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Phase Matching Quantum Key 
Distribution based on Single-
Photon Entanglement
Wei Li1,2,3, Le Wang1,2 & Shengmei Zhao1,2*

Two time-reversal quantum key distribution (QKD) schemes are the quantum entanglement based 
device-independent (DI)-QKD and measurement-device-independent (MDI)-QKD. The recently 
proposed twin field (TF)-QKD, also known as phase-matching (PM)-QKD, has improved the key rate 
bound from O(η) to O η( ) with η the channel transmittance. In fact, TF-QKD is a kind of MDI-QKD but 
based on single-photon detection. In this paper, we propose a different PM-QKD based on single-
photon entanglement, referred to as single-photon entanglement-based phase-matching (SEPM)-QKD, 
which can be viewed as a time-reversed version of the TF-QKD. Detection loopholes of the standard Bell 
test, which often occur in DI-QKD over long transmission distances, are not present in this protocol 
because the measurement settings and key information are the same quantity which is encoded in the 
local weak coherent state. We give a security proof of SEPM-QKD and demonstrate in theory that it is 
secure against all collective attacks and beam-splitting attacks. The simulation results show that the 
key rate enjoys a bound of O η( ) with respect to the transmittance. SEPM-QKD not only helps us 
understand TF-QKD more deeply, but also hints at a feasible approach to eliminate detection loopholes 
in DI-QKD for long-distance communications.

Quantum key distribution (QKD), a secure communication method to enabling a secret random number string 
to be shared by two well-separated parties, says Alice and Bob, has been proven to be robust against channel 
attacks and against the power of quantum computation1,2. The random number string, known only to Alice and 
Bob, can be used to encrypt messages transmitted between them. In theoretical research, the work has focused 
on the security of QKD taking into consideration the imperfections of actual devices3–7. In practical applications, 
research on the extractable key rate has been categorized as focusing on improving the key rate, such as decoy 
state protocols8–12, asymmetric coding13,14, higher dimensional systems15–20, and parameter optimization21–24, or 
focusing on improving the key transmission distance13,25,26.

In addition to the recent satellite QKD scheme27, the current mainstream QKD is based on photon transmis-
sion over optical fiber. For a given QKD scheme, the factors that determine the key rate and transmission distance 
are the error rate and the transmittance η. In the initial stage of QKD research, a single-photon was used as the 
carrier of quantum information and secret key rate was bounded to ηO( )28,29, which is equal to the maximum 
probability of successful detection of a single-photon state. The measurement-device-independent (MDI)-QKD 
proposed latter is based on the correlation measurement of a two-photon state and closed all detection loop-
holes25,30. Regardless of the technical challenges of practical experiments, the transmission distance of MDI-QKD 
almost doubled compared with BB84. However, the transmittance for a single-photon in MDI-QKD is 
unchanged, and so the key rate is still bounded by ηO( ).

In Lucamarini et al. (2018) the twin-field (TF)-QKD31, also known as phase-matching (PM)-QKD by Ma et 
al.32, was proposed to improve the key rate and was shown to beat the PLOB bound29. TF-QKD and PM-QKD are 
essentially identical, the former reflects what states are used to carry the keys, and the latter reflects how the keys 
are generated. After that, some variants of TF-QKD have been proposed, such as the sending or not sending pro-
tocol by Wang et al.33,34 and removing of phase randomization and postselection in the coding mode by cui et al.35. 
TF-QKD is a single-photon version of MDI-QKD36,37, in which a single count is used to extract the quantum key. 
In TF-QKD, the information carrier is no longer a single photon but a weak coherent field or wave state with 
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definite phase and amplitude37. Independent coherent states with locked global phase can interfere with each 
other, so they can be used in phase matching to extract keys. A weak coherent state can be approximated as a 
coherent superposition of a vacuum state and a single photon state. The detection probability has a η  depend-
ence on the channel transmittance, which leads to a bound for key rate of ηO( ). Because η is a quantity less than 
1, this protocol further enhances the transmission distance of rate keys in optical fibers.

