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Since the introduction of the first implantable cardioverter-
defibrillator (ICD) in 1980, ICDs have undergone significant
improvements to become the pillar of sudden death prevention
today. The first device consisted of a 250-g abdominal gener-
ator with a surgically applied pericardial patch.1 Over time, the
generator decreased to one-fifth of its original size, and the
pericardial patch was replaced by transvenous leads with inte-
grated defibrillation coils. However, for patients with impaired
venous access or children with congenital heart disease,
epicardial systems remained their only option until the devel-
opment of the subcutaneous implantable cardioverter-defibril-
lator (S-ICD).

The S-ICD borrows many design elements from the trans-
venous system and is composed of an extrathoracic lead and
pulse generator. Its subcutaneous leads were touted to have
increased longevity and decreased infectious risk. Whereas
lead-related infective endocarditis has been reported in
22% of all ICD-related infections, the rate of systemic infec-
tion with the S-ICD is extremely low and has only been
described in case reports.2,3

As the S-ICD passes its first decade in clinical practice,
many electrophysiologists have started to ask whether the
S-ICD should be considered as a first option for all patients.
Two recently published randomized trials (PRAETORIAN
[Prospective Randomized Comparison of Subcutaneous
and Transvenous Implantable Cardioverter Defibrillator
Therapy] and ATLAS [Avoid Transvenous Leads in Appro-
priate Subjects]) compared the S-ICD to the TV-ICD head to
head.4,5

The subcutaneous design comes with tradeoffs that cannot
be ignored (Table 1). Because of the lack of endocardial pac-
ing components, patients with long-term pacing needs are
ineligible for the S-ICD.6 The reliance on far-field sensing
hampers appropriate arrhythmia detection. The extrathoracic
position increases defibrillation thresholds (DFTs),7,8

requiring a larger battery in the S-ICD capable of delivering
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an 80-J charge and limiting the lifespan of the device. All
these factors relegate the S-ICD to the realm of a niche de-
vice.
Sensing limitations
With the absence of any endocardial components, the S-ICD
must solely rely on subcutaneous electrocardiography for
arrhythmia detection. Sensing electrodes on distal and prox-
imal portions of the subcutaneous lead and the generator
constitute the 3 possible poles for the sensing vectors. All 3
vectors span a large portion of the precordium and provide
far-field sensing not only of the QRS complex but also of
the P and T waves as a result of the larger size of the antenna.
Therefore, algorithms for arrhythmia detection in the S-ICD
have the unique challenge of separating the QRS complex
from other cardiac and extracardiac signals before other
criteria can be applied.

For optimization of signal-to-noise ratios, all S-ICD can-
didates must be screened before implantation. Any vector
with a small QRS–to–T-wave ratio is rejected because of
concern for T-wave oversensing. In addition, vectors with ab-
solute QRS amplitudes above or below the threshold are re-
jected. Up to 10% of patients can fail this screening process in
all 3 vectors, and up to 37% of passing vectors may fail upon
rescreening.9,10 This severely restricts the eligible patient
population. Furthermore, the proportion shrinks dramatically
when looking at patients who benefit the most from an extra-
vascular device. Young patients with channelopathies and in-
herited cardiomyopathies often have abnormal repolarization
with exaggerated T-wave amplitudes. In patients with ar-
rhythmogenic right ventricular cardiomyopathy, up to 37%
failed S-ICD screening; and in patients with hypertrophic car-
diomyopathy, 48% failed screening in �2 vectors.11

Passing the screening process does not prevent sensing is-
sues postimplantation. Far-field sensing issues with the S-
ICD led to a higher rate of inappropriate shocks (IAS) in
the initial S-ICD compared to TV-ICDs, with T-wave over-
sensing being the major cause. Although T waves may pass
screening during sinus rhythm, with conduction abnormal-
ities, frequent premature ventricular contractions, or slow
ventricular tachycardia (VT), abnormal repolarization can
lead to amplified T waves and oversensing. Similarly,
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able 1 Advantages and disadvantages of S-ICD implantation

dvantages Disadvantages

ble to implant in patients with
congenital heart disease

Reliance on far-field sensing
leads to issues separating QRS
complex from cardiac and
noncardiac signals

ble to implant in patients who
lack vascular access

Lack of endocardial pacing leads
to inability to deliver ATP,
atrial pacing, CRT, or
conduction system pacing

ack of transvenous leads lowers
risk of infection and
thrombosis for patients with
risk of infection or thrombosis

All extrathoracic components
require careful implant
technique to avoid adipose
tissue acting as insulator for
defibrillation

ATP5 antitachycardia pacing; CRT5 cardiac resynchronization therapy
-ICD 5 subcutaneous implantable cardioverter-defibrillator.

KEY FINDINGS

- The subcutaneous implantable cardioverter-
defibrillator (S-ICD) is a completely extrathoracic de-
vice that is a great treatment option for patients with
limited vascular access, complex anatomy, or previous
infection.

