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Abstract

Background: The swimming crab, Portunus trituberculatus, is an important commercial species in China and is widely
distributed in the coastal waters of Asia-Pacific countries. Despite increasing interest in swimming crab research, a
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2 Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab

high-quality chromosome-level genome is still lacking. Findings: Here, we assembled the first chromosome-level reference
genome of P. trituberculatus by combining the short reads, Nanopore long reads, and Hi-C data. The genome assembly size
was 1.00 Gb with a contig N50 length of 4.12 Mb. In addition, BUSCO assessment indicated that 94.7% of core eukaryotic
genes were present in the genome assembly. Approximately 54.52% of the genome was identified as repetitive sequences,
with a total of 16,796 annotated protein-coding genes. In addition, we anchored contigs into chromosomes and identified 50
chromosomes with an N50 length of 21.80 Mb by Hi-C technology. Conclusions: We anticipate that this chromosome-level
assembly of the P. trituberculatus genome will not only promote study of basic development and evolution but also provide
important resources for swimming crab reproduction.
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Introduction

The swimming crab, Portunus trituberculatus (NCBI:txid210409,
marinespecies.org:taxname:1061762), belonging to Brachyura,
Portunidae, Portunus, is named for its shuttle-shaped head
breastplate and 3 verrucous bumps on the back of the stomach
and heart regions [1, 2]. The chelipeds of swimming crabs are
well developed for feeding and attacking, with the first 3 pairs
and last pair used for crawling and swimming, respectively [3,
4]. Male and female crabs are distinguished by the shape of their
abdomen, with the male having a triangular abdomen and the
female having an almost circular one [5]. Owing to their lack of
drilling ability, swimming crabs often live in soft mud or sand
[6] or in seagrass near the shore, and also show a certain level
of phototaxis, spending time on the sea floor during the day and
foraging at night [5]. Swimming crabs are also omnivorous, feed-
ing on shellfish, small fish, shrimp, algae, and decomposing an-
imal and plant carcasses [7].

The swimming crab is widely distributed in the coastal wa-
ters of Korea, Japan, China, and Southeast Asia and is one of
the most valuable marine crustaceans in Asia [8]. It is widely
found in Chinese coastal waters of the Bohai Sea, Yellow Sea,
East China Sea, and South China Sea and is an important com-
mercially cultured species [9]. Swimming crabs are considered
highly nutritious, especially in regard to crab cream, and are very
popular in China [10, 11]. As a result, the crab has been heavily
overfished, resulting in substantial declines in its natural popu-
lation [12] and initiation of artificial breeding [13, 14]. With con-
tinued research on the crab, its morphological and physiological
characteristics have become clear, but the genetic changes are
poorly understood. At present, several genomic studies of swim-
ming crab have been carried out [15–18], but the high-quality
chromosome-level genome is still lacking.

In the present study, we constructed a chromosome-level
genome assembly of P. trituberculatus by combining short
reads, Nanopore long reads, and Hi-C sequencing data. This
chromosome-level genome will not only promote study on de-
velopment and evolution but also provide important resources
for reproductive studies of P. trituberculatus and other crab
species.

Methods
Sampling, library construction, and sequencing

A male swimming crab was collected in Bohai Bay, Hebei
Province, China, for sequencing (Fig. 1). To obtain sufficient high-
quality DNA for the Oxford Nanopore (Oxford, UK) and BGISEQ-
500 platforms (BGI, Qingdao, China), the swimming crab was
rinsed 5 times with clean water and dissected immediately.
Fresh muscle tissue was collected and snap-frozen in liquid
nitrogen. The samples were then used to extract DNA with a

Figure 1: Swimming crab, Portunus trituberculatus. The adult male swimming crab
collected from Bohai Bay, Hebei Province.

Qiagen Blood & Cell Culture DNA Mini Kit and prepared for
Nanopore, BGISEQ-500, and Hi-C sequencing. Using the same
individual, muscle RNA was also extracted using TRIzol (Invit-
rogen) according to the manufacturer’s instructions. To obtain
an overview of the transcriptome, polyadenylated RNA was cho-
sen by oligo (dT) purification and reverse-transcribed to comple-
mentary DNA and sequenced using the BGISEQ-500 platform.