Indeed, MDI-QKD itself may be regarded as a time-reversed version of an entanglement-based 
device-independent (DI)-QKD38,39, and therefore conclude that TF-QKD is a time-reversed version of the 
single-photon entanglement-based DI-QKD. Over 30 years ago, scientists proposed and experimentally verified 
the existence of single-photon entanglement and confirmed the Bell inequalities for quantum correlations in 
different forms40–45. Subsequently, single-photon-entanglement-based DI-QKD was proposed in which the key 
is extracted according to whether Alice or Bob has detected that photon46. However, this work did not attract 
much attention, let alone the relationship between this protocol and TF-QKD. In our previous work47, we pro-
posed confirming Bell inequalities for single-photon entanglement from joint measurements in wave space-the 
conjugate space of the photon number space. As a new carrier of quantum information, the wave state has similar 
properties to the weak coherent state; both can be viewed as a coherent superposition of a vacuum state and a 
single-photon state. In this paper, we propose single-photon entanglement-based phase-matching (SEPM)-QKD, 
which is actually a TF-QKD with quantum entanglement. In this protocol, single-photon entanglement pro-
vides the quantum link in the communications between Alice and Bob, who choose the two groups of phases to 
encode the key. Monitoring Eve’s eavesdropping is performed by detecting violations of Bell inequality. Security 
proofing against collective attacks and beam-splitting attacks is thereby established. We also compare the key rate 
of SEPM-QKD with the wave-state-based QKD, as for TF(PM)-QKD and single-photon-based QKD, like the 
BB84- and MDI-QKD protocols.

Theory of Single Photon Entanglement
The physical basis of SEPM-QKD is the detection of single-photon entanglement in wave space, (Fig. 1). When a 
third-party Charlie directs a single-photon state onto an optical beam splitter, the photon states at the two output 
ports may be regarded as an entangled state of a vacuum state 0  and a single-photon state 1  in the two path 
modes40

Ψ = +θe2
2

[ 1 0 0 1 ], (1)A B
i

A B A B,

where θei  is the accumulated phase difference between the two arms. Because the production of a single-photon 
from a single-photon source is probabilistic, a heralded single-photon source can be used to increase the propor-
tion of effective counting. Equation (1) is a representation of single-photon entanglement in photon-number 
space. Based on the wave-particle duality in quantum mechanics, it is convenient to call the conjugate space of 
this photon number space the wave space. Applying a two-dimensional Fourier transformation, we obtain 
single-photon entanglement in the conjugate space

α α θ α π α θ πΨ = − − + − +θ α−e2
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Figure 1.  Schematic diagram of SEPM-QKD. An untrusted third party, Charlie, generates single-photon 
entanglement, by injecting a photon from a heralded single-photon source into a beam splitter. Alice and Bob 
generate a local weak coherent (WC) state γ φ π+( )ei ka b a b( ) ( )  with φ ∈ − π π π{ }, 0, ,a b( ) 4 4 2

 and ∈k {0, 1}a b( )  to test 

the quantum nonlocal correlation in wave space and generate the final key. φa b( ) is a random phase used to 
construct Bell inequality and is also used for phase matching measurement. Random bit ka b( ) can be regarded as 
the measurement setup for homodyne detection of wave-state.
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where states with a subscript w denote wave states, α and α θ−  each with a value ranging from 0 to 2π denotes 
the phase characterizing Alice’s and Bob’s wave state. The pair of orthogonal bases states in wave space are

α

α π

= +

+ = − .

α

α

e

e

2
2
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2
2
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It is these states that are used to distribute the quantum correlation between Alice and Bob.
Next, we analyze single-photon entanglement in wave space. Here we refer to the photon states α w, α π+ w 

as the Z basis if α = 0, and α w, α π+ w as the Y  basis if α = π
2

; then the states 0  and 1  belong to the X basis. 
We can see that the entanglement between Alice and Bob in the wave space is entirely determined by the value of 
phase θ. Because the value of α is any real number, then, if we set the value of θ to zero, the initial single-photon 
entangled state is the Bell state Φ−

A B w, , which is rotationally symmetric in the ZY  plane. It should be noted that θ 
can also be set to other values, but the way they generate keys will change accordingly.

In our previous work, we demonstrated that a wave state could be measured through interference with a ref-
erence weak coherent state47, as shown in the measurement device at the sites of Alice and Bob. Assuming that the 
weak coherent states selected by Alice and Bob are γ αei  and γ βei  where γ is a small amplitude far less than 1, the 
weak coherent state has the approximate form

γ γ γ≈ + +α αe e O0 1 ( ) other , (4)i i

where α and β are the phase values of the wave states of Alice and Bob, the state other  with an infinitesimal 
amplitude is a coherent combination of Fock states whose photon number is greater than or equal to 2. Taking 
into account the transmittance of a single photon η in the optical channel, the dependence of the measurement 
results on measurement settings α and β reads

γ η α β γ
= + − − ++( )p A B,

4
[1 ( 1) cos( )]

