material, and one electron was generated and the material surface
became (Ni-Cu-Co)-O. In the third step, another OH− ion of the electrolyte was bonded to O on
the material surface to become (Ni-Cu-Co)-OOH, and one electron was generated. Finally, in the
fourth step, another OH− ion in the electrolyte removed H+ from the -OOH group on the surface of
(Ni-Cu-Co)-OOH, resulting in H2O, and one electron was generated. At this time, the remaining -OO
was also dissociated to O2, and the material returned to the initial state of Ni-Cu-Co-Ovac. The four
electrons generated during the OER reaction were transferred to the GF collector layer and then
discharged to the HER electrode through an external circuit.

4. Conclusions

For an efficient and stable OER reaction, an OER electrode was prepared by growing a
Ni1−xCuxCo2O4 electrode active material on a GF support electrode through hydrothermal synthesis.
The pure GF support electrode not only had low performance but also tended to be easily oxidized,
but through the method of growing the electrode active material on the surface, it was possible to
increase the surface active site and increase the electrode stability for a long time. XRD, SEM, and
TEM image analysis was confirmed, showing the change in crystallinity and shape as Cu was partially
introduced into the NiCo2O4 spinel structure. As a result of carrying out a water decomposition
OER reaction in 1.0 M KOH alkaline electrolyte, the Tafel value of 325 mV dec−1 was found in the
GF electrode, but was significantly improved to 119 mV dec−1 in the Ni0.75Cu0.25Co2O4/GF electrode.
In addition, the Ni0.75Cu0.25Co2O4/GF electrode exhibited a Faraday efficiency of 94.3% and was
confirmed to have a high catalytically active surface area of 97.6 mF cm−2. Moreover, the activity
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was maintained without deterioration even after a long time reaction of more than 1000th cycles.
In conclusion, in this study, the adsorption of OH− ions was facilitated through oxygen vacancies
caused by the introduction of Cu, and it is considered that the performance was maintained even in
long-term reactions.
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