- Significant tradeoffs due to the extravascular design of
the S-ICD limit its effectiveness in arrhythmia detec-
tion and lead to a higher rate of inappropriate shocks
despite use of algorithms to filter cardiac and extrac-
ardiac signals.

- The absence of endocardial pacing in the S-ICD removes
the option for antitachycardia pacing, atrial pacing,
cardiac resynchronization therapy, and conduction
system pacing, which all are crucial components of
device therapy.

- The extrathoracic locations of both the shock coil and
the generator lead to unique challenges to defibrilla-
tion with the S-ICD, with uncertain long-term defibril-
lation thresholds.
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conduction system abnormalities can prolong the QRS com-
plex and lead to double counting.12 In rare cases, atrial hyper-
trophy has also led to large p waves being miscounted.13

Common issues with S-ICD sensing are shown in Figure 1.
With the longer antenna used for subcutaneous electrocar-

diography, electromagnetic interference becomes more
prominent. Air entrapped in the generator pocket can mimic
ventricular fibrillation (VF), with use of a transcutaneous
electrical nerve stimulation unit responsible for 25% of IAS
in the ATLAS trial.5,14 The S-ICD attempts to exclude ex-
tracardiac signals using an algorithm based on frequency
and slew rate analysis. However, discounting low-
amplitude, high-frequency signals may delay or inappropri-
ately withhold therapies in VF. Up to 14% of patients at
the time of DFT testing had significant delays to time of ther-
apy, and up to 4% had noise oversensing leading to absence
of appropriate VF detection.15

Valiant attempts have been made to accurately identify ar-
rhythmias through the SMART Pass algorithm,16 but it is not
a cure-all. Even with appropriate programming, S-ICD
sensing still falls short. In the latest clinical trials comparing
S-ICD vs TV-ICD, there still is an alarming trend toward
higher IAS despite the widespread use of SMART Pass. Pa-
tients with S-ICDs had 6.4% IAS compared to 2.8% in the
TV-ICD group (odds ratio 2.38; 95% confidence interval
0.96–5.90) duringmean 2.5 years of follow-up in the ATLAS
trial.5 Although failing to reach statistical significance, the
trend of higher IAS with the S-ICD is supported by a multi-
tude of real-world registries. An Italian S-ICD registry re-
ported an IAS rate of 9.4% in 2 years, similar to rates
reported worldwide in the EFFORTLESS (Evaluation of
Factors Impacting Clinical Outcome and Cost Effectiveness
T
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Of the S-ICD) trial (11.7% in 3 years).17,18 Given that IAS are
psychologically harmful and lead to increased health care uti-
lization, the S-ICD cannot be considered as a first option until
any issues are addressed.19
Lack of pacing
Although the S-ICD is capable of emergency postshock pac-
ing, it cannot provide reliable pacing due to the lack of endo-
cardial components. Current guidelines are clear that only
patients without pacing needs are eligible for the S-ICD. It
is worthwhile to highlight the importance of cardiac resynch-
ronization therapy (CRT) with many of our primary preven-
tion patients. For those with chronic kidney disease on
dialysis (a population with poor vascular access, higher rates
of infection, and seemingly great candidates for the S-ICD),
primary prevention ICD alone does not seem to confer mor-
tality benefit.20,21 Those patients do seem to benefit from
CRT-defibrillator compared with ICD alone.22

The lack of antitachycardia pacing (ATP) leaves a gaping
hole in the electrophysiologist’s arsenal and severely limits
widespread adoption of the S-ICD. In PRAETORIAN,
50% of all VT episodes in TV-ICD patients were terminated
successfully with ATP. In other real-world registries, ATP
can terminate up to 87% of VTs ,200 bpm and 62% of
fast VTs between 200 and 250 bpm.23 ICD shocks undoubt-
edly are effective in terminating life-threatening arrhythmias,
but we know from decades of experience that ATP can pro-
vide a painless and trauma-free option to terminate arrhyth-
mias. To take away that option would be very difficult.

Even if we were to make that decision, experience tells us
a significant portion of patients who qualify for an ICD
without pacing needs eventually will develop such needs.
Trials of primary prevention ICD patients show 10% will
develop pacing needs in 5 years.24 Contemporary observa-
tional studies hint this number may be even higher in the
short term. In an observational study of patients with a
single-chamber ICD over 2 years, 6.7% required .5% pac-
ing when programmed at VVI 40 bpm.25 Unfortunate



Figure 1 Sensing issues with the subcutaneous implantable cardioverter-
defibrillator (S-ICD). Despite the use of appropriate algorithms and preim-
plant screening, inappropriate arrhythmia detection can occur with subcu-
taneous electrocardiograms used by the S-ICD. Common issues include T-
wave oversensing, R-wave double counting, p-wave oversensing, and ven-
tricular fibrillation (VF) undersensing.
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patients who undergo S-ICD implantation and then develop
pacing needs must undergo an additional procedure with
either a transvenous pacemaker or a leadless pacemaker,
thus incurring the cost and risk of an additional procedure.
If a transvenous pacing system is implanted, all advantages
of an extravascular system are lost. Trials are underway for
a seemingly elegant solution to the problem—implantation
of a leadless pacing system capable of communicating with
the S-ICD to deliver ATP. However, the proposed solution
still would not be able to provide atrial pacing, CRT, or con-
duction system pacing. It also comes with the additional cost
and complexity of 2 independent devices requiring 2 separate
procedures at the time of replacement.

