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A B S T R A C T   

The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS- 
CoV-2), appears with a wide spectrum of mild-to-critical clinical complications. Many clinical and experimental 
findings suggest the role of inflammatory mechanisms in the immunopathology of COVID-19. Hence, cellular and 
molecular mediators of the immune system can be potential targets for predicting, monitoring, and treating the 
progressive complications of COVID-19. In this review, we assess the latest cellular and molecular data on the 
immunopathology of COVID-19 according to the pathological evidence (e.g., mucus and surfactants), dysregu-
lations of pro- and anti-inflammatory mediators (e.g., cytokines and chemokines), and impairments of innate and 
acquired immune system functions (e.g., mononuclear cells, neutrophils and antibodies). Furthermore, we 
determine the significance of immune biomarkers for predicting, monitoring, and treating the progressive 
complications of COVID-19. We also discuss the clinical importance of recent immune biomarkers in COVID-19, 
and at the end of each section, recent clinical trials in immune biomarkers for COVID-19 are mentioned.  
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1. Introduction 

The coronavirus disease-2019 (COVID-19) is an infectious disease 
caused by a new β-coronavirus called severe acute respiratory syndrome 
coronavirus (SARS-CoV)-2 [1]. The first case of SARS-CoV-2 infection 
was reported in December 2019 from Wuhan, China, and rapidly 
became a pandemic disease around the world. By September 30, 2020, 
33,502,430 cases of COVID-19 had been confirmed by laboratory tests, 
of which 1,004,421 had passed away [2]. Based on the results of pre-
vious studies, SARS-CoV-2 expands at the original R0 = 2.2–2.6 expan-
sion rate, meaning that on average each infected individual has the 
potential to transmit the infection to 2.2–2.6 persons. Compared to other 
respiratory viruses from the same family, the mortality rate is lower in 
patients with COVID-19 (2.8 %) than in patients with severe acute res-
piratory syndrome (SARS) (9.19 %) or Middle East respiratory syndrome 
(MERS) (34.4 %); however, COVID-19 is more lethal than the seasonal 
flu (less than 0.1 %) [3,4]. 

SARS-CoV-2 infection appears with a broad spectrum of clinical 
manifestations. Up to 81 % of patients are asymptomatic or have mild 
pneumonia symptoms such as fever, cough, fatigue, and myalgia. In 14 
% of cases, viral pneumonia is seen with severe symptoms such as 
dyspnea, respiratory rate ≥30 beats/min, partial pressure of oxygen 
(PaO2)/fraction of inspired oxygen (FiO2) <300, arterial oxygen 
saturation (SpO2) ≤93 %, and lung infiltrates >50 %. Finally, 5 % of 
patients demonstrate critical symptoms such as acute respiratory 
distress syndrome (ARDS), shock, and multiple organ failure (MOF) 
which, in 2.3 % of cases, result in death [5]. In addition, COVID-19 has 

a high phenotypic similarity with other clinical conditions such as 
respiratory viral infections, lung contusion and pulmonary complica-
tions after sepsis [6]. Hence, the early diagnosis and treatment of 
COVID-19 is impossible or very difficult when relying only on the 
clinical symptoms of the disease. 

Whereas chest computerized tomography (CT) scan is a confirmatory 
method with high sensitivity for the diagnosis and monitoring of pa-
tients with COVID-19, its specificity is low [7]. A chest CT scan dem-
onstrates ground-glass opacity around the shadow and pleural effusion 
in the peripheral and lower portion of the lungs, which diffuses to the 
center and eventually throughout the lungs along with the progression 
of the disease [6]. According to the computable score defined for chest 
CT scans, higher scores are associated with more advanced forms of 
COVID-19 [6]. Fortunately, the low specificity of the CT scan can be 
compensated by the real time-quantitative PCR (RT-qPCR) technique. 
Thus, SARS-CoV-2 open reading frame (ORF)-1ab and nucleocapsid (N) 
genes are detected in specimens of bronchoalveolar lavage, endotra-
cheal aspirate, nasopharyngeal swab, and sputum using specific primers 
and probes [7]. Although clinical symptoms along with CT scan and 
RT-qPCR results largely confirm the diagnosis of COVID-19, major 
problems exist in the prediction, monitoring, and treatment of 
COVID-19 complications before their incidence. 

Many clinical and experimental findings have suggested the role of 
cellular and molecular changes in the immunopathology of COVID-19 
complications, as summarized in Fig. 1. Accordingly, it has been pro-
posed that the investigation of cellular and molecular changes in the 
immune system can be very helpful for identifying biomarkers related 

Fig. 1. The interplay between cells and immune mediators may impact deviation to the healing (mild COVID-19) or toxic (Severe COVID-19) responses. 
Lung imunopathology in COVID-19 is a result of imbalance in the inflammatory and anti-inflammatory responses. As it is suggested in the left diagram, there is a 
balance between pro-inflammatory (red arrows) and anti-inflammatory (purple arrows) responses in the lung of mild COVID-19 cases. Type I and III IFNs and IL-1β, 
IL-6, IL-12, IL-15, IL-18 and IL-10 as well as CCL2/3 and CXCL8-11 produced by alveolar macrophages and pneumocyte type II cells recruit and activate monocyte/ 
macrophages, Tbet+ CD4+ T cells, CD16+ CD56+ NK cells, CTLs and IgG1/3 producing plasma cells. In this balanced immune response, replication of virus is 
inhibited, virus is neutralized and the scene is cleared from viral particles and apoptotic cells. The presence of Foxp3+ CD4+ Treg cells and GATA3+ CD4+ Th2 cells 
which produce IL-10 and TGF-β and counteract Tbet+ CD4+ Th1 responses results in a protective and healing response. On the other hand, compromised Foxp3+
CD4+ Treg cells and GATA3+ CD4+ Th2 responses, or hyperactivation of alveolar macrophages favors activation of IL-6+ GM-CSF+ CD4+ T cell/macrophage, 
CD16- CD56+ NK cell, and RORγt+ CD4+ Th17/neutrophil/monocyte axes as well as Th2 and mast cell pro-inflammatory cytokines secretion, and IgE production by 
plasma cells (Right diagram). These responses are associated with capillary permeability and damage into the interstitial space and the alveolar tissue. 
ADCC, antibody-dependent cellular cytotoxicity; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; GM-CSF, granulocyte-macrophage 
colony-stimulating factor; G-CSF, granulocyte-colony stimulating factor; IFN, interferon; IL, interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor. 
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to the prediction, monitoring, and treatment of COVID-19 complica-
tions [8,9]. 

The aim of the current review is to describe the latest information on 
currently proposed immune biomarkers and their roles in the pathobi-
ology of COVID-19 to identify potential targets for predicting, moni-
toring, and treating adverse clinical outcomes in patients, which are 
summarized in Tables 1 & 2 . In addition, we summarize the clinical 
significance of recent immune biomarkers in COVID-19 along with the 
ongoing clinical trials on immune biomarkers for treating the progres-
sive complications of COVID-19 (Table 3). 

2. Immune system biomarkers 

2.1. Tissue biomarkers 

2.1.1. Angiotensin-converting enzyme (ACE) 2 and angiotensin (Ang) II 
The depletion of ACE2 from infected respiratory cells membranes 

and subsequent elevation of ACE2 extracellular domain in blood circu-
lation are due to ACE2 shedding or decreased expression that can be a 
potential predictive marker of response to treatment and pulmonary 
complications in COVID-19 patients [10]. Although the depletion or 
blockade of ACE2 reduces virus entry to alveolar epithelial cells (AECs), 
the increasing Ang II will have more destructive effects on lung tissue 
[11]. On the contrary, ACE inhibitors (ACEI) and/or Ang II receptor 
blockers (ARBs) reduce destructive effects of Ang II on lung tissue, while 
they promote the expression of ACE2 receptors which potentially in-
crease SARS-CoV-2 entry to cells [11,12]. Nevertheless, Vaduganathan 
et al. suggest that ACEIs/ARBs may be beneficial rather than harmful in 
COVID-19 patients with lung injury [13]. Hence, SARS-CoV invasion 
blockers such as anti-ACE2 antibodies (Abs), recombinant human (rh) 
ACE2-Fc fusion proteins, soluble recombinant human (srh)ACE2, and 
specific ACE2 inhibitors along with Ang II-dependent lung damage in-
hibitors such as ARBs, ACEI, srACE2, and srAng 1-7 could be promising 
therapeutic approaches in COVID-19 [14,15]. However, to relieve 
COVID-19 symptoms, whether blockade of the virus entry by ACE2 in-
hibitors is more effective or harnessing the destructive effects of Ang II 
by inhibiting ACE1 and Ang II receptor type 1 (AT1R) requires further 
investigation. Currently, two clinical trials, namely NCT04311177 and 
NCT04312009, are underway to address this question. 

2.1.2. Mucins (MUCs) 
The lung pathology of COVID-19 patients results in an increase in 

mucinous secretions. Accordingly, the large amounts of mucus observed 
in the airways of COVID-19 patients, which lead to mucosal thickening 
and can be considered as a prognostic factor for severe complications 
[16]. MUC-1 and MUC-5AC are main glycoproteins in the airways that 
are markedly increased in the aspirated sputum from the tracheas of 
COVID-19 patients. These mucins play important roles in microvascular 
infarction and interstitial fibrosis by inducing the infiltration of mono-
nuclear cells into inflamed lungs [17,18]. Krebs von den Lungen (KL)-6, 
as a sub molecule of MUC-1, is expressed on the surface of bronchial 
epithelial cells (BECs) and AEC-II, and is released into serum in respi-
ratory epithelial cell injuries [19]. Hence, the assessment of KL-6 serum 
level is useful for detecting the presence of ARDS, evaluating disease 
activity, and predicting clinical outcomes [19]. A previous study has 
suggested that KL-6 levels in bronchoalveolar lavage fluid (BALF) are 
associated with the severity of lung injury and neutrophilic inflamma-
tion [20]. Although many reference centers across Europe use KL-6 for 
predicting, monitoring, and treating the pulmonary symptoms of 
COVID-19 patients, recent independent studies showed no significant 
difference in KL-6 levels between COVID-19 patients with and without 
clinical symptoms [21,22]. A phase II trial is underway to evaluate the 
safety and efficacy of fostamatinib in COVID-19 patients. Fostamatinib is 
a spleen tyrosine kinase (SYK) inhibitor which reduces MUC-1 protein 
abundance [23]. Conversely, Plante et al. suggested a protective role of 
MUC-4 in female mice (not observed in male mice) with SARS disease 

Table 1 
Prognostic and monitoring immune biomarkers in COVID-19.  