4
, (5)i j

i j
2 4

where i, ∈j {1, 2} are the ordinal numbers the single-photon detectors of Alice and Bob. The first term represents 
the wave-like correlation between Alice and Bob, while the second term represents the particle-like correlation 
between them47. If the intensity of the weak coherent field γ2 is far less than the transmittance η, then the second 
term on the right-hand side of Eq. (4) may be omitted. Now the time reversal relationship between SEPM-QKD 
and TF-QKD can be clearly revealed in the wave-state representation. In TF-QKD, Alice and Bob send 
wave-states, i.e. weak coherent states, to the third party Charlie for Bell state measurements31,37. While in 
SEPM-QKD, Charlie sends the wave-entangled states to Alice and Bob to construct non-localized quantum cor-
relations. In time order, the quantum state transmission and measurement of the two protocols are completely 
opposite. The key generation in both protocols comes from the wave-state correlation between Alice and Bob. 
According to the above analysis, the single-photon entanglement-based PM-QKD protocol is described as 
follows.

SEPM-QKD Protocol
State preparation.  A single-photon state from a third untrusted party Charlie is sent to a 50:50 optical beam 
splitter to produce a single-photon entangled state close to the maximum entanglement. Next, he sends the pho-
ton states to Alice and Bob through two identical fibers with the same transmittance η. Because of channel noise 
and Eve’s possible attack, the photon states reaching the terminals of Alice and Bob are not restricted to ideal 
single-photon entanglement.

Selection of measurement settings.  With different phase-locking methods48,49, the lase source of Alice 
and Bob are perfectly locked to achieve athe same global phase. Alice generates a random bit string ka in which 
each bit takes value ∈k {0, 1}a  and a random phase φ ∈ − π π π{ }, 0, ,a 4 4 2

 corresponding to the measurements 
σ σ−( )/ 2Z Y , σZ, σ σ+( )/ 2Z Y , σY  and then prepares the corresponding weak coherent state γ φ π+( )ei ka a . 

Simultaneously, Bob generates a weak coherent state γ φ π+( )ei kb b  in which ∈k {0, 1}b  and φ ∈ − π π π{ }, 0, ,b 4 4 2
. 

Alice and Bob interfere their weak coherent states with the single-photon state distributed by Charlie to measure 
the wave states and the interference results are recorded as the joint counting of the single-photon detectors on 
both sides.

Announcement.  When all measurements are completed, Alice and Bob announce their detection results, 
i.e., the ordinal numbers of the fired single-photon detectors, and the phase values φa and φb.

Sifting.  A successful detection event is defined as having only one detector response on both sides at a given 
time. After they have announced the phases φa and φb, the secret key is extracted when φ φ=a b. If the sum of the 
ordinal number +i j is an even number, Alice and Bob keep their raw key; if +i j is an odd number, then Bob 
flips his key.
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Parameter estimation.  With a single-photon entanglement distribution, a bit-flipping error on the X basis 
can never happen, otherwise photon number conservation is violated. In addition to entanglement degradation 
caused by channel transmission loss, information loss is mainly caused by phase noise, i.e., bit flipping on Z and 
Y bases. During the measurement, the selection of the Z and Y bases is equivalent, so the bit error rates on the two 
bases, eZ and eY , are equal. Alice and Bob agree on a random bit string with half the length of the sifted key to be 
check-bit to measure the bit error rate e. Next, they use part of the remaining data in which φ φ− = π

a b 4
 to 

construct the Bell function S on the ZY  plane to estimate the maximal information that may have leaked to Eve.

Figure 2.  Simulation of SEPM-QKD under intensities of local coherent light. The key rate decreases with 
increasing attenuation of the coherent light intensity whereas the transmission distance increases as the 
attenuation increases. When the average photon-number of the coherent state is far less than 1, the key rate 
is approximately proportional to the square of the amplitude of the coherent state according to Eq. 14. For 
coherent states with high intensity, the proportion of the particle-like correlation between Alice and Bob will 
also increase (Eq. 5). This will increase the bit error rate of the final key, so the transmission distance will be 
reduced. In addition, there are two more key rate curves, orange and purple dotted lines, which correspond to 
the fitting results without considering beam-splitting (BS) attacks. It can be found that the BS attack will have an 
important effect on the key rate at long transmission distance.