Uncertainty with defibrillation success
Successful defibrillation therapy requires the maximum
amount of current to cross the myocardium. The positions
of the shock coil and generator, as well as their surrounding
tissues, can drastically affect the flow of current between
them and are crucial to terminating VT/VF.26

In the TV-ICD, the shock coil is embedded in the right
ventricle and is surrounded by either myocardium or blood,
both low-impedance tissues. In the S-ICD, however, the
shock coil sits parasternally and can be in contact with either
muscle (low impedance) or adipose tissue (high impedance).
Any adipose tissue around the coil would dramatically in-
crease DFTs. In addition, because the S-ICD shock coil sits
in an extrathoracic anterior position, any anterior shift of
the generator past the midline would dramatically reduce
the amount of myocardium crossed by the shock vector.
Therefore, minimizing adipose tissue between the lead and
sternum, as well as ensuring a posterior location of the gener-
ator, are crucial predictors of successful defibrillation.27 Not
surprisingly, obese patients pose significant challenges for S-
ICD implantation, with increased body mass index being a
good predictor of DFT failure at the time of implantation.28

In the United States, where the local prevalence of obesity
can be .40%, the challenges are clear. Additionally, DFTs
may not be stable over time, as 20% of patients fail repeat
DFT testing at the time of S-ICD generator change.29
Improvements in TV-ICDs
Along with the technical innovations of the S-ICD, TV-ICDs
have continued to improve with regard to battery and lead
longevity. Previous-generation lithium silver vanadium ox-
ide batteries had nonlinear discharge curves and variable in-
ternal cell impedances leading to unpredictable replacement
intervals and variable capacitor charge times. Newer models
with manganese dioxide can maintain a high voltage over
longer periods of time and stable internal impedances. This
allows new devices to use 90% of capacity rather than 70%
in the older models. Improved battery technology has
increased the average service life of TV-ICDs signifi-
cantly.30,31 The longer battery life of single-chamber TV-
ICDs (average 8 years) compared with S-ICDs (average 5
years) means fewer procedures over the lifetime of the pa-
tient, thus reducing costs and procedure-related
morbidity.30,32

Historically, annual failure rates for defibrillation leads are
estimated to be 2.7% per year, reaching about 20% in 10-
year-old leads.33 This includes notable failures such as the
Medtronic Fidelis and St. Jude Medical Riata leads, with fail-
ure rates of 4.8% per year and their subsequent recalls.34 Les-
sons from these failures have led to improvements in lead
longevity. Short- and medium-term follow-up studies since
the recalls have shown improved survival of defibrillation
leads.35,36 In comparison, the first-generation S-ICD leads
underwent a U.S. Food & Drug Administration class I recall
due to unexpected lead fracture, with an estimated 0.2%
annual estimated failure rate. One meta-analysis showed
that first-generation S-ICD leads are no more durable than
contemporary TV-ICD leads.35,37
Increased costs
Although the S-ICD has been commercially available for
more than a decade, costs in some locales still pale in compar-
ison to the costs of TV-ICDs. In Europe, the S-ICD can cost
between 3 to 7 times more than a single-chamber TV-
ICD.38,39 This combined with a notably shorter battery life
(5 years for the S-ICD vs 8 years for the TV-ICD) can lead
to dramatically higher lifetime costs for an S-ICD implant.
The proposed leadless pacing component for delivery of
ATP would be another costly addition to an already expen-
sive system.
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Conclusion
Although the S-ICD is a valuable tool, we must recognize its
limitations and use it appropriately. Just as the first ICD in
1980 was a revolutionary device with many limitations, the
S-ICD certainly has room for improvement. The lack of per-
manent pacing for ATP, atrial pacing, CRT, and conduction
system pacing; the difficulties with arrhythmia detection
with far-field sensing; as well as the uncertainty of DFTs
over time are problems with the S-ICD that must be solved
before the device can be widely adopted. The combination
of a leadless pacing system in communication with the S-
ICD is undergoing clinical trials that would address concerns
about the lack of ATP and bradycardia support. Meanwhile,
efforts are being made to identify patients at risk for high
DFTs. We look forward to the day when subcutaneous ICD
systems can become the first option for our patients, but we
are not there yet.
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