Biomarkers Mechanistics pathways 

ACE2 Increases virus entry, Ang 1− 7 and Ang 1− 9, and 
decreases Ang II [11,12,13] 

MUC-1 and 5AC Promote infiltration of immune cells, microvascular 
infarction, and interstitial fibrosis [17,18,19,21] 

Surfactants Stabilize the alveolar surface [25], support 
innate-immunity [25], and prevent viral attachment 
[26] 

IL-6 Recruits and activates inflammatory cells [30], 
induces apoptosis of T cells through the Fas/FasL 
pathway [33], and impairs cytotoxicity of NK cells 
[118] 

IL-1β Induces inflammatory cell activation [30] and elevates 
vascular permeability [76] 

IL-18 Promotes the activation of T and NK cells, and the 
production of IFN-γ [83] and antibodies [85] 

TNF-α Recruits and activates inflammatory cells [30], 
downregulates NKp46 from the surface of NK cells 
[119], contributes to NK cell differentiation [119], 
inhibits T cell recirculation by promoting retention in 
lymphoid organs and attachment to endothelium [98] 

GM-CSF Recruits and activates neutrophils, monocytes and 
macrophages [30] 

IFN-I Stimulates NK cell activation, macrophages 
proliferation, HLA-I expression and IFN production 
[53], and inhibits T cell recirculation by promoting 
retention in lymphoid organs and attachment to 
endothelium [98] 

WBC counts and NLR/ 
PLR 

Elevated WBC, NLR and PLR are due to the increased 
neutrophils accompanied by the decrease in 
lymphocytes, monocytes, dendritic cells, and 
eosinophils counts in peripheral blood, which are 
caused by the absorption of these cells into inflamed 
tissue [65] 

T cells Decline in total CD4+ and CD8+ T cells [114,122], γδ 
T cells [102,132], Treg cells [75] and memory CD4+ T 
cells [75], as well as increase in frequency of 
polyclonal GM-CSF+ IL-6+ CD4+ T cells [31] and 
CCR4+/CCR6+ Th17 cells [18], naïve CD4+ T cell 
and activated CD4+/CD8+ T cells [75] associated 
with high levels of inflammation 

Monocytes and 
macrophages 

High frequency of CD14+ HLA-DR+ IL-1β and Ficolin- 
1+ monocyte-derived macrophages and decrease in 
tissue reparative alveolar macrophages in the BALF 
associated with the severity of lung injury [29,104] 

Neutrophile Infiltration of neutrophils to lungs and differentiation 
to inflammatory neutrophils under the effects of 
inflammatory mediators [29] and Ang II [15], which 
induce further tissue injuries by activating various 
inflammatory mechanisms [108] 

Eosinophils, basophils 
and mast cell 

Decrease in frequencies of eosinophils and basophils in 
pripheral blood [75,109] and increase in infiltration of 
Th2/eosinophil [110] and mast cells in lungs tissue 
associated with higher release of chymase, protease, 
triptase and inflamatory mediators in the inflamed site 
[15,29,111] 

NK cell Decrease in frequencies [18,75] and cytotoxicity 
[116], as well as increase in cytokine production [116] 
and exhaustion markers [95,117] in NK cells promote 
detrimental inflammation without effective immune 
responses against virus. 

Anti-SARS-CoV-2 N/S- 
IgM/IgG Abs 

N/S-IgM Abs appear in the first week and decrease in 
the third week after symptoms onset in mild disease, 
while N/S-IgG Abs increase in the second week and are 
detectable for 60 days [141]. All antibodies are 
produced earlier in patients with severe disease than in 
patients with mild disease except S-IgG Ab [142]. 
N/S-IgM and N-IgG Abs correlate with increased lung 
complications while high levels of S-IgG Ab are 
associated with decreased inflammation [142]. 

ACE, angiotensin-converting enzyme; Ang, angiotensin; BALF, bronchoalveolar 
lavage fluid; GM-CSF, granulocyte-macrophage colony-stimulating factor; HLA, 
human leukocyte antigen; IFN, interferon; IL, interleukin; MUC, mucin; NLR, 
neutrophil-to-lymphocyte ratio; N, nucleocapsid; PLR, platelet-to-lymphocyte 
ratios; S, spike-protein; Th, helper T cell; TNF, tumor necrosis factor; WBC, 
white blood cell. 
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which can be explained by its anti-apoptotic and anti-inflammatory 
properties [24]. 

2.1.3. Surfactants (SPs) 
SPs that originate from airway cells and AEC-II are also potential 

prognostic and therapeutic targets for respiratory outcomes in COVID- 
19 patients [25]. SPs are key factors in stabilizing the alveolar surface 
at air-liquid interaction sites and in supporting lung innate immunity 
[25]. SP-A and SP-D can bind to the carbohydrate moieties on the 
SARS-CoV-1 spike (S)-protein and prevent their attachment to the host 
cells. In this regard, SP-D has a higher binding affinity than SP-A [26]. A 
trial on adult New Zealand rabbits model with ARDS showed improved 
lung function when treated with low amounts of synthetic lung surfac-
tant based recombinant surfactant protein C analogue (rSP-C33Leu) in a 
similar manner to natural surfactants [27]. Although BALF levels of SPs 
(particularly SP-D) are positively associated with good prognoses in lung 
diseases, the increased serum levels of SP-D in SARS-CoV-1 infections 
are considered to be caused by pulmonary leakage and can be a poor 
prognosis marker for respiratory system disorders and death [28]. 

2.2. Cytokine/Chemokine biomarkers 

Cytokine upregulation, known as cytokine storm, is documented in 
SARS-CoV-2 infection. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, 
IL-8, IL-10, IL-17, IL-18, granulocyte-macrophage colony-stimulating 
factor (GM-CSF), interferon (IFN)-γ inducible protein-10 (IP-10), 
monocyte chemoattractant protein (MCP)-1, macrophage inflammatory 
proteins (MIP)-1A, and MIP-1B are parts of a wide array of inflammatory 
mediators that increase as a cytokine storm in the sera of COVID-19 
patients [6,29]. Cytokine storm is the major cause of injuries in the 
lung and other tissues of COVID-19 patients through recruitment and 
activation of immune-inflammatory cells [30]. A study has shown the 
correlation between high levels of pro-inflammatory cytokines and 
chemokines and the progression of disease complications [29]. These 
inflammatory mediators, which are produced from certain subtypes of 
CD4+ T cells (GM-CSF+ IL-6+ CD4+ T) [31], pathogenic NK cells 
(CD16- CD56+ NK) [32], monocytes and macrophages (CD169+ mac-
rophages) [33], can be potential targets for predicting, monitoring, and 
treating disease complications in COVID-19. 

Although glucocorticoids that are often used in inflammatory dis-
eases such as multiple sclerosis and rheumatoid arthritis (RA) may be 
considered a more effective therapeutic method for suppression of sys-
temic inflammation in COVID-19 patients, conflicting results have been 
reported on their benefits in SARS-CoV-2 infection. One study has shown 
no significant correlation between corticosteroid use and the duration of 
virus clearance, length of hospital stay, symptom duration, severity of 
complications, and mortality rate [34]. Another study, however, has 
indicated that high doses of corticosteroids in the long term can increase 
the duration of virus clearance, admissions to intensive care units 
(ICUs), and mortality risk [35]. In addition, it has been reported that the 
early low-dose administration of corticosteroids significantly improves 
SpO2 and chest CT results and reduces mortality rates [36,37]. In the 
interim clinical management guidance released by the WHO for patients 
with COVID-19 pneumonia, low-to-moderate daily doses of corticoste-
roids are recommended [38], whereas most of the current data do not 
support the long-term benefits of corticosteroids. 

One of the possible approaches to subsiding cytokine storms is to 
prevent their signaling pathways. In this regard, Janus kinase (JAK) in-
hibitors including baricitinib, ruxolitinib, and tofacitinib might be 
candidate targets in the inhibition of cytokine storms [39]. In addition, 
baricitinib blocks activated protein (AP) 2 associated kinase (AAK)-1 and 
G-associated kinase (GAK) and might also regulate the viral endocytosis 
of SARS-CoV-2 [40]. Assuming that both properties of baricitinib can be 
utilized in COVID-19, clinical trials NCT04321993, NCT04340232, and 
NCT04421027 for barcitinib monotherapy, NCT04401579 for bar-
icitinib/remdesivir dual therapy, and NCT04320277 and NCT04358614 

Table 2 
Therapeutic immune biomarkers in COVID-19.  

Biomarkers Intervention Mechanistic pathway 

ACE2 Anti-ACE2 Abs, rhACE2-Fc 
fusion, srhACE2, and ACE2 
inhibitors [14,15] 

Blocking virus entry 

ACE/Ang II ACE inhibitors and srACE2 [13, 
14,15] 

Decreasing Ang II synthesis, 
and increasing Ang 1− 7 and 
Ang 1− 9 synthesis 

Ang 1¡7/ 
1¡9 

srAng 1− 7 and srAng 1− 9 [14, 
15] 

Increasing Ang 1− 7 and Ang 
1− 9 synthesis 

AT1R Ang II receptor blockers [13] blocking AT1R signaling 
MUC SYK inhibitor (Fostamatinib) 

[23] 
MUC-4 [24] 

Reducing MUC-1 synthesis 
Anti-apoptotic and anti- 
inflammatory properties 

Surfactants SP-A and SP-D [26] Preventing viral attachment to 
the host cells 

Type I IFNs 

In early phase: IFN-α2 [56], 
IFN-β [57] and IFN-α2b [58] 

Increasing NK cell cytotoxicity, 
increasing proliferation of 
macrophages and NK cells, and 
enhancing the expression of 
HLA-I and IFN-I 

In late phase: IFN-α/β receptor 
blockers and antagonists [61] 

Preventing excessive 
inflammatory responses 

C3a/C5a 

C3 inhibitors (AMY-101), anti- 
C5 mAb (eculizumab and 
ravulizumab), and anti-C5a 
mAb (IFX-1) [89,90] 

Inhibiting complement 
activation and monocyte/ 
neutrophil migration to the 
sites of inflammation 

IL-6 

Tocilizumab (anti-IL-6R mAb), 
sarilumab (anti-IL-6R mAb) 
and siltuximab (anti-IL-6 mAb) 
[39,66,67] 

Inhibiting the recruitment and 
activation of inflammatory 
cell, suppressing the apoptosis 
of T cells and increasing 
perforin and granzyme B 
production 

Colchicine [41] 
Suppressing the activation of 
inflammasome and the 
formation of microtubule 