Figure 3.  Key rate comparison between different QKD protocols. The simulation results of the other QKD are 
taken from refs31,32. Compared with single-photon based BB84- and MDI-QKD schemes which obey the PLOB 
bound by Pirandola et al. (PLOB bound)29, SEPM-QKD has the same η  dependence on transmission distance 
as PM-QKD and TF-QKD which obey the single-repeater bound59. In BB84- and MDI-QKD protocols, the 
carrier of information is a single-photon, and the detection probability is proportional to the transmission 
coefficient η, so the key rate has a η on the transmission distance. While for PM- and SEPM-QKD protocols, the 
carrier of information is a wave-photon, and the detection probability is proportional to the square root of the 
transmission coefficient η , so the key rate has a η  on the transmission distance. In the simulation of SEPM-
QKD, the amplitude of coherent state is γ = .0 001. Its average intensity is several orders of magnitude lower 
than that in other QKD protocols and BS attack is also considered in SEPM-QKD, which results in the key rate 
of SEPM-QKD being much lower than that of other QKD protocols.
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Key distillation.  In the post-processing, Alice and Bob perform error corrections in accordance with the bit 
error rate e and privacy amplification according to the Bell function S to generate the final secret key.

Security of SEPM-QKD
In SEPM-QKD, the key is distributed through a non-localized single-photon entangled state. Alice and Bob 
measure entangled states jointly. When entangled states are eigenstates of joint measurement operators, their 
measurements are perfectly correlated. They can extract keys based on joint measurement results or measurement 
settings. Eve’s attack can be monitored based on violations of Bell’s inequality. At first glance, this protocol belongs 
to DI-QKD. Although conventional DI-QKD is secured in theory, it is nevertheless difficult to distribute keys 
over long distances due to detection loopholes.

Here, we point out that the detection loophole in the standard Bell experiment will not be a factor affecting 
the key security of the protocol. Previously, it was found that the security of QKD can be related to entanglement 
purification3,4. The amount of security information that can be extracted between Alice and Bob is determined 
by the amount of purifiable entanglement. In DI-QKD, we certify that the bound of the accessible private key is 
determined by how much entanglement we can distill from the imperfect entangled state50–52.

In a standard Bell experiment, to give a rigorous proof of quantum delocalization, all loopholes in the exper-
iment need to be closed, including the efficiency of the detector and transmission loss53. For the DI-QKD proto-
col, we just need to accept quantum delocalization as rigorous and correct. After solving this issue, DI-QKD is 
equivalent to the BB84 protocol. In this protocol, we only focus on the data that can be measured successfully. In a 
conventional Bell experiment with polarization entanglement, the measurement in the Z– and X– bases needs the 
switching of the angle of the polarizers, which must be perfectly correlated with the secret key. This may leave Eve 
a chance to fabricate the measurement settings if she takes full control of the measurement setup. In the following, 
we need to establish whether in such an event Eve could fabricate a fake result of the Bell’s inequality test given the 
limited information publicly announced by Alice and Bob.

In SEPM-QKD, Alice and Bob encode the key information in the phases of the weak coherent states. The 
encoding is equivalent to the measurement settings, and no switch of the measurement basis is needed. If this 
initial key information had been leaked to Eve, all QKD protocols would fail. From Eq. (5), the quantum meas-
urement of the protocol may be considered to consist of three systems: the single-photon entangled state Φ−

A B, , 
the joint states of the single-photon detector D, and the corresponding joint key states K. The initial state of the 
total system is written

ρ ρ κ κ= N N , (6)A B DK A B in in in in( , ) ,

which is a tensor product of the three subsystems, with ρA B,  the single-photon entangled state sent by Charlie, and 
Nin  and κin  the initial joint states of the two-sided single-photon detectors and the key state with = +N i j and 
κ = −k ka b . Measurement is in general regarded as a unitary operation of the system; the joint measurement 
performed by Alice and Bob with two POVM elements κE{ } may be written as

Figure 4.  Schematic diagram of BS attack. Suppose that the transmission loss of a single-photon state is 
captured and stored by Eve in BS attack scheme. In this attack scheme, Eve synchronizes his light source with 
Alice and Bob’s. After Alice and Bob publicly announce random phase values, selection of measurement bases 
and response results of detectors, Eve uses the same measurement method to measure the stored photon states. 
Eve finally infers Alice and Bob’s keys based on his measurement result EA B, .
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ε ρ ρ ρ= + .+ +E E even even E E odd odd( ) 0 0 1 1 (7)A B DK A B A B( , ) 0 , 0 1 , 1

Once the QKD-protocol is determined, after the announcement of N publicly, the information of κ may be 
revealed by Eve. However, she still does not know the exact value of ka and kb. At this stage, we find SEPM-QKD 
is equivalent to MDI-QKD. Eve barely gets any information about the measurement settings of Alice and Bob, so 
it is almost impossible for her to successfully fabricate the measurement results to cheat Alice and Bob.