Extracted DNA was sequenced using both the BGISEQ and
Oxford Nanopore platforms. The short reads generated from the
BGISEQ platform were used for estimation of genome size and
error correction of the assembled genome, and the Nanopore
long reads were used for genome assembly. To this end, 1 library
with insertion lengths of ∼300 bp was sequenced on the BGISEQ-
500 platform, and another library with an average length of 20 kb
was constructed using the Oxford Nanopore platform according
to the manufacturers’ protocols.

Data filtering

Three different sources of reads were used to achieve the high-
quality genome assembly, i.e., Nanopore long reads, short reads,
and Hi-C reads. Thus, we used different methods for filtering. For
the Nanopore long reads, any reads <1 kb or with a mean qual-
ity value of <7 were removed. For the short reads, any read with
>10% unknown bases (usually designated “N”) or with >50%
low-quality bases was removed, and its paired-end read was also
removed. All adaptor sequences and duplicated reads produced
by PCR were removed. The low-quality Hi-C reads were filtered
using HiC-Pro v2.10.0 [19] with default parameters.
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Genome characteristic estimation

All filtered BGISEQ short reads were used for estimation of
genome size and other characteristics. In addition, 17-mer was
chosen for k-mer analysis and the 17-mer depth frequency dis-
tribution was calculated using the k-mer method. Genome size
was estimated as follows: genome size = TKN17-mer/PKFD17-
mer, where TKN17-mer is the total k-mer number and PKFD17-
mer is the peak k-mer frequency depth of 17-mer. The estimated
genome size was used to determine subsequent genome assem-
bly results.

Genome assembly

To improve the quality of the genome and reduce the error ratio,
self-error correction of all Nanopore long reads was performed
using NextDenovo software [20]. The error-corrected Nanopore
long reads were then used to assemble the raw genome via con-
tig construction with WTDBG software (WTDBG, RRID:SCR 017
225) [21] and the following parameters: -p 0 -k 15 -AS 2 -E 1 -
s 0.05 -L 5000. The assembled genomic sequences were further
polished by Racon v1.2.1 [22] with 4 iterations using all the error-
corrected Nanopore long reads with default parameters. After
this, all filtered BGISEQ short reads were polished by Pilon v1.21
(Pilon, RRID:SCR 014731) [23] at the single-base level with de-
fault parameters. After completion of the error correction steps,
the Hi-C data were used to obtain a chromosome-level genome
assembly. All Hi-C sequencing data were first filtered by HiC-
Pro v2.10.0 [19] with default parameters and then mapped to
the polished swimming crab genome to improve the connection
integrity of the contigs. Finally, 3D de novo assembly software
(v180419) [24] with default parameters was used to determine
contig location and direction.

Genome assembly evaluation

Three different strategies were used to evaluate the complete-
ness and accuracy of the assembled genome. First, the quality
of the assembled genome and gene completeness were assessed
using BUSCO (BUSCO, RRID:SCR 015008) [25] with the core gene
sets of the eukaryote and metazoan databases, respectively. Sec-
ond, all filtered short reads generated by BGISEQ were mapped
to the assembled genome using BWA-MEM v0.7.12 [26] to detect
genome integrity with default parameters. Third, transcripts
were mapped to the assembled genome using BLAT software
(BLAT, RRID:SCR 011919) [27] with e-value <10−5.

Repetitive element annotation

Tandem repeats and transposable elements (TEs) were also an-
notated in the chromosome-level genome. Tandem repeats were
annotated using Tandem Repeat Finder v4.04 [28] with default
parameters. The TEs were annotated at the protein level using
RepeatProteinMask (RM-BLASTX) to search the protein database
and at the DNA level using RepeatMasker (open-4.0.7) (Repeat-
Masker, RRID:SCR 012954) [29] to search the de novo libraries and
repbase. The de novo repeat libraries were constructed using Re-
peatModeler (RepeatModeler, RRID:SCR 015027) [30], with con-
sensus sequences used for de novo library construction, and all
software using the default parameters.