TNF-α 

TNF-α blockers [73] and 
anti-TNF-α [72,74] 

Decreasing the expression of 
inflammatory mediators and 
adhesion molecules 

Colchicine [41] 
Suppressing the activation of 
inflammasome and the 
synthesis of TNF-α 

Il-1β Anakinra (IL-1ra) [79,80,81] 

Preventing the recruitment and 
activation of immune 
inflammatory cell and 
decreasing vascular 
permeability and leakage 

IL-18 
Tadekinig-α (nIL-18P) [87] and 
rIL-18BP [88] 

Suppressing the activation of T 
and NK cells and the 
production of IFN-γ 

GM-CSF 
Namilumab, mavrilimumab 
and otilimab [31] 

Inhibiting the recruitment and 
activation of neutrophils 

IL-7 rIL-7 [83,137] 

Promoting the expansion of 
lymphocytes, inhibiting 
apoptosis, reversal of T cell 
exhaustion, and expression of 
cell adhesion molecules 

CCR2 
siRNA-mediated silencing of 
CCR2 [107] 

Decreasing macrophage 
recruitment to the sites of 
inflammation 

NK cell CYNK-001 [120] 
Direct killing of infected cells 
and the induction of immune 
responses 

anti-SARS- 
CoV-2 
mAbs 

CP [144,145,146], IVIg [147, 
148,150], anti-RBD nAb [140, 
151,152], ACE2-Fc and RBD-Fc 
fusions [155], anti- 
SARS-CoV-2 scFv [156] 

Blocking the fusion, entry, and 
replication of the coronavirus 

ACE, angiotensin-converting enzyme; Ang, angiotensin; AT1R, Ang II receptor 
type 1; C3a/C5a, complement proteins, CCR, chemokine (C-C motif) ligand re-
ceptor; CP, convalescent plasma; GM-CSF, granulocyte-macrophage colony- 
stimulating factor; IFN, interferon; IL, interleukin; IVIg, intravenous immuno-
globulin, mAb, monoclonal antibody; MUC, mucin; RBD, receptor-binding 
domain; rIL-7, recombinant IL-7; rIL-18BP, recombinant IL-18 binding protein; 
rhACE2-Fc fusion proteins, recombinant human ACE2-Fc fusion proteins; rhIL- 
1ra, recombinant human IL-1α; scFv, single-chain variable fragment; srhACE2, 

H. Fouladseresht et al.                                                                                                                                                                                                                         



Cytokine and Growth Factor Reviews 58 (2021) 32–48

36

for baricitinib/lopinavir/ritonavir triple therapy are ongoing. In this 
regard, Contini et al. reported that fever, PaO2/FiO2, CRP, ICU transfer, 
length of hospital stay were reduced in the baricitinib-treated group 
compared with placebo-treated group (NCT04358614). Furthermore, 
NCT04362137, NCT04404361, and NCT04332042 are ongoing trials to 
address the possible use of ruxolitinib, pacritinib, and tofacitinib, 
respectively, in the treatment of COVID-19. 

Tyrosine kinase inhibitors such as acalabrutinib and abivertinib that 
bind to Bruton tyrosine kinase (BTK) receptor and inhibit the phos-
phorylation of the receptor can be additional therapeutic agents for the 
treatment of moderate-to-severe COVID-19 with progressive cytokine 
storm. Accordingly, NCT04380688 and NCT04440007 are two clinical 
trials to evaluate the effectiveness of acalabrutinib and abivertinib in 
inhibition of cytokine storm, respectively. 

Colchicine is another anti-inflammatory drug that has been regis-
tered for COVID-19 treatment (trials NCT04322682, NCT04328480, and 
NCT04326790). The mechanism of action of colchicine is to suppress the 
generation of microtubules, which would result in the inhibition of 
mobility, adhesion, and degranulation of immune cells. Furthermore, 
colchicine suppresses inflammasome activation and the synthesis of 
TNF-α and IL-6 [41]. 

Nevertheless, the most effective treatment for COVID-19 can be 
based on synchronic inhibition of viral proliferation and systemic 
inflammation. Accordingly, in vitro studies have demonstrated that 
chloroquine (CQ) and hydroxychloroquine (HCQ) are effective in con-
trolling SARS-CoV-2 infection by their antiviral and anti-inflammatory 
properties. The antiviral effects of CQ and HCQ are mediated by inhi-
bition of endosomal maturation, which sequestrates virion particles in 
endolysosomes [42,43]. In addition, both medications suppress the 
presentation of antigen by antigen-presenting cells (APCs), the activa-
tion of T helper 1 (Th1) cells and macrophages, the synthesis of RNAs 
and proteins in thymocytes, and the signaling of toll-like receptors 
(TLRs), RIG-I-like receptors (RLRs) and cGAS-STING in immune cells 
[44,45]. Despite extensive studies on the effects of CQ and HCQ in 
COVID-19 patients, conflicting results have been obtained. A clinical 
trial without control group (untreated patients) in France has shown that 
HCQ in combination with azithromycin results in the reduction of dis-
ease duration, severity of pneumonia, and radiological abnormalities in 
COVID-19 patients [46]. Later, another study investigated the effects of 
HCQ on COVID-19 patients with hypoxic pneumonia in comparison with 
untreated patients (no-HCQ group) and did not observe any decrease in 
the rate of ICU admission or mortality in patients [47]. In two other 
randomized clinical trials (RCTs), Chen et al. reported controversial 
results. In an RCT (ChiCTR2000029559) on 62 patients with mild 
COVID-19, clinical symptoms were resolved one day earlier in patients 
who received 400 mg HCQ for 5 days (HCQ group) than in the no-HCQ 
group [48]. In a smaller RCT (NCT04261517) in which treatment 
continued for 7 days, no significant increase in negative PCR results or 
improvement of symptoms was observed [49]. In addition, one inde-
pendent study in patients with severe COVID-19 who had received 
high-dose HCQ (600 mg/days) for 10 days showed poor results [50]. 
Furthermore, a meta-analysis on the therapeutic effects of HCQ in pa-
tients with COVID-19 showed no clinical benefits [51]. 

Sphingosine-1-phosphate receptors (S1PRs) are the natural anti- 
inflammatory molecules that significantly reduce cytokine storm 
caused by influenza virus infection [52]. Therefore, S1PRs stimulation 
may be a potential therapeutic approach for reducing inflammatory 
responses in COVID-19 patients. Hence, siponimod (a S1PR5 modulator) 
and fingolimod (a S1PR1, 3 and 5 modulator) can be candidate drugs for 
the treatment of COVID-19 complications. NCT04280588 is an ongoing 
clinical trial that is investigating the therapeutic effects of fingolimod in 
COVID-19 patients. 

Another possible approach to predicting, monitoring, and treating 

COVID-19 complications would be the controlled application or 
administration of inflammatory cytokines or their inhibitors. The most 
common cytokines that are considered in this approach are discussed 
below. 

2.2.1. Interferons (IFNs) 
Type I and III IFNs are at the forefront of defense against viral in-

fections and play critical roles in the induction of innate and adaptive 
immune responses. IFN-α/β antiviral function is mediated by several 
mechanisms, including promoting natural killer (NK) cell cytotoxicity, 
increasing macrophages proliferation, enhancing MHC-I expression, and 
elevating IFN production [53]. Type I IFNs (IFN-α/β) not only promote 
immune response to viral infection, but may also worsen the condition 
by increasing inflammation. Accordingly, it has been shown that high 
serum levels of IFN-α/β are associated with poor outcomes in SARS 
patients [54]. Type III IFN (IFN-λ), on the other hand, can induce anti-
viral effects without exacerbating inflammation [55]. In addition to the 
type of IFN, the timing of their production and their kinetic would be of 
importance. Accordingly, Trouillet-Assant et al. reported that COVID-19 
patients who were able to control their disease demonstrated the highest 
levels of IFN-α2 on days 8 to 10 of symptom onset, which decreased after 
day 10 along with IL-6. Conversely, patients with advanced COVID-19 
had very low serum levels of IFN-α2 on days 8 to 10 of symptom 
onset, but IL-6 remained high after day 10, which was associated with 
lung lesions and fatal outcomes [56]. However, IFN-β and IFN-λ were 
undetectable in the same patients [56]. Another study on mice models of 
MERS-CoV infection showed that early administration of IFN-β facili-
tated virus clearance, while delayed application of IFN-β can cause a 
cytokine storm and adverse complications [57]. It has also been shown 
that IFN-α2b administration with ribavirin can be effective in the 
treatment of MERS-CoV infection in the early phase [58]. In contrast, 
Arabi et al. observed no significant improvement in the outcomes of 
MERS patients who received type I IFNs along with ribavirin [59]. The 
data suggested that IFNs can play a therapeutic/preventive or a patho-
genic role depending on their kinetics of production during the disease 
course [60]. Based on these reports, the late stages of COVID-19 may be 
the best time for the administration of IFN-α/β receptor blockers or 
antagonists to prevent excessive inflammatory responses [61]. However, 
in the early stages, rhIFN-β1 and IFN-α along with corticosteroids pro-
vided excellent results in the improvement of SARS-induced complica-
tions [62]. Hence, the efficacy and safety of IFN-α2b/rintatolimod and 
IFN-β-1α/remdesivir in COVID-19 patients are currently under investi-
gation in two clinical trials registered as NCT04379518 and 
NCT04492475, respectively. 

2.2.2. IL-6 
IL-6 is a master pro-inflammatory cytokine and is considered to be a 

very valuable biomarker of systemic inflammation. The half-life of IL-6 
is longer than that of other cytokines such as IL-1β, IL-8, GM-CSF, and 
TNF-α in protein levels [63]. Increased levels of IL-6 have been shown to 
be associated with higher levels of IFN-γ, GM-CSF, IL-2, IL-7, and IL-23; 
immune cell recruitment; Th17 differentiation; inflammasome activa-
tion; and cytokine release syndrome (CRS) [55]. Therefore, IL-6 may 
play a key role in the progression of clinical symptoms of COVID-19 and 
can be used as a potential immune biomarker for predicting and 
monitoring disease complications. Accordingly, previous studies have 
demonstrated that elevated serum levels of IL-6 are related to the in-
crease in the rates of hospital admission, severity of symptoms, and 
death in COVID-19 patients [37,64]. Furthermore, the relationship 
between increased serum levels of IL-6, D-dimer (fibrin degradation 
products), and ferritin and the outcomes of COVID-19 have already 
been confirmed [65]. The combined use of IL-6 levels, C-reactive pro-
tein (CRP), erythrocyte sedimentation rate (ESR), ferritin, serum am-
yloid A (SAA), procalcitonin (PCT), cystatin C, cholinesteras, lactate 
dehydrogenase (LDH), D-dimer, prothrombin time (PT), and activated 
partial thromboplastin time (APTT) provide a more accurate measure of 

soluble recombinant human; SP, surfactants; SYK, spleen tyrosine kinase; Th, 
helper T cell; TNF, tumor necrosis factor. 
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Table 3 
Recent clinical trials in immune biomarkers for preventing and treating the progressive complications of COVID-19.  