With the presence of channel transmission losses and the imperfections in detection, Eve has the opportunity 
to implement various attack schemes. Even though a purification scheme for single-photon entanglement regard-
ing phase noise have been provided54,55, the reality is more complicated. Alice and Bob’s extractable fully secure 
key rate has a lower bound given by24,50,56

χ≥ −r I A B AB E( : ) ( : ), (8)

where = − |I A B H A H A B( : ) ( ) ( ) is the mutual information between Alice and Bob, which is equal to − H e1 ( ), 
and χ ρ ρ= − ∑| |( ) ( )AB E S p c S( : ) ( )AB i j c AB i j

c
, ,

 the Holevo quantity between Eve and Alice and Bob after the ordi-
nal numbers i j,  have been announced publicly, here, the quantity H e( ) is the amount of information loss due to 
bit flipping errors, and χ AB E( : ) is the maximum amount of information Eve obtains from ρAB at a given error rate 
e, and for values of i j,  and φ φ,a b.

There are two kinds of attack schemes on Alice and Bob that Eve could implement; they correspond to the two 
Holevo quantities χ AB E( : ). One is a collective attack in which Eve correlates her system with the joint system of 
Alice and Bob and produces a total quantum state ρABE. In this protocol, Eve can not get any information about 
the measurement settings, so she can’t control the measurement process effectively. Her only freedom is to gener-
ate the joint quantum state, in which the results of Alice and Bob’s reduced states are consistent with predictions 
from theory, taking into account the imperfections in the equipment.

Under the idea of coherent attack, Eve uses weak measurements to obtain information of quantum states. The 
limitation of the attack is that the delocalized quantum correlation between Alice and Bob is within the acceptable 
range of them. For uniformly random marginals in the ZY  plane, Eve’s maximal collective attack will be saturated 
by sending the entangled single-photon state of which he holds a purification50

Ψ = + 
 − Φ + Φ 


− +I H H e E e E1

2
( ) 1 2 2 , (9)ABE A B AB z AB z0 1

where I is the identity density operator, HA and HB are Hadamard matrices operated on Alice’s and Bob’s wave 
states in ZY  plane, which transform Z basis to Y  basis, E0  and E1  are the two orthogonal states hold by Eve, 
Φ±

AB z
 are the Bell states under the representation of Z basis. A simple derivation of Eve’s maximum collective 

attack is given in the method section. We find that the maximum violation of the CHSH-Bell inequality is 
= −S e2 2 (1 2 ).

We readily find that χ ≤AB E e( : ) 21 , which means that whenever Alice and Bob negotiate one bit of informa-
tion, Eve can successfully steal 2e bit of information. Next, we examine the scope of the Bell-inequality verifica-
tion. Assume that Eve intercepts the single-photon entangled state and induce a certain amount of error rate. The 
maximum error rate that Bell inequality tolerates is 14.6%, which is larger than 11%4, the maximum error rate 
that Alice and Bob can tolerate in extracting finite information against Eve’s collective attacks. Therefore, violation 
tests of Bell’s inequality violation are a feasible scheme for monitoring Eve’s collective attack.

The other possible attack scenario for Eve is the beam-splitting (BS) attack, in which the loss of a single-photon 
entangled state in optical channels can be considered to be stored by Eve and measured after Alice and Bo have 
announced publicly their measurement basis and random phase, as shown in Fig. 4. Thus, the BS attack is an 
individual attack that is independent of a collective attack and can not be found with Bell’s inequality tests. 
Considering channel loss, the single-photon state between Alice, Bob, and Eve is written

η

η

Ψ = 


+

+ − + 
( )

2
2

( 1 0 0 1 ) 0 0

1 0 0 1 0 0 1 , (10)

ABE A B A B E E

A B E E E E

A B

A B A B

which is a single-photon multi-mode asymmetric W-state57,58, where +( )1 0 0 1E E E E
2

2 A B A B
 is the state 

responsible for channel loss, which is assumed to be stored by Eve, whose system is entangled with the systems of 
Alice and Bob. Suppose Eve uses weak coherent light of the same intensity as Alice and Bob to measure the wave 
state. After Alice and Bob announce their random phases φa, φb as well as the ordinal numbers i j,  of the 
single-photon detectors, for a given channel transmittance η and local coherent field amplitude γ, the maximum 
information that Eve can gain from Alice and Bob is