Gene structure prediction and function annotation

After repetitive element annotation, the repeat-masked genome
was used for gene set annotation with 3 different meth-

ods, i.e., de novo prediction, RNA-seq–based annotation, and
homology-based annotation. We first assembled the RNA-seq
reads into transcripts using Bridger r2014–12-01 (Bridger, RR
ID:SCR 017039) [31]. The assembled genome and transcripts
were then used for Augustus training to obtain an accu-
rate Augustus annotation species model. Augustus v2.5.5 (Au-
gustus, RRID:SCR 008417) [32] was used for de novo predic-
tion of coding genes with the previous training results. Sec-
ond, proteins of Bicyclus anynana (GCF 900239965.1) [33], Bom-
bus terrestris (GCF 000214255.1) [34], Drosophila melanogaster
(GCA 000001215.4) [35], Mus musculus (GCF 000001635.26) [36],
Stegodyphus mimosarum (GCA 000611955.2), Penaeus vannamei
(GCA 003789085.1), Mesobuthus martensii [37], Eriocheir japonica
sinensis (i.e., Eriocheir sinensis) (GigaDB: 100186) [38–43], and Tachy-
pleus tridentatus (GCA 004102145.1) [44] were downloaded from
the NCBI, GigaDB, or their own databases. The longest transcript
of each gene was selected for further annotation and phyloge-
netic analysis. All filtered genes were searched with an e-value
cutoff of 1e−5, with the blast results then formatted and pre-
pared for Genewise [45] prediction of the gene structure of the
swimming crab genome. Third, for the RNA-seq–based method,
all assembled transcripts were aligned against the genome us-
ing BLAT [27] (identity > 90% and coverage > 90%), with PASA
used to filter overlaps to link the spliced alignments. Finally, Ev-
idenceModeler (EVM; EVidenceModeler, RRID:SCR 014659) v1.1.1
was used to integrate the above data into an EVM-derived gene
set [46].

Five different public protein databases were used for gene
functional annotation of the swimming crab, with InterProScan
v4.8 (InterProScan, RRID:SCR 005829) [47] used to screen pro-
teins against the 5 databases (Pfam, release 27.0; PRINTS, release
42.0; PROSITE, release 20.97; ProDom, 2006.1; and SMART, release
6.2) to determine the number of InterPro- and GO-predicted
protein-coding genes. In addition, the KEGG, UniProt/SwissProt,
and UniProt/TrEMBL databases were also used for functional an-
notation with BLAST v2.3.0 [48]. Blastp (BLASTP, RRID:SCR 00101
0) was used in this step, and the e-value was set as 10−5 and
other parameters were set as defaults.

Identification of orthologous genes

The annotated genes in the swimming crab and 6 other
species, including Aedes aegypti (GCF 002204515.2), B. anynana, D.
melanogaster, S. mimosarum, P. vannamei, and E. j. sinensis, were
used for orthologous gene identification with OrthoMCL v2.0.9
[49] with default parameters. The identified genes were then
used to run reciprocal alignment and pairwise relationship anal-
ysis. The reciprocal best similarity pairs in different species were
considered as putative orthologous genes, and reciprocal bet-
ter similarity pairs in 1 species were considered as paralogous
genes. The 1:1:1:1:1:1:1 single-copy genes in the 7 species were
also identified for further phylogenetic and divergence time es-
timation analysis.

Phylogenetic analysis and divergence time estimation

Using the single-copy genes of the 7 species (P. trituberculatus,
A. aegypti, B. anynana, D. melanogaster, S. mimosarum, P. vannamei,
and E. j. sinensis), we connected the genes in each species into 1
super-gene for phylogenetic tree building. Maximum likelihood–
based phylogenetic analysis was conducted using RAxML v8.2.10
(RAxML, RRID:SCR 006086) [50] with default parameters. The
MCMCTREE program in the PAML package v4.8 [51] was then
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Table 1: Assembly of swimming crab genome

Term
Contig phase Hi-C phase

Size (bp) Number Size (bp) Number

N90 439,683 334 11,273,125 41
N80 1,225,551 203 14,151,211 33
N70 2,035,154 141 16,942,622 27
N60 2,950,146 100 19,786,189 21
N50 4,121,416 71 21,793,880 17
Maximum length 17,984,318 - 42,710,960 -
Total length 1,004,084,521 - 1 005,046,021 -
No. ≥100 bp - 2,446 - 523
No. ≥10 kb - 1,756 - 314

Note: Contig phase represents results assembled by WTDBG software, and Hi-C phase represents scaffold statistics of genome after chromosome assembly.

used to calculate divergence time, with all fossil records down-
loaded from the TIMETREE website [52] for calibration.