Biomarkers Intervention Clinical Trials Phase Status 

AT1R AT1R inhibitors (Losartan) NCT04311177 
NCT04312009 

II Recruiting 

Jak1/Jak2 

Jak1/2 inhibitor (Baricitinib)/Lopinavir/Ritonavir NCT04320277 II/III Not yet Recruiting 
NCT04358614 II/III Completed 

Jak1/2 inhibitor (Baricitinib)/Remedsivir NCT04401579 III 
Active-Not 
Recruiting 

Jak1/2 inhibitor (Baricitinib) 
NCT04321993 II Recruiting 
NCT04340232 II/III Not yet Recruiting 
NCT04421027 III Recruiting 

Jak1/2 inhibitor (Tofacitinib) NCT04332042 II Not yet Recruiting 
Jak1/2 inhibitor (Ruxolitinib) NCT04362137 III Recruiting 
Jak1/2 inhibitor (Pacritinib) NCT04404361 

BTK BTK inhibitor (Acalabrutinib) NCT04380688 II 
Active-Not 
Recruiting 

BTK inhibitor (Abivertinib) NCT04440007 Not yet Recruiting 

Cytokine storm 

Tubulin beta chain inhibitor (Colchicine) 
NCT04322682 
NCT04328480 

III Recruiting 

NCT04326790 II Recruiting 

Hydroxychloroquine 
ChiCTR2000029740 
ChiCTR2000029559 

IV Recruiting 

NCT04261517 III Completed 
S1PR1, 3 and 5 modulator (Fingolimod) NCT04280588 II Recruiting 

IFNs 
IFN-α2b/Rintatolimod NCT04379518 I & II Recruiting 
IFN-β-1α/Remdesivir NCT04492475 III Recruiting 

IL-6 

anti-IL-6R mAb (Tocilizumab) 

NCT04335071 II Recruiting 

NCT04315480 II Active-Not 
Recruiting 

NCT04331795 II Completed 
NCT04317092 II Recruiting 
NCT04320615 III Completed 

NCT04372186 III 
Active-Not 
Recruiting 

anti-IL-6R mAb (Tocilizumab)/Remdesivir NCT04409262 III Recruiting 
anti-IL-6R mAb (Tocilizumab)/Azithromycin/ Hydroxychloroquine NCT04332094 II Recruiting 

anti-IL-6R mAb (Sarilumab) NCT04315298 II & III 
Active-Not 
recruiting 

anti-IL-6R mAb (Sarilumab)/Azithromycin/ Hydroxychloroquine NCT04341870 II & III Suspended 
anti-IL-6R mAb (Tocilizumab)/anti-IL-6 mAb (Siltuximab)/IL-1R antagonist 
(Anakinra) NCT04330638 III Recruiting 

IL-1β IL-1R antagonist (Anakinra) /anti-IL-6R mAb (Tocilizumab) NCT04339712 II Recruiting 

GM-CSF 

anti-GM-CSF receptor-α mAb (Mavrilimumab) 

NCT04397497 II Not yet Recruiting 
NCT04463004 
NCT04399980 

II Recruiting 

NCT04447469 II & III Recruiting 
anti-GM-CSF mAb (Gimsilumab) NCT04351243 II Recruiting 
anti-GM-CSF mAb (Lenzilumab) NCT04351152 III Recruiting 
anti-GM-CSF mAb (Otilimab) NCT04376684 II Recruiting 

C3 and C5 

AMY-1 (C3 inhibitor agents 01) NCT03694444 I and II Recruiting 

anti-C5 mAbs (Eculizumab) NCT04288713 Not 
mention 

Available 

anti-C5 mAbs (Ravulizumab) 
NCT04369469 III Recruiting 
NCT04390464 IV Recruiting 

anti-C5a mAbs (IFX-1) NCT04333420 II/III Recruiting 

CCR5 anti-CCR5 mAb (Leronlimab) 
NCT04343651 II 

Active-Not 
recruiting 

NCT04347239 II/III Recruiting 

IL-7 Recombinant IL-7 (rIL-7) 

NCT04407689 II Recruiting 
NCT04379076 
NCT04498325 I Not yet Recruiting 
NCT04426210 

II Not yet Recruiting NCT04442178 

anti-SARS-CoV-2 mAbs 

VIR-7831 NCT04545060 II/III Recruiting 
REGN-COV2 NCT04425629 I/II Recruiting 
LY-CoV555/ LY-CoV016 NCT04427501 II Recruiting 
JS-016 NCT04441918 I Recruiting 
STI-1499 NCT04454398 I Not yet Recruiting 
AZD7442 NCT04507256 I Recruiting 

NK cell Allogeneic NK cells (CYNK-001) NCT04365101 I/II Recruiting 
Allogenic viral-specific T 

cell 
Partially HLA-matched SARS-CoVSTs NCT04401410 I Not yet Recruiting 

AT1R, Ang II receptor type 1; BTK, Bruton tyrosine kinase; C3 and C5, complement proteins; CCR, chemokine (C-C motif) ligand receptor; ChiCTR, chinese clinical trial 
registry; GM-CSF, granulocyte-macrophage colony- stimulating factor; HLA, human leukocyte antigen; IFN, interferon; IL, interleukin; IL-6R. interleukin-6 receptor; 
mAb, monoclonal antibodies; Jak, janus kinase; NCT, clinicaltrials.gov identifier; NK, natural killer; rhuGM-CSF, human recombinant GM-CSF; S1PR, sphingosine-1- 
phosphate receptors. 
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poor prognosis in COVID-19 patients [6,37,65]. Whereas high levels of 
IL-6, D-dimer, and PT are associated with ARDS-dependent deaths in 
COVID-19 patients, high levels of IL-6 and D-dimer concomitant with 
low levels of PT are linked with disseminated intravascular coagulation 
(DIC)-dependent deaths [42,64]. IL-6 can also be a potential thera-
peutic target to reduce the detrimental responses of the immune system 
in COVID-19. Tocilizumab and sarilumab, two anti-IL-6 receptor 
monoclonal antibodies (mAbs), and siltuximab, an anti-IL-6 mAb, are 
IL-6 signaling pathway inhibitors with different properties that have 
been considered for use in severe-to-critical stages of COVID-19. The 
first data from China [66] and France [67] showed that tocilizumab is 
effective in treating severe complications in COVID-19 patients. 
Recently, several randomized, placebo-controlled phase III clinical 
trials such as NCT04372186 (EMPACTA), NCT04320615 (COVACTA), 
and NCT04409262 (REMDACTA) have showed conflicting results on 
the safety and efficacy of tocilizumab along with standard care in 
COVID-19 patients pneumonia. While, EMPACTA trial reported tocili-
zumab (plus standard care) was associated with improved respiratory 
function as well as reduce mortality, CONVACTA trial did not show 
improved clinical status in tocilizumab-treated patients compared with 
those who received placebo. Conflicted results are more evident in 
other studies. In a study on 239 severe COVID-19 patients who received 
tocilizumab plus standard care, cytokine storm was reduced compared 
with tocilizumab-untreated patients, but there was no significant dif-
ference in the mortality rate between the two groups [68]. Conversely, 
another study reported reduced inflammation and mortality after a 
single 400 mg dose of tocilizumab in severe COVID-19 patients [69]. In 
addition, several clinical trials including NCT04335071, 
NCT04315480, NCT04331795, NCT04317092, ChiCTR2000029765, 
and ChiCTR2000030196 for the use of tocilizumab, NCT04332094 for 
the use of tocilizumab/azithromycin/HCQ and NCT04330638 for the 
use of tocilizumab/siltuximab/anakinra in the treatment of COVID-19 
complications are ongoing. 

In association with clinical trials of sarilumab in COVID-19 patients, 
a multicenter, double-blind, phase II/III clinical trial was registered to 
determine the therapeutic effects of sarilumab (plus standard care) in 
patients with severe COVID-19 in the U.S. [70]. In phase III of this trial, 
sarilumab only modestly enhanced the treatment. Despite that, another 
trial such as NCT04341870, is studying the therapeutic effects of sar-
ilumab plus azithromycin, HCQ and standard care in COVID-19 patients. 

2.2.3. TNF-α 
TNF-α is an inflammatory cytokine in the acute phase of inflamma-

tory diseases that increases along with IL-6 and IL-10 in the serum and 
tissue of COVID-19 patients and is negatively correlated with T cell 
frequency [71]. In addition, serum levels of TNF-α are associated with 
severity of symptoms in COVID-19 patients [6]. Hence, there are some 
FDA (US) approved and off-label anti-TNF-α therapy that suggest TNF-α 
can be an appropriate target in COVID-19 [72]. Studies have shown that 
TNF-α blockers decrease IL-6 and IL-1β, adhesion molecules, and 
vascular endothelial growth factor (VEGF), which are the major factors 
in induction of capillary permeability [73]. Previous studies on the 
anti-TNF-α therapy of severe respiratory syncytial virus and influenza in 
mice suggest a rationale for the advantages of anti-TNF-α therapy in 
reducing some of the inflammatory processes that occur during viral 
pneumonia, such as COVID-19 pneumonia [74]. However, due to the 
high probability of opportunistic infections in anti-TNF therapy of in-
flammatory disease, it is necessary to perform pre-clinical trials on 
COVID-19. 

2.2.4. IL-1β 
IL-1β is another pro-inflammatory cytokine that increases in SARS- 

CoV-2 infection [6,75]. While IL-1β plays an important role in hema-
topoiesis, inflammation, and repair in steady state conditions, it in-
creases vascular permeability and leakage in inflammatory diseases such 
as RA [76]. In relation to SARS-CoV-2 infection, Gong et al. found no 

correlation between IL-1β serum levels and disease severity in a 
cross-sectional study [77]. However, a previous study has shown that 
ion channel-forming M protein and ORF8b from SARS-CoV are stimu-
lators for Nod-like receptor protein (NLRP)-3 that promote the produc-
tion and release of IL-1β and IL-18 by activating caspase-1 [78]. 
Accordingly, one of the promising treatments for reducing inflammatory 
responses in COVID-19 can be neutralization of IL-1β by the IL-1R nat-
ural antagonist (IL-1ra), as is observed in inflammatory diseases such as 
RA [79]. Two clinical trials in Italy [80] and France [81] have shown 
that in patients who received high doses of anakinra along with standard 
treatments (hydroxychloroquine, lopinavir/ritonavir) and standard 
care, respiratory function significantly improved as well as CRP leves 
and mortality rates reduced within 21 days. In addition, NCT04339712 
and NCT04330638 trials have been registered to evaluate further the 
effectiveness of anakinra/tocilizumab dual therapy and tocilizu-
mab/siltuximab/anakinra triple therapy, respectively. 