χ γ η γ η γ=
+ +

−AB E H p( : ) (1 3 2 )
4

[1 ( ( , ))], (11)2

4 2

where the quantity η γp( , ) is the normalized probability that Eve uses to guess the key of Alice and Bob; its 
expression is

https://doi.org/10.1038/s41598-019-51848-9
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η
η η η γ

η γ
=

+ − − +

+ +
.p( )

1 3 4 (1 ) 2
2 6 4 (12)

2

2

See the derivation in the method section. Now, if the BS attack is not considered, the key rate in Eq. (8) is 
found to be equal to the amount of entanglement that can be distilled between Alice and Bob. This security proof 
is equivalent to the security proof of BB84 QKD based on entanglement purification3,4. The loss of these two parts 
of the information corresponds to an error correction and private amplification in post-processing. After consid-
ering Eve’s two attack schemes, the lost information for private amplification should be recalibrated.

Simulation and Discussion
Next, we simulate the distance-dependent key rate in a practical situation. Among all the successful detection 
events, there are three kinds of false detection events, which constitute the detection error rate e. These events 
come from dark counting of detectors, phase insensitive interference, and phase misalignment. For all 
single-photon detectors with the same dark count rate pdark, the rate of successful detection events pr dark,  and false 
detection events pe dark,  caused by dark counting are both equal to p2 dark

2 . For the joint measurement of wave states, 
there is a small portion of detection events stemming from phase-insensitive interference, a HOM-type of inter-
ference. The rate for joint HOM interference is γ η=p /4HOM d

4 2  with ηd the detection efficiency of the 
single-photon detectors, and gives rise to a correct detection rate γ η=p /8r HOM d,

4 2  and a false detection rate 
γ η=p /8e HOM d,

4 2 . In the last false detection event, the misalignment error rate is ed, the contribution to the total 
error rate being p ed d, where γ η η=p /2d d

2 2  is the probability of a joint measurement of wave states in ideal 
single-photon entanglement. Then the error rate e in terms of these parameters is expressed as

≈
+ +

+ +
.e

p p p e

p p p (13)
e dark e HOM d d

dark HOM d

, ,

After taking into account all practical factors, such as error correction and privacy amplification, we obtain a 
final lower bound of the key rate of

γ η γ
η

η γ≥




 − − −

+ +
−





r Q fH e e H p1 ( ) 2 (1 3 2 ) [1 ( ( , ))] ,

(14)

2 2

where = + +Q p p pdark HOM d is the rate of the joint measurement of the wave states, η α= − xexp( )f  the channel 
transmittance with αf the coefficient of absorption and x the transmission distance, and f  the inefficiency of error 
correction, which always takes the value between 1.2 and 2 in accordance with the error correction protocol25. In 
this formula, we have assumed the transmittance of the optical fibers, the amplitude of the local oscillator fields, 
and the detector efficiency are the same for Alice and Bob.

The simulation results of our SEPM-QKD under different intensities of local coherent fields is shown in Fig. 2. 
The coefficient of transmission loss for the optical fiber at 1550 nm is β = . dB km0 2 /l  and the coefficient of 
absorption is α β= ( ln10)/10f l . Also, the detection efficiency at this frequency ηd is 14.5% for a commercial 
single-photon detector, the dark count rate is = × −p 8 10dark

8 for all detectors, and the misalignment error ed is 
1.5%32, the value for the inefficiency of error correction is set at = .f 1 225. From this figure, the key rate is seen to 
that the key rate decrease as the intensity of the local coherent light field decreases; because the probability of 
successful joint detection events is lower as the amplitude γ decreases. However, the transmission distance shows 
an opposite trend in its dependence on intensity. The dependence of the transmission distance on the amplitude 
γ arises from the false detection of phase insensitive joint counts pHOM, which is proportional to the square of the 
light intensity, yielding γ4. For a specified QKD protocol, the transmission distance is a compromise between the 
signal rate and the error rate. As the amplitude γ decreases, the phase-insensitive joint count-induced error plays 
little role in the key distillation. Therefore, a longer transmission distance obtains. We also compare the perfor-
mance of SEPM-QKD for γ = .0 002 and γ = .0 001 with and without BS attacks. For short transmission distance, 
BS attack has negligible effect on the key rate, but for long transmission distance, the effect of BS attack should not 
be ignored.