Relative evolution rate

The relative evolution rate of species was analyzed with LIN-
TRE software (version 1) [53] using the ”tpcv” model and S. mi-
mosarum as an outgroup. Using the default parameters of LIN-
TRE, we then evaluated the relative evolution rate between the
swimming crab and other related species.

Gene family expansion and contraction

Using the divergence time results calculated by MCMCTREE and
the gene pairwise relationships calculated by OrthoMCL [49],
we determined gene family expansion and contraction for each
node using CAFÉ v3.1 (CAFÉ, RRID:SCR 005983) [54]. The expan-
sion and contraction genes of the swimming crab were extracted
for GO/KEGG enrichment analysis [55, 56].

Results
Chromosome-level genome assembly

To obtain a high-quality chromosome-level swimming crab
genome, we extracted high-quality DNA from the muscle tis-
sue and constructed libraries for genome sequencing. To esti-
mate the genome characteristics of the swimming crab, we gen-
erated 205.40 Gb of BGISEQ data (Table S1), with 17-mer analysis
indicating a genome size of ∼918.52 Mb and a heterozygosity
rate of ∼0.9% (Fig. S1). In total, we generated 54.97 Gb (54.75-fold
coverage) of Nanopore long-read data with N50 >20 kb (Table
S2). The Nanopore long reads were assembled into contigs using
WTDBG software [21] (genome size: 1.00 Gb; N50: 4.12 Mb) (Ta-
ble 1). To further improve genome accuracy, we aligned all cor-
rected Nanopore long reads to the assembled genome and con-
ducted error correction using Racon [22] with 4 iterations. The
genome was subsequently corrected using all filtered BGISEQ
clean reads via Pilon [23] with 2 iterations. We then constructed
the chromosome-level genome with 95.95 Gb of Hi-C sequencing
data (Table S3) by 3D de novo assembly [24]. Finally, we obtained
50 chromosomes and a mounting rate (total length of the con-
tigs that anchored to chromosomes divided by the total length
of all assembled contigs) of 97.80% (Fig. 2; Table S4), which is
the first chromosome-level crab genome with N50 of 21.79 Mb
(Table 1). The high mounting rate suggested successful assem-
bly of the swimming crab genome at the chromosome level. We
also compared our assembled genome to the published swim-

ming crab genome; the assembly quality of our genome is better
than the previous one (Table S5). Because the previous study has
the genomic markers, we also mapped all the markers to our
genome, and we found that 99.40% (10,897 of 10,963) markers
can be mapped to our genome. Among these mapped genome
markers, 98.83% (10,769 of 10,897) are exactly mapped to our as-
sembled 50 chromosomes (Table S6). All these results show that
we obtained a high-quality and quite complete chromosome-
level genome.

Genome quality evaluation

We next assessed the completeness of the swimming crab
genome by BUSCO [25] and identified 94.7% Eukaryota and 92.9%
Metazoa conserved core genes in the genome (Table 2). We
checked the mapping rates of the BGISEQ short reads to our
genome and found that 95.85% of reads were properly pair-
mapped to the genome (Table S7). We then de novo assembled
the transcripts using the RNA-seq data (Table S8) with Bridger
software [31] and an N50 length of 2,124 bp (Table S9). After
transcript mapping, we found that 97.80% of the transcripts
could be mapped to the swimming crab genome (Table S10). We
also analyzed the genome quality of previously published high-
quality genomes from closely related species and determined
that the quality of the assembled chromosome-level swimming
crab genome was markedly higher or comparable to that of other
species (Table S11). In summary, these results indicated that we
acquired a high-quality swimming crab genome. To investigate
genome characteristics, such as GC content, we analyzed the GC
distribution in the genome with a slide-window method. The
peak value of GC content was ∼41%, which agrees with the av-
erage GC content in the swimming crab genome. We also found
that the GC content in the swimming crab was closer to that of
mouse than of shrimp (Fig. S2).

Genome annotation

The repetitive sequences of the swimming crab genome were
identified through 4 different methods, resulting in 547.39 Mb
of repeated sequences and accounting for 54.52% of the assem-
bled genome (Table S12). Among the repeated sequences, 19.28%
(∼193.56 Mb) were tandem repeats and 52.29% (∼525.49 Mb) were
TEs (Table S12; Table 3). The TEs could be further divided into 4
main types, including 0.014% (∼142.88 kb) of short interspersed
nuclear elements (SINEs), 15.23% (∼153.03 Mb) of long inter-
spersed nuclear elements (LINEs), 14.90% (∼149.71 Mb) of DNA

https://scicrunch.org/resolver/RRID:SCR_005983
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Figure 2: Genome characteristics of swimming crab. From outer circle to inner circle: gene distribution, tandem repeats (TRP), long tandem repeats (LTR), long inter-
spersed nuclear elements (LINE) and short interspersed nuclear elements (SINE), the DNA elements, and the GC content of the genome.