2.2.5. IL-18 
Studies have shown that IL-18 is a component of cytokine storm and 

increases during SARS-CoV-2 infection, thereby playing a role in the 
immunopathology of COVID-19 [82,83]. The majority of IL-18 is 
produced as a premature precursor by mononuclear cells. Similar to 
IL-1β, this precursor is then cleaved by caspase-1 and is converted to 
mature and active IL-18 [84]. IL-18 in combination with other cyto-
kines of the cytokine storm, such as IL-12 and IL-15, play important 
roles in the activation of T and NK cells as well as the production of 
IFN-γ [83]. Based on the model presented by Wen et al., IL-18 might 
play a major role in the production of antibodies by mediating the 
interaction between B and dendritic cells in COVID-19 patients with 
late recovery [85]. The high levels of IL-18 in sera and/or inflamma-
tory tissues of patients with Still’s disease are good indicators of dis-
ease activity with therapeutic potential [86]. Accordingly, the 
successful use of Tadekinig-α (nIL-18 binding protein) for the treat-
ment of Still’s disease [87] as well as the effectiveness of rIL-18BP for 
the treatment of a girl with life-threatening hemophagocytic lympho-
histiocytosis (HLH) [88] have nominated IL-18BP as a potential 
candidate for COVID-19 treatment. However, there is no clinical evi-
dence for this suggestion, and clinical trials are needed to evaluate the 
efficacy and safety of IL-18BPs in COVID-19. 

2.2.6. GM-CSF 
GM-CSF is one of the inflammatory mediators involved in the 

cytokine storm of COVID-19 which is released by GM-CSF+ IFN-γ+
Th1 cells, CD14+ CD16+ GM-CSF+ macrophages, and human pul-
monary microvascular endothelial cells. It has been suggested that 
blocking GM-CSF signaling may inhibit complications of the virus. 
Therefore, GM-CSF can be a potential target for the monitoring and 
treatment of COVID-19 [31]. Hence, gimsilumab, lenzilumab, and 
otilimab (multiple anti-GM-CSF mAbs) are currently in the clinical trial 
phase (NCT04351243, NCT04351152 and NCT04376684, respec-
tively) for the treatment of COVID-19. In addition, NCT04397497, 
NCT04463004, NCT04399980, and NCT04447469 are four new clin-
ical trials purposed to investigate the efficacy of mavrilimumab (a 
human anti-GM-CSF receptor-α mAb) in COVID-19. These clinical trials 
reported that mavrilimumab along with oxygen therapy, assisted 
ventilation, and adjuvant therapy (HCQ, AZT, lopinavir–ritonavir) was 
beneficial for COVID-19 patients with systemic hyper-inflammation. 

2.2.7. Other cytokines 
Studies have shown IL-2 [6], IL-2R [77], IL-4 [85], IL-10 [6,77], IL-8 

[77], chemokine (C-X-C motif) ligand 9–11 (CXCL9-11), MCP-1, 
MIP-1A, and chemokine (C-C motif) ligand 5 (CCL5) [71] are other 
immune system mediators that their increased levels can be associated 
with the severity of clinical symptoms in COVID-19 patients. Evidently, 
these studies are limited and further studies are needed to determine the 
predictive and therapeutic power of these inflammatory mediators. 
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2.3. Complement system biomarkers 

Recent observations have suggested that activation of the comple-
ment system (C3 and C5 depletion), as a first line defense system against 
pathogens, can contribute to ARDS symptoms of coronavirus diseases 
[89]. In addition, the analyses of lung biopsy specimens in patients with 
severe COVID-19 have shown that tissue deposition of C3a and C5a 
fragments of complement proteins increase during disease progression. 
Hence complement proteins can be considered as prognostic and ther-
apeutic indicators in COVID-19 [90]. The results of clinical trials on C3 
inhibitor agents such as AMY-101 (NCT03694444), anti-C5 mAbs such 
as eculizumab (NCT04288713) and ravulizumab (NCT04369469 and 
NCT04390464), and anti-C5a mAb such as IFX-1 (NCT04333420) have 
augmented hopes for COVID-19 therapies. These therapeutic methods 
reduce inflammatory responses by inhibiting the activity of the distal 
complement components and preventing the formation of the mem-
brane attack complex, as well as decreasing inflammatory cytokine 
levels and suppressing monocyte/neutrophil migration into the lungs 
[89,90]. The very short half-life of complement mediators is the main 
hurdle in using them as biomarkers. However, serum and tissue changes 
of complement mediators along with clinical inflammatory indicators 
such as CRP, IL-6, and ferritin can be helpful in predicting complications 
of COVID-19 [91,92]. 

2.4. Cell biomarkers 

Clinical studies have shown that leukocytosis, lymphocytopenia, and 
thrombocytopenia are important laboratory findings in the majority of 
COVID-19 patients at the time of hospitalization, which can be helpful 
criteria for assessing the progression of complications. These findings 
were more evident in patients with severe COVID-19 compared to non- 
severe cases [6,42]. Several studies have shown the relationship be-
tween changes of leukocyte frequency and progression of COVID-19 
symptoms toward ARDS syndrome, MOF, and death [37,65]. Accord-
ingly, Henry et al. indicated that white blood cell (WBC) counts in 
COVID-19 patients with severe manifestations increase moderately, 
while this parameter significantly increases in COVID-19 victims. 
Elevated WBC counts are due to increased neutrophils accompanied by a 
decrease in lymphocytes, monocytes, dendritic cells, and eosinophils 
counts in peripheral blood [65]. Such alterations lead to increased 
neutrophil-to-lymphocyte ratio (NLR) values (a well-known marker of 
systemic inflammation and infection) and decreased values of 
lymphocyte-to-WBCs ratio (LWR). Hence, the NLR and LWR can be 
considered as predictive and monitoring indicators for severe forms and 
fatal outcomes of COVID-19 [75]. Interestingly, Qu et al. showed that 
high platelet-to-lymphocyte ratios (PLRs) at the time of platelet peak 
could be considered as an independent poor prognostic factor for 
COVID-19 outcomes [93]. Lymphopenia associated with neutrophilia in 
COVID-19 patients may be due to several mechanisms. The most com-
mon mechanisms are: 1) recruitment of lymphocytes and monocytes 
from blood into the sites of infection [94]; 2) activation-induced cell 
death (AICD) of lymphocytes due to increased expression of Fas under 
the influence of IL-6 [33]; 3) lymphoid organ atrophies and lymphocyte 
turnover impairment that may be related to the over-activation and 
exhaustion of lymphocytes [95,96]; 4) inhibition of lymphocyte prolif-
eration by acidosis [97]; and 5) suppression of T cell recirculation in the 
blood by promoting the attachment of T cells to the endothelium of 
lymphoid organs under the influence of IFN-I and TNF-α [98]. 

During non-specific symptoms that occur in the early stage of 
COVID-19 (1–14 days), lymphocyte counts in the peripheral blood are 
either normal or slightly reduced. The significant changes become 
evident approximately 7–14 days after the onset of the primary symp-
toms [99]. Subjects with mild symptoms of COVID-19 demonstrate a 
decrease in the number of lymphocytes on day 7, which subsequently 
returns to its normal range after several more days [64]. Therefore, 
sequential evaluation of lymphocyte count fluctuations may be a 

prognostic and monitoring indicator for disease outcome. One study 
found that if lymphocyte counts at days 10–12 after the onset of 
symptoms are less than 20 % and drop to less than 5 % at days 17–19, it 
will be associated with a poor prognosis of the disease [100]. 

2.4.1. Myeloid cells 
Myeloid cells, such as dendritic cells and macrophages, are important 

immune system regulators in mucosal infections [101]. The accumula-
tion of mononuclear cells such as T cells, dendritic cells, and mono-
cytes/macrophages in the lung tissue is the first pathological data in 
patients with COVID-19 which is accompanied by a decrease in mono-
nuclear cells in peripheral blood as well as an increase in CRS and lung 
complications [18]. Previous reports have confirmed that the increased 
expression of inflammatory genes (such as IL1β, FOS, JUN, CXCR4, 
MIP-1B, and IFN regulatory factor (IRF)-1) is associated with the pro-
liferation of CD14+ human leukocyte antigen (HLA)-DRlo inflammatory 
monocyte [85,102], IFN-γ-driven immune responses, and IL-1β-associ-
ated inflammasome signatures [103] in the peripheral blood of 
COVID-19 patients. Interestingly, several studies reported that the high 
frequency of CD14+ HLA-DRlo inflammatory monocyte-derived mac-
rophages and Ficolin-1+monocyte-derived macrophages in the BALF of 
patients with severe COVID-19 symptoms was accompanied by a 
decrease in the frequency of tissue reparative alveolar macrophages. 
Inflammatory macrophages account for as much as 80 % of total BALF 
cells in patients with severe COVID-19, while in patients with mild dis-
ease and in healthy individuals, this number is only approximately 60 % 
and 40 %, respectively [31,104]. In addition, CD14+ CD16+ GM-CSF+
and CD14+CD16+ IL-6+monocytes were shown to be higher in patients 
compared to healthy control group. It seems that CXCR3 and/or CCR2+
inflammatory monocytes are recruited into the inflamed sites in 
response to the high production of MCP-1, MIP-1A, CCL8, CXCL6, and 
CXCL11 and are differentiated to inflammatory macrophages under the 
effect of cytokines such as IFN-γ [29,31,104]. Inflammatory macro-
phages can promote dysfunctional immune responses by several mech-
anisms, including the engagement of TLR and RLRs, increasing antibody 
dependent enhancement, inducing pyroptosis, stimulating the comple-
ment activation, and delaying the cellular response [8]. A study in ani-
mal models has shown that delayed IFN-I production and the 
accumulation of inflammatory monocyte/macrophages in the alveolar 
lumen cause increased levels of inflammatory mediators, dysfunction of 
T cell responses, and vascular leakage [105]. On the other hand, the 
persistence of inflammatory macrophages followed by a high density of 
anti-inflammatory responses in the later stages of immune response 
(repairing phase) may participate in fibrotic complications and depen-
dence on mechanical ventilation based on the extent of tissue damage 
[106]. Hence, the various subtypes of macrophages may be biomarkers 
for monitoring COVID-19 recovery. In animal studies, small interfering 
RNA (siRNA)-mediated silencing of CCR2 is an effective treatment 
approach which reduces macrophage recruitment to the sites of 
inflammation [107]. 