Here, we make a clear comparison between different QKD protocols (Fig. 3), in which γ = .0 001 is chosen for 
the SEPM-QKD scheme. For traditional single-photon based BB84- and MDI-QKD schemes, their key rate obey 
the well-known linear bound by Pirandola et al. (PLOB bound)29. However, we see that, like PM-QKD and 
TF-QKD, SEPM-QKD displays a quadratic increase in the key rate with respect to the transmission distance 
which obey the single-repeater bound59. For short transmission distances, the key rate of SEPM-QKD is not only 
less than that of PM-QKD and TF-QKD, but also lower than particle-state based QKDs, like BB84- and 
MDI-QKD. There are two reasons for this result. The first reason is that the average intensity of the light source in 
SEPM-QKD is far lower than all other QKD protocols. The second reason is that BS attack is considered in 
SEPM-QKD, but not in other protocols.

It can clearly be seen that SEPM-QKD clarifies in principle the essential difference between TF-QKD and its 
variants which violate PLOB linear bound and BB84- and MDI-QKD proposed previously. In these QKD proto-
cols, due to the different properties of information carrier and the different quantum states for distributing quan-
tum keys, their implementation also has different technical challenges. In SEPM-QKD, a single-photon source is 
needed to generate wave-state entanglement. The single-photon produced in current experiments is probabilistic, 
which will reduce the quantum correlation between Alice and Bob. Under the current technical conditions, the 
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heralded single-photon source is an effective solution to this problem. In addition, we can see from Eq. (5) that 
the phase insensitive interference, i.e. particle space interference, exists in coincidence counting, which results 
in the inability to use strong light intensity in SEPM-QKD, and the key rate is much lower than other QKD pro-
tocols. In our future work, we will propose a de-localized detection scheme to the performance of SEPM-QKD.

Conclusion
We have reported a phase matching QKD based on single-photon entanglement. This SEPM-QKD is a 
time-reversed version of TF-QKD, in which the secret key is encoded in wave space characterized by the phase 
value. Measurement settings in SEPM-QKD, like quantum keys, are encoded in the phase of the locally coherent 
state, so the detection loophole is closed. This contrasts that for conventional DI-QKD. For a given light source 
intensity, just like TF-QKD, SEPM-QKD improves the bound of key rate from O(η) to O η( ). In the proof of 
security, we find that BS attacks will have a significant impact on the performance of the protocol for long-distance 
transmission. By comparison with single-photon QKD schemes, we found that in SEPM-QKD and TF-QKD the 
wave state can be used as a new information carrier that has different properties due to interference-induced 
detection enhancement, which allows photons to travel in fibers without obeying the PLOB bound. In the future, 
we wish to reduce the impact of the phase-insensitive coincidence counting rate on the key rate and to improve 
the key rate and transmission distance of SEPM-QKD.

Methods
We present the methods for deriving the key rate formula in the main text. These methods theoretically give the 
upper limit of key rate obtained by Eve under the eavesdropping scheme of collective attack and beam-splitting 
attack.

Collective attack.  Collective attack is considered to be the most powerful side-channel attack through using 
the imperfection of Alice and Bob’s experimental devices. Eve’s attack operation must obey the law of quantum 
mechanics, and the bit error rate between Alice and Bob caused by eavesdropping should be within the predeter-
mined range. Under the idea of collective attack, Eve obtains the quantum state information shared between Alice 
and Bob as much as possible through weak measurements. In BB84 protocol, collective attack can be described as 
Eve attaching his probe to each of the states sent by Alice to Bob, and performing unitary operation, so that his 
probe can be quantum correlated with the transmitted quantum states60,61. Suppose that the interaction occurs in 
a two-dimensional space formed by a pair of orthogonal states p  and q . Eve’s initial quantum state is E , the 
interaction is represented by unitary operator U,

α β= =U E p E U E q E, , (15)p p q q

where α and β are the rotation angles of the transmitted quantum states with respect to p  and q , respectively, 
Ep  and Eq  are the corresponding states owned by Eve. According to the unitarity of operator, we have the fol-
lowing equality

α β| | = = | | | | = | | .+E E p q p E U U E q E E0 (16)p q p q

For any quantum states Ep , Eq , we have α β| = 0p q . Therefore, the quantum states p  and q  are rotated at 
the same angle under weak measurements. Eve can reverse-rotate the transmitted quantum state after the unitary 
operation,

= = = = .T E p RU E p E p T E q RU E q E q, (17)p q

The relation between p , q  and the bases in Z space and X space can be written as

= +
= −

= + + + − −

= + − − − +

p a b
q b a

p a b a b

q a b a b

0 1 ,
0 1 ;
2

2
[( ) ( ) ],

2
2

[( ) ( ) ],
(18)

where coefficients a and b satisfy normalization conditions + =a b 12 2 . Then the weak measurements on these 
states can be described as









= + + −

= − + +

( ) ( )
( ) ( )

T E a E b E ab E ab E

T E ab E ab E b E a E

0 0 1 ,

1 0 1 ; (19)

p q p q

p q p q

2 2

2 2

and
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






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+ = 


+ + + − + − − − 


− = 


+ − − + − − + + 

.