Table 2: Quality evaluation of assembled swimming crab genome by
BUSCO

Library Eukaryota Metazoa

Complete BUSCO (C) 287 909
Complete and single-copy BUSCO
(S)

283 903

Complete and duplicated BUSCO (D) 4 6
Fragmented BUSCO (F) 2 19
Missing BUSCO (M) 14 50
Total BUSCO groups searched 303 978
Percentage of complete BUSCO (%) 94.7 92.9

elements, and 4.50% (∼45.19 Mb) of long terminal repeats (LTRs)
(Table 3).

After masking the repeated sequences, we annotated the
protein-coding genes using de novo prediction, homology-based
prediction, and transcript-based prediction. We merged the re-
sults and obtained 16,791 protein-coding genes. We checked the
quality of the annotated genes by comparing with several closely
related species. Results showed that the messenger RNA, CDS,
exon, and intron length distributions of the swimming crab were
similar to those of the closely related species, suggesting that
the swimming crab annotation results were dependable (Fig. 3).

We also performed functional annotation of the 16,791 genes
with InterPro, GO, KEGG, SwissProt, and TrEMBL. The highest
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Table 3: Statistics on transposable elements in swimming crab genome

Type
Repbase TEs TE proteins De novo Combined TEs

Length (bp) % in genome Length (bp) % in genome Length (bp) % in genome Length (bp) % in genome

DNA 131,799,733 13.11 2,434,533 0.24 19,288,080 1.92 149,711,951 14.90
LINE 16,171,649 1.61 75,759,827 7.54 131,530,457 13.09 153,027,744 15.23
SINE 142,878 0.01 0 0 0 0 142,878 0.014
LTR 26,546,055 2.64 10,195,324 1.01 18,421,957 1.83 45,189,365 4.50
Other 89,969,319 8.95 0 0 211,157,523 21.01 230,116,216 22.90
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Figure 3: Annotation quality comparison of protein-coding genes. We compared the messenger RNA (mRNA) length, CDS length, exon length, and intron length among
5 species: P. trituberculatus, A. aegypti, S. mimosarum, D. melanogaster, and P. vannamei.

annotation rate (74.77%) was found for SwissProt, in
which 12,558 genes were annotated. In total, 16,053
genes (∼95.58%) were annotated, indicating that most
genes could be found in the public protein databases
(Table 4). Thus, taken together, we acquired a high-
quality protein-coding gene set for the swimming
crab.

Orthologous identification and gene family analysis

For comparative genomics analysis of the swimming crab, we
analyzed the orthologous gene relationships among several
species, including A. aegypti, B. anynana, D. melanogaster, S.
mimosarum, P. vannamei, and E. j. sinensis using OrthoMCL. In
total, 15,503 gene families were clustered in the 7 species and
1,018 one-to-one single-copy genes were identified (Fig. 4A).
Because the swimming crab has several unique characteristics,
we performed gene family analysis and found 8,832 gene fam-
ilies shared among the 7 species, with 328 gene families unique

Table 4: Functional annotation of predicted protein-coding genes

Term Gene number Percentage (%)

GO 8,712 51.87
InterPro 11,691 69.61
KEGG 10,880 64.78
SwissProt 12,558 74.77
TrEMBL 12,256 72.97
Annotated 16,053 95.58
Unannotated 743 4.42
Total 16,796 100

to the swimming crab (Fig. 4B). We then performed functional
analysis and identified 34 enriched KEGG terms (Table S13),
suggesting that these unique gene families play important roles
in the swimming crab.
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Figure 4: Gene family analysis of swimming crab. A. Orthologous genes among species. The multiple-copy orthologs are orthologs that have multiple copies in 1
species, the single-copy orthologs are orthologs that have only 1 copy in 1 species, the other orthologs are the rest of the orthologs, the unclustered genes are genes
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Phylogenetic relationships and divergence time