2.4.2. Neutrophils 
Several studies have demonstrated that patients with severe COVID- 

19 symptoms have higher neutrophil counts in their peripheral blood 
[42,75]. Another study, carried out by Zhou et al., showed a high fre-
quency of inflammatory neutrophils at the site of infection, which was 
associated with adverse outcomes of COVID-19 complications. Based on 
this study, neutrophils infiltrate to the site of inflammation in response 
to the high production of chemokines such as CXCL1, CXCL2, CXCL8, 
CXC10, MCP-1, and CCL7 and differentiate to inflammatory neutrophils 
under the effects of high levels of IL-17F, IL-1β, TNF-α, and IL-6 [29]. 
Neutrophilia has been defined as a risk factor for the progression of 
ARDS toward death in COVID-19 patients [42]. Hence, pathological 
studies on Ace2 knockout mice showed that mice with severe ARDS have 
a higher accumulation of neutrophils in the lungs compared to the 
control group. This phenomenon maybe due to increased serum and 
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pulmonary levels of Ang II which can activate neutrophils and other 
immune cells through AT1R [15]. While such neutrophils may exert 
important antiviral effector functions, they also secrete IFN-γ, IL-6, and 
MCP-1 that attract and activate further immune cells such as T lym-
phocytes and monocytes, which may contribute to accentuated immune 
responses in COVID-19 [108]. 

2.4.3. Eosinophils, basophils and mast cells 
Several studies in COVID-19 patients revealed that subjects with 

severe symptoms of the disease exhibit a decrease in frequencies of 
eosinophils and basophils in their blood, which can worsen with COVID- 
19 exacerbation [75,109]. In addirion, animal models of SARS-CoV 
immunopathology have demonstrated infiltration of Th2/eosinophil in 
lesion sites [110]. Therefore, eosinopenia associated with increased CRP 
can be a potential indicator for the rapid and effective prognosis of 
patients with COVID-19 [111]. Delayed improvement in eosinophil 
counts may also be a sign of poor response to therapies in patients [112]. 
Furthermore, lung pathological data of COVID-19 patients indicates an 
increased activity of attracted mast cells and a higher release of chymase 
in the inflamed site that lead to the conversion of Ang I to Ang II [15,29]. 

2.4.4. NK cells 
NK cells along with cytotoxic T lymphocytes (CTLs) play key roles in 

virus eradication during respiratory infections through direct cytotox-
icity and cytokine secretion [113]. Two consecutive analyses of NK cell 
subsets have shown that the frequencies of NK cells were decreased in 
the peripheral blood of COVID-19 patients with severe symptoms, and 
such a decrement was more obvious in critical patients [18,75]. This 
phenomenon is due to either the infiltration of NK cells into peripheral 
tissues or the disregulation of NK cell maturation [114]. Based on the 
relative expression of the CD16 and CD56 markers, NK cells are divided 
into two subgroups: CD16+ CD56+ NK cells (NK1) with strong cytotoxic 
activity and CD16- CD56+ NK cells (NK2) with the capability of high 
level cytokine production and slight cytotoxic activity [32]. Mature NK1 
subsets form the majority of NK cells in healthy lung, but CXCR3+ NK 
cells are increased in lungs infected with viruses in response to 
CXCL9–11 [115]. In patients with severe COVID-19, the NK1 cells show 
impaired cytotoxicity, increased cytokine production [116], and 
elevated expression of exhaustion markers such as NKG2A (a major NK 
cell-inhibitor receptor) [95], programmed cell death protein (PD)-1, 
T-cell immunoglobulin mucin (TIM)-3, and lymphocyte-activation gene 
(LAG)-3 [117]. Other studies have indicated that high levels of IL-6 and 
TNF-α along with lower numbers of NK1 cells significantly correlate 
with the severity of clinical symptoms in COVID-19 patients [6,114]. It 
is likely that IL-6 impairs perforin and granzyme B (GzmB) production 
[118], while TNF-α downregulates NKp46 (a major NK cell-activating 
receptor) [119]. It has been shown that tocilizumab and anti-TNF-α 
can restore NK1 cell functions in COVID-19 patients [118]. A recently 
identified placental human stem cell-derived allogeneic NK cell 
(CYNK-001), that has the potential of directly killing SARS-CoV-2 
infected cells as well as the indirect induction of immune responses 
has been studied in COVID-19 patients (NCT04365101) [120]. How-
ever, there are controversies over the efficacy and safety of NK cell 
therapy for SARS-CoV-2 infections, so more testing is necessary. 

2.4.5. T cells 
Although changes in the WBC counts are considered to be clinical 

indicators of the progression of COVID-19 disease, investigating the 
changes in each lymphocyte subtype might be very interesting for the 
prediction of disease complications. Of note, CD4+ T cell subsets are 
central coordinators of immune responses which provide a wide array of 
functions to help antibody production, activation of immune cells, sur-
vival and maintenance of cellular effector functions as well as immune 
memory formation. Therefore, studying their subsets would be of utmost 
importance. On the other hand, studying CD8+ T cells subsets, as the 
main effector cells in the direct killing of viral infected cells, can be 

helpful in determining the relative significance of T cell subsets and 
cellular immunity in the defensce against COVID-19 and its immuno-
pathology [121]. Accordingly, similar to the acute phase of SARS and 
MERS diseases, COVID-19 patients with severe symptoms exhibit an 
extreme decline in total CD4+ and CD8+ T cells in their circulation 
[122], while patients with mild symptoms have normal to slightly 
higher T cell counts [123]. This decrease in T cells is likely to be caused 
by high levels of pro-inflammatory cytokines such as IL-6, IFN-I, and 
TNF-α in peripheral blood [71,82]. A high concentration of IL-6 may 
induce apoptosis of T cells through the Fas/FasL pathway [33], while 
TNF-α and IFN-I may promote the attachment and retention of T cells in 
lymphoid organs [124]. T cells express a high level of HLA-DR, CD25, 
CD69, CD38, Ki-67, as well as the FOS, JUN, and KLF6 genes in patients 
with severe disease [85,104,125], which is due to the activation of cells 
under the influence of high serum levels of inflammatory cytokines such 
as IFN-γ, IL-12, IL-1β, and MCP [126]. Braun et al. demonstrated that the 
stimulation of CD4+ T cells using overlapping peptide pools of S protein 
increased CD38, HLA-DR, and Ki-67 expression in CD137+ CD154+
CD4+ T cells [127]. Generally, the activation of CD8+ T cells was 
greater than that of CD4+ T cells [75,125]. Of note, there were low 
frequencies of CD4+ T cells specific for C-terminal S protein epitopes in 
about one-third of SARS-CoV-2 seronegative donors that lacked activa-
tion markers. These responses may be attributed to the cross-reactivity 
between CoVs specific CD4+ memory T cells which recruit an ampli-
fied primary response against SARS-CoV-2 [127]. In this regard, 
NCT04343651 in phase II and NCT04347239 in phase II/III are two 
clinical trials to evaluate the safety and efficacy of leronlimab, an 
anti-CCR5 mAb, in mild-to-moderate and severe-to-critical COVID-19, 
respectively. Laboratory results of these studies showed increased CD8+
T cell percentages, normalization of CD4+/CD8+ T cell ratios, and 
resolving cytokine storm, including reduced IL-6, IFN-I and TNF-α levels 
which correlated with COVID-19 patient improvement. 

2.4.5.1. Th1 cells and CTLs. Recent works have shown that Th1 cells 
and CTLs along with monocytes play a crucial role in viral control and in 
reducing the innate immune responses by inducing specific, effective, 
and robust responses against the virus. Nevertheless, similar to auto-
immune diseases, the dysregulation of these responses may lead to 
COVID-19 immunopathology and may be associated with the severity 
and progression of the disease [31,128]. Hence, in critically severe 
COVID-19 patients observed a decreased frequency of IFN-γ+ CD4+ T 
and GzmB+ perforin+ CD8+ T cells as well as an increased frequency of 
polyclonal GM-CSF+ CD4+ T cells which could produce high levels of 
IL-6 and GM-CSF [31,95]. 

2.4.5.2. Regulatory T cells (Treg). Treg cells which play a critical role in 
the maintenance of immune tolerance, especially in mucosal tissues, 
decrease in the early phase in patients with severe COVID-19 [75]. The 
reduction of Treg cells might contribute to the development of lung 
complications in COVID-19 patients. In this regard, the lack of control on 
the inflammatory cells, especially CD8+ T cells, may cause an exacer-
bated pro-inflammatory profile and severe symptoms in the acute phase 
of infection, which should be considered in vaccine design [75,122]. 

2.4.5.3. Th17. It has been shown that the frequencies of CCR4+ and 
CCR6+ Th17 cells with higher levels of inflammatory functions increase 
in patients with COVID-19 [18]. This can be due to the effects of IL-6 and 
IL-23 that are produced from activated macrophages and virus-infected 
AECs [129]. 

Furthermore, Th17 plays an important role in severe lung damage 
and mortality due to respiratory tract infections. In this regard, Th17 
cells play a part in the cytokine storm by producing IL-17 and GM-CSF 
which mobilize neutrophils and eosinophils from bone marrow to the 
inflammation site [130]. 
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2.4.5.4. Th2. Similar to SARS, the poor outcomes of COVID-19 may be 
associated with Th2 cell-produced cytokines [131]. Th2 differentiation 
can be due to either the absence of strong signals for Th1 and Th17 
differentiation in the early stages of infection or to high levels of IL-4, 
IL-5, and IL-10 production in the later stages of infection [6]. Howev-
er, experiments on SARS-CoV-1 in animal models have shown that Th2 
can contribute to SARS-CoV-2 immunopathology through the recruit-
ment and activation of eosinophils [110]. Furthermore, γδ T cells that 
have a protective role in viral pneumonia decrease in severe COVID-19 
patients [102,132]. 

2.4.5.5. Naïve, effector, and memory T cells. One of the most important 
aspects of T cells-mediated immunity is the differentiation of naïve T 
cells into activated and memory T cell subsets. Naïve, activated, and 
memory T cell populations are in a balanced relationship in order to 
maintain the efficiency of immune responses and homeostasis in the 
steady state [75,133]. In CD4+ T cell populations, an increase in naïve 
and activated cells as well as a decrease in memory cells are observed in 
patients with severe COVID-19 than non-severe patients [75]. In CD8+ T 
cell populations, naïve and memory cells do not show much difference, 
but activated cell population greatly increases in patients with severe 
disease compared to milder cases [75]. However, by using large com-
plementary peptide pools comprising S protein SARS-CoV-2 epitopes, 
Weiskopf et al. showed that, based on CD45RA and CCR7 expression, the 
phenotype of CD4+ and CD8+ T cells in moderate-to-severe patients is 
very limited 10 days after the initial onset of symptoms [134]. These 
cells were characterized by the phenotype of central-memory CD4+ T 
cells and effector-memory CD8+ T cell [134]. Similarly, Wen et al. 
showed that patients in the late recovery stage had a higher frequency of 
naïve CD4+ T cells, CD8+ T cells, and effector-memory CD4+ T cells, 
while the frequencies of central-memory CD4+ T cells, Treg, 
effector-memory CD8+ T cells, and effector CD8+ T cells were 
decreased [85]. Thus, evaluation of the frequency, function, and 
phenotypic properties of SARS-CoV-2 specific CD4+ and CD8+ T cells 
might be helpful in predicting, monitoring, and treating COVID-19 
complications. 

2.4.5.6. Deviations in T cell responses. Studies have shown that high 
serum levels of pro-inflammatory cytokines such as IL-6, IL-10, IL-23, 
and TNF-α in the fatal group are associated with decreased counts, 
increased activation, and enhanced expression of exhaustion markers of 
T cells (PD-1, TIM-3 and LAG-3) [117]. These markers are expressed in 
higher quantities in CD8+ T cells than in CD4+ T cells and in severe 
versus mild cases [31,71]. In COVID-19 patients with mild symptoms, 
IFN-γ-producing T cells are specific for N, M, and S proteins of 
SARS-CoV-2, but only N-specific T cells are detectable in subjects post 
recovery [135]. Several studies have shown that CD4+ and CD8+ T cells 
isolated from patients with severe disease produce smaller amounts and 
less variety of cytokines in response to PMA [95,96,122]. The studies on 
the function of CD8+ T cells in severe COVID-19 have been controver-
sial. Whereas a study showed the cytotoxicity and degranulation of 
CD8+ T cells were decreased in peripheral blood [95], another study 
demonstrated that GzmB and perforin were increased in CD8+ T cells 
extracted from the blood and BALF of severe patients [96,104]. These 
conflicting results may be due to differences in sampling time during the 
course of the disease in different studies. Because deviations in immune 
responses from Th1/macrophage, CTL and NK to Th17/neutophils and 
Th2/eosinophils occur under the influence of pro-inflammatory cyto-
kines during disease progression and lead to a decrease in virus clear-
ance, an increase in the cell pyroptosis, a decrease in apoptotic cells 
removal, and an increase in lung inflammation [131]. Therefore, the 
results can vary depending on the stage of immune responses, its kinetics 
of deviations under the influence of HLA, and the repertoire of naïve and 
activated T cells [136]. 

IL-7 is the main cytokine in the homeostasis of the immune system by 

promoting the expansion of lymphocytes, inhibition of apoptosis, 
reversal of T cell exhaustion, and expression of cell adhesion molecules 
[83]. Interestingly, the administration of recombinant (r)IL-7 causes 
treatment of T cell exhaustion and restores CD4+ T cells without a 
hyperinflammatory response or clinical deterioration in HIV infection 
[137]. Hence, IL-7 can be a superb therapeutic candidate for the treat-
ment of COVID-19 complications. So far, five clinical trials have been 
registered to evaluate this strategy (NCT04407689, NCT04379076, 
NCT04498325, NCT04426201 and NCT04442178). 

Allogeneic virus-specific T cell therapy is another treatment strategy 
that targets SARS-CoV-2. This approach is in phase I trial (dose finding) 
followed by a pilot study in hospitalized severe COVID-19 patients 
(NCT04401410). 

2.4.6. Humoral immunity 
Given the limitations of CT scan and RT-qPCR methods for the 

diagnosis, prognosis, and monitoring of COVID-19 complications, sim-
ple and rapid immune-based methods that target viral antigens or anti- 
viral antibodies are needed as soon as possible. For this purpose, the first 
step must be determining the kinetics and dynamics of humoral immune 
responses in COVID-19 patients. Also currently, several studies are 
investigating the effectiveness of humoral immunity against SARS-CoV- 
2 [138,139]. In one of these studies B cell responses and follicular T cell 
responses are shown to occur around 7 days after the onset of COVID-19 
clinical manifestations [125]. Furthermore, SARS-CoV-2-specific 
N/S-IgM/IgG Abs are commonly detected in the order of days after 
infection [140]. A study has shown that SARS-CoV-2-specific N/S-IgM 
Abs appear in the first week, reach a peak in the second week, and 
decrease in the third week after the onset of symptoms in non-severe 
patients, while N/S-IgG Abs increase in the second week, reach a peak 
in the third week, begin to decline by 8 weeks, and are detectable for 60 
days post-symptom onset [141]. All antibodies are produced earlier in 
severe patients than in non-severe patients except S-IgG Ab which is 
delayed (Fig. 2). Of note, the combined assessment of N/S-IgM/IgG Abs 
improved the detection of COVID-19 patients, especially in the first 
week when it could detect up to 75 % of patients infected with 
SARS-CoV-2 [142]. 

It has been shown that the increase in N/S-IgM and N-IgG Abs in the 
first three weeks after symptom onset is correlated with increases in CRP 
and lung complications. However, the high levels of S-IgG Ab in the third 
week after the onset of symptoms are associated with decreased 
inflammation [142]. It seems that while N-IgM Ab and N-IgG Ab indi-
cate the presence and progression of infection before the virus packing 
stage, respectively, the S-IgM Ab promotes the pro-inflammatory pro-
cesses and symptoms of the disease by complement activation and 
antibody-dependent enhancement (ADE). Conversely, after neutrali-
zation of the virus, S-IgG Ab reduces inflammation through the Fc 
gamma receptor (FcγR)-mediated phagocytosis of immune complexes 
in the late stage of infection. Therefore, the identification and mea-
surement of N/S-specific IgM/IgG antibodies can be effective in the 
diagnosis, prognosis, and monitoring of COVID-19. 

2.4.6.1. Convalescent plasma (CP). There are different therapeutic 
methods based on adoptive transfer of neutralizing antibodies (nAbs) for 
the treatment of COVID-19 patients at the early stages of clinical dete-
rioration. A rapid prophylactic and therapeutic strategy for COVID-19 
can be administration of CP, which is derived from the plasma of 
recovered COVID-19 individuals [140]. A study has indicated that sera 
from COVID-19 patients could neutralize BALF-isolated SARS-CoV-2 of 
severe patients [143]. For this purpose, individuals who have recovered 
from COVID-19 and have a high plasma titer of anti-SARS-CoV-2 Abs are 
identified using serological tests [140]. Although CP therapy is an 
FDA-approved treatment for severe COVID-19 patients [144], further 
controlled and randomized trials are required to determine the optimum 
amount, frequency, and time of CP transfusions. In a recent effort, 
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injection of CP that was collected two weeks after recovery led to the 
highest titers of anti-SARS-CoV-2 neutralizing antibody in recipient 
patients [145]. In addition, patients who received one dose of 200 mL CP 
with a titer above 1:640 of anti-SARS-CoV-2 Abs were significantly 
improved within three days [146]. 

2.4.6.2. Intravenous immunoglobulin (IVIg). IVIg therapy is another Ab- 
based treatment strategy that uses polyclonal IgG pools isolated from 
healthy donors to treat numerous inflammatory diseases, including 
ARDS and vasculitis [147]. A previous study has shown that treatment 
with IVIg was effective on early stages of SARS and MERS diseases. Thus, 
IVIg can be another option for COVID-19 patients with severe symptoms 
[148]. Although a few COVID-19 patients did respond to a high dose of 
IVIg, the high cost and adverse side effects restrict its general use [149]. 
Currently, several clinical trials are underway to evaluate IVIg therapy 
in COVID-19 patients worldwide [150]. 

2.4.6.3. Monoclonal Abs (mAbs). Evidence show that mAbs are suitable 
candidates for the treatment of COVID-19. S protein fragments 
including N terminal domain (NTD), receptor-binding domain (RBD), 
and heptad repeat region (HR)-2 are the most immunogenic targets for 
anti-SARS-CoV-2 nAbs production which block virus entry to the cells 
[151]. Among these antibodies, anti-RBD nAb are commonly detected 
in COVID-19 patients [140]. Therefore, RBD can be a potential target 
for the induction of two arms of humoral immunity during the acute 
phase of disease. The two arms of humoral immunity that form 
anti-SARS-CoV-2 vaccination strategies include 1) long-lived plasma 
cells with the ability to resolve the primary infection by secreting nAb 
and to inhibit reinfection by inducing serological memory, and 2) 
memory B cells with the capability of responding to reinfection by 
producing new high-affinity plasma cells. Recent studies have shown 
that CD38hi CD27hi antibody-secreting cells (induced plasma cells) and 
RBD-specific CD19+ IgG+ memory cells appear between the second to 
fourth weeks after symptom onset in the peripheral blood of severe and 
recently recovered cases of COVID-19 [125,140]. Antiviral mAbs can be 
effective against the fusion, entry, and replication of the coronavirus. In 
independent efforts, RBD-specific memory B cells were separated from 
recently recovered patients and cloned in heavy and light variable re-
gions of Ab genes for the production of recombinant mAbs. Accord-
ingly, 31B5, 32D4, P2C-2F6, and P2C-1F11 clones derived from 
COVID-19 patients produced human anti-RBD mAbs with high 

neutralizing potential that can inhibit ACE2-RBD binding [140,152]. 
The S309 clone derived from SARS-CoV-1 infected patients, however, 
secreted human anti-RBD mAbs with poor neutralizing potential and 
without ACE2-RBD binding ability [116]. In addition, R325, R302, 
R007, and 47D11 clones, all specific for S1-SARS-CoV-1 or 
MERS-CoV-1, produce recombinant anti-S1 mAbs that have neutral-
izing potential without ACE2-RBD binding ability [153]. CR3022 is also 
a human monoclonal IgG1 antibody produced against SARS-CoV-1 RBD 
which neither neutralizes the virus nor inhibits ACE2-RBD binding 
[154]. Also, VIR-7831, REGN-COV2, LY-COV555/ LY-COV016, JS-016, 
STI-1499, and AZD7442 are other mAbs that are in different phases of 
clinical trials to be evaluated for safety and efficacy in COVID-19 pa-
tients (NCT04545060, NCT04425629, NCT04427501, NCT04441918, 
NCT04454398, and NCT04507256, respectively). 