Although the phylogenetic relationships of the swimming crab
and closely related species have been analyzed in previous stud-
ies, most used few nuclear and mitochondrial genes. To deter-
mine the evolutionary relationship of the swimming crab, we
analyzed all single-copy genes using RAxML software [50], with
the spider used as the outgroup species. Results showed that the
swimming crab has a close relationship with the Chinese mit-
ten crab and shrimp (Fig. 5A). The 7 species of pancrustaceans—
P. trituberculatus, A. aegypti, B. anynana, D. melanogaster, S. mi-
mosarum, P. vannamei, and E. j. sinensis—formed 2 clades: i.e.,
Hexapoda and Crustacea. The Hexapoda group consisted of all
lepidopteran and dipterous insects, whereas the second clade
comprised all other crustaceans, with P. trituberculatus and E.
j. sinensis forming a Pleocyemata clade, followed by Dendro-
branchiata shrimp (P. vannamei). In addition, Hexapoda and
Crustacea were both found to be monophyletic (Fig. 5A). To de-
termine divergence time, we employed MCMCTREE analysis in
the PAML package [51] and found that the Chinese mitten crab
and swimming crab diverged ∼183.5 million years ago, and di-
verged from shrimp ∼428.5 million years ago (Fig. 5A).

Relative evolution rate

Species in different environments can experience different sur-
vival pressures. As such, we conducted relative evolution rate
analysis in LINTRE (version 1) [53], with spider as the outgroup

species and swimming crab as the reference species. Results
showed that the shrimp had the slowest evolution rate among
the 7 species, whereas the fruit fly and butterfly exhibited rela-
tively fast evolution rates (Fig. 5B; Table S14). Interestingly, the
slowest evolution rates were found among the Malacostraca
(Fig. 5B; Table S14), suggesting that the specific environments or
habitats caused their different evolution rates.

Gene family expansion and contraction

We performed gene family expansion and contraction analysis
of the 7 species using CAFÉ v4.0 and identified 148 and 25 ex-
panded and contracted gene families (P < 0.05) in the swim-
ming crab, respectively. We then performed KEGG functional
enrichment analysis of the expanded gene families and found
that the HIF-1 signaling pathway (Q-value = 0.000109025), fo-
cal adhesion (Q-value = 0.000135977), Hippo signaling pathway
(Q-value = 0.000184649), and insulin signaling pathway (Q-value
= 0.000357592) were enriched (Table S15). These biological pro-
cesses are related to early development, hypoxia adaptation,
and other key processes, which may help us better understand
the evolution of the swimming crab.

Conclusions

Based on BGISEQ, Nanopore, and Hi-C sequencing data, we
assembled a chromosome-level high-quality genome of the
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Figure 5: Phylogenetic relationships, divergence time, and evolution rate analysis. A. Phylogenetic relationship and divergence time of species. Red dot represents

fossil record used here, and numbers in parentheses indicate 95% confidence interval. B. Relative evolution rate of species.

swimming crab. Evaluation results indicated that the genome
quality of swimming crab was comparable to that of most high-
quality model species. We also successfully obtained 16,791
high-quality protein-coding genes by integrating 3 different
methods. The genome and annotation data will help researchers
better understand the evolution of crabs and improve their eco-
nomic value. The phylogenetic results indicated that the swim-
ming crab is closely related to the Chinese mitten crab, from
which it diverged ∼183.5 million years ago. The unique and/or
expanded gene family analysis provides clues to swimming crab
development and environmental adaptation.

Availability of Supporting Data and Materials

The raw sequencing data were deposited in the NCBI database
under accession number PRJNA555262. The genome assembly
and annotation results are available via the GigaScience reposi-
tory GigaDB [57].
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Table S1: Statistics on genome sequencing data from BGISEQ
platform.
Table S2: Statistics on sequencing reads from Oxford Nanopore
platform.
Table S3: Statistics on Hi-C sequencing data.
Table S4: Statistics on assembled chromosome-level genome by
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Table S6: The mapping results of genomic markers to the as-
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Table S9: Statistics on assembled transcripts by Bridger soft-
ware.
Table S10: Statistics on transcript mapping ratio of swimming
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Table S12: Statistics on annotated repetitive sequences using
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Table S13: KEGG enrichment analysis of unique gene families in
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Figure S1: 17-mer analysis of swimming crab genome.
Figure S2: GC distribution in species.
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