Other treatments based on mAbs include the use of ACE2-Fc and 
RBD-Fc fusions, resulting from the binding of the ACE2 or RBD extra-
cellular domain and the Fc portion of the antibodies. These fusion pro-
teins neutralize both SARS-CoV-1 and SARS-CoV-2 in laboratory 
conditions [155]. In addition, a single-chain variable fragment (scFv) 
against SARS-CoV-2 (also known as n3130) has been demonstrated to 
neutralize SARS-CoV-2 without inhibiting ACE2/RBD [156]. 

Notably, the association of higher titers of anti-SARS-CoV-2 anti-
bodies with more severe clinical cases suggests that a strong humoral 
response alone is not sufficient to prevent severe disease [138]. It is 
likely that high antibody titers promote virus entry via ADE, activate 
macrophages and the complement system, which can amplify sys-
temic inflammatory responses. This is especially possible when 
non-neutralizing virus-specific IgGs are produced against virus [157]. 
Of note, ADE has not yet been detected in COVID-19, and no evidence 
exists that SARS-CoV-2-specific antibodies play a role in the immu-
nopathology of COVID-19 [158]. However, this is a possibility that 
should be considered in designing therapeutic strategies. 

3. Challenges 

There is a bulk of potential immune biomarkers that are related 
with COVID-19 complications in the late phase or cases with severe-to- 
critical symptoms. However, they cannot necessarily be used as 
prognostic biomarkers for COVID-19 complications in the early phase 
or in cases with asymptomatic-to-mild symptoms. Hence, universal 
profiling of asymptomatic-to-mild cases as well as longitudinal studies 

Fig. 2. Kinetics of SARS-CoV-2-specific N/S-IgM/IgG antibodies and viral RNA in patients with severe COVID-19 (dashed line) versus non-severe COVID-19 
(solid line). SARS-CoV-2-specific N/S-IgM/IgG Abs are detectable between first and second weeks post-symptom onset in sera and inversely correlate with viral RNA 
titers. All antibodies are produced earlier and in higher levels in severe patients than in non-severe patients except S-IgG Ab which is delayed. 
N, nucleocapsid; S, spike-protein. 
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are needed to identify the useful immune biomarkers for early iden-
tification of COVID-19 complications. Viral replication and its anti-
gens are among the major factors that can affect hyper-inflammation, 
tolerance, and consequently, complications and mortality in COVID- 
19 patients. As a result, accurate prediction, monitoring, and treat-
ments for COVID-19 complications cannot be made without methods 
to evaluate cellular or tissue viral replication rate or original infective 
dose estimation. In addition, other factors that can affect associations 
between immune biomarkers and disease complications are con-
founding variables including gender, age, and comorbidities that 
should be taken into account. Differences in sampling time during the 
course of the disease may add to the ambiguity of the results, which 
should be considered in the interpretation and comparison of different 
studies. 

4. Concluding remarks and recommendations 

In summary, COVID-19 is a polyphasic inflammatory disease in 
which cytokine storm and inflammatory cells play a critical role. One 
can coclude that the timing of cytokines production as well as their ki-
netics and relative concentrations are major determinants of the 
outcome of inflammation. To this end, in the early phase of COVID-19 
the early rise in inflammatory mediators followed by their decline as a 
result of anti-inflammatory responses may correlate with milder disease, 
however, if the rise in inflammtory cytokines delayed (weak response) 
or is not followed by anti-inflammatory response (too much inflamma-
tion) the disease worsens by tissue damage caused by the recruitment of 
white blood cells. The coordinated action of cytokines and chemokines 
in inflammatory sites, orchestrates recruitment and differentiation of 
immune cells. The recruited monocytes and neutrophils have an in-
flammatory phenotype which is further intensified by the inflammatory 
milieu in the lung. In the late phase of COVID-19, the continous stim-
ulation of the immune cells (supposedly by viral antigens or cytokines), 
exhaustion of lymphocytes and leukocytes, and skewed T cell (Th2) and 
NK cell (NK2) response result in uncontrolled and uncoordinated tissue 
fibrosis and organ dysfunction. 

Current data suggests that in both early and late phases of COVID-19 
disease, increased levels of ACE2, Ang II, MUC-1 and MUC-5A/C, SP-D, 
IL-6, TNF-α, IL-1β, CRP, SAA, Ferritin, PCT, ESR, D-dimer, PT, PTT, C3a 
and C5a are associated with poor prognosis. However, elevated serum 
IFN-I, Ang 1− 7, and Ang 1− 9 levels in early phase are indicators of good 
prognosis and elevated IFN-I in late phase is a measure of poor prognosis 
of the disease. Regarding cellular biomarkers, increase in the NLR and 
PLR as well as leukocytosis, lymphopenia, eosinopenia, monocytopenia, 
basophilopenia, and thrombocytopenia are measures of poor prognosis 
in both early and late disease. To add another layer of complexity, the 
subsets of lymphocytes show differential increase or decrease in each 
phase. Accordingly, the decrease in Th1, CTL, Treg, and NK1 subsets and 
the increase in CCR4+ CCR6+ Th17 cells in early phase correlate with 
poor prognosis, while in the late phase Th2, Tregs, and NK2 increase 
with severity of the disease. 

Consequently, in the very early stages of SARS-CoV-2 infection, 
administration of IFN-I, srhACE2/ACEI/ARBs, JAK inhibitors, BTK in-
hibitors, S1PR1 agonists, respiratory SP-D, CP, IVIg, and mAbs may be of 
importance as candidates of immunotherapy. In late COVID-19, 
administration of IFN-I antagonists, IFN-I receptor blockers, and rIL-7 
as well as CYNK-101 and allogeneic viral-specific T cells, needs to be 
further evaluated for the efficacy and safety. 
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Université de Montréal, Montreal, Canada for her Sabbatical 
where she conducted In-depth research on the effect of escape 
mutations within the HIV CD8+ epitopes on the function and 
phenotype of the CD8+ T cells during viremia. On her return in 
2009, she established a laboratory dedicated to deciphering the 
role of viral and bacterial specific memory T cells in Athero-
sclerosis and heart diseases. Her group in the Department of 
Immunology of Shiraz University of Medical Sciences has 
published more than 20 papers on this topic in the past 5 years. 
Dr. Doroudchi is currently the Head of Immunology Depart-
ment and the Director of Memory T cell laboratory in the 
School of Medicine.  

Najmeh Rokhtabnak completed her B.Sc. in microbiology at 
the Islamic Azad University of Jahrom in 2010 and obtained 
her M.Sc. in microbiology at the Shahid Bahonar University of 
Kerman in 2014.  

Hossein Abdolrahimzadehfard obtained his M.D. degree at 
Shiraz University of Medical Science in 2006. He completed his 
post-graduate degree in general surgery at Kashan University 
of Medical Science in 2014 and obtained his fellowship in 
trauma and acute care surgery at Shiraz University of Medical 
Science in 2016. He joined the Department of surgery of Shiraz 
University of Medical Science as an Assistant Professor in 2016. 
His main research fields are management of immune responses 
in severe trauma, and the role of herbal drugs in nosocomial 
infections.  

Amir Roudgari obtained his M.D. at the Shiraz University of 
Medical Science in 1995. He completed his postgraduate de-
gree in M.P.H. at the University of Shahid Beheshti Medical 
Science in 2005 and also Infectious Disease at the University of 
Shahid Beheshti Medical Science in 2007. At present, he works 
as an infectious diseases specialist in Shiraz University of 
Medical Science.  

H. Fouladseresht et al.                                                                                                                                                                                                                         

https://doi.org/10.12688/wellcomeopenres.15927.1
https://doi.org/10.1080/22221751.2020.1762515
https://doi.org/10.1080/22221751.2020.1762515
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1136/bmj.m1256
https://doi.org/10.1016/j.ijantimicag.2020.105955
https://doi.org/10.1016/j.ijantimicag.2020.105955
https://doi.org/10.1073/pnas.2004168117
https://doi.org/10.1073/pnas.2004168117
https://doi.org/10.1111/j.1365-2249.2005.02834.x
https://doi.org/10.1111/j.1365-2249.2005.02834.x
https://www.clinexprheumatol.org/article.asp?a=15528
https://www.clinexprheumatol.org/article.asp?a=15528
https://doi.org/10.1093/ofid/ofaa102
https://clinicaltrials.gov/ct2/results?cond=COVID-19%26term=IVIG%26cntry=%26state=%26city=%26dist=
https://clinicaltrials.gov/ct2/results?cond=COVID-19%26term=IVIG%26cntry=%26state=%26city=%26dist=
https://doi.org/10.1038/s41422-020-0305-x
https://doi.org/10.1038/s41422-020-0305-x
https://doi.org/10.1038/s41423-020-0426-7
https://doi.org/10.1101/2020.02.16.951723
https://doi.org/10.1080/22221751.2020.1729069
https://doi.org/10.1080/22221751.2020.1729069
https://doi.org/10.1101/2020.04.10.032342
https://doi.org/10.1016/j.chom.2020.04.023
https://doi.org/10.1111/imr.12367
https://doi.org/10.2139/ssrn.3575134


Cytokine and Growth Factor Reviews 58 (2021) 32–48

48

Golnar Sabetian obtained her M.D. degree at Shiraz Univer-
sity of Medical Sciences in 1990. Her Anesthesialogy and 
Critical Care Board certification was in 2001. She completed 
Critical Care fellowship at Shahid Beheshti University of 
Medical Sciences in 2008. At present her position is Associate 
Professor in Anesthesialogy and Critical Care at Shiraz Uni-
versity of Medical Sciences, head of Trauma Intensive Care. She 
works in Trauma Research Center and her main research fields 
are: Critical Care, Trauma, Infection, Neuro Critical Care.  

Shahram Paydar obtained his M.D. degree at Shiraz Univer-
sity of Medical Science in 2000. He completed his post- 
graduate degree in general surgery at Shiraz University of 
Medical Science in 2007 and obtained his fellowship in trauma 
and surgery at Shiraz University of Medical Science in 2011. He 
is an Associate Professor of surgery at Shiraz University of 
Medical Science. Dr. Paydar is currently the founder and vice- 
chancellor for research of Trauma Research Center in Shiraz 
University of Medical Sciences in Shiraz, Iran. His research 
interest is focused on Shock, Trauma Coagulopathy, Medical 
Education and Endocrine Surgery. 

H. Fouladseresht et al.                                                                                                                                                                                                                         