( ) ( )
( ) ( )

T E a b E a b E a b E E

T E a b E E a b E a b E

1
2

( ) ( ) ( ) ,

1
2

( ) ( ) ( )
(20)

p q q p

q p p q

2 2 2 2

2 2 2 2

After all the unitary operations, Eve perform unambiguous discrimination measurements on his states Ep  
and Eq  to obtain the information between Alice and Bob. Alice and Bob’s pre-agreed system bit error rate is pe. A 
bit error occurs when Alice sends state 0  and Bob receives 1  or Alice sends state 1  and Bob receives 0 . The 
total bit error rate is bounded by

− | = .E E p1 4 (21)p q e

We will demonstrate in our forthcoming paper that Eve could obtain the largest information when he sets 

=a 0 and =b 1 or =a 1 and =b 0. Eve’s maximal information is bounded by =
− |

p2
E E

e

1

2
p q .

According to conclusion from BB84, Eve could also performs the same collective attack on entangled state. 
Suppose Alice and Bob share singlet state Φ−

AB. Eve’s collective attack on the entangled state can be formulated as

Φ = − .−T E E E E E E2
2

[ 0 0 1 1 ] (22)AB A B A B A B A B A B0 0 1 1

Here we may set the joint state E EA B0 0  to E Z0 , and the joint state E EA B1 1  to E Z1 . A pair of orthogonal 
bases can be constructed from these two states

=
+ |

+

=
− |

− .⊥

E
E E

E E

E
E E

E E

1
2(1 )

[ ],

1
2(1 )

[ ]
(23)

Z
Z Z

Z
Z Z

0 1
0 1

0 1
0 1

Thus, under collective attack, the joint quantum state between Eve and Alice and Bob is

Ψ = −

= + | Φ + − | Φ .− +

E E

E E E E

2
2

[ 0 0 1 1 ]

2
2

[ 1 1 ]
(24)

ABE A B A B

Z AB Z AB

0 1

0 1 0 1

From Eq. (23), we can find that Eve could steals − |E E1 Z0 1  information in Z space without causing any bit 
flipping error, while he steals nothing in X space bu causing a bit error rate of − |E E(1 )Z

1
2 0 1 . In order to balance 

the bit error rate of Z space and Y  space, Eve will rotate the transmitted entangled state, and get the result of Eq. 
(9) in the main text.

Beam-splitting attack.  In the beam separation attack, we assume that the transmission loss of a single 
photon is all intercepted and stored by Eve, and finally an asymmetric W-state between Eve and Alice and Bob 
is formed, as shown in Eq. (10). The details of BS attack is shown in Fig. 4. Compared with collective attack, 
beam-splitting attack can be regarded as a passive attack scheme. After Alice and Bob announce their bases pub-
licly, Eve conducts a homodyne on the stored quantum state by using the coherent state with the same intensity as 
Alice and Bob. The joint detection can be expressed as

γ γ

γ γ

η

η

Ψ = + +

× 
 + 



 + 



× 


+

+ − + 
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θ θ

θ θ

( )

e e

e e

[ 0 1 ][ 0 1 ]

0 1 0 1

2
2

( 1 0 0 1 ) 0 0

1 0 0 1 0 0 1 , (25)

ABE A
i

A B
i

B

E
i

E E
i

E

A B A B E E

A B E E E E

A B

A
EA

A B
EB

B

A B

A B A B

where 1EA
 and 1EB

 represent the photon states stored by Eve on Alice’s and Bob’s sides. The single-photon 
W-state then interferes with the coherent state on the beam splitter
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When Alice, Bob and Eve have coincidence counts, Eve has a certain probability of stealing Alice and Bob’s key 
information. Without losing generality, we assume that Alice and Bob’s measurement bases are in Z space at one 
moment, and their fired detectors are A1 and B1, which means θ θ θ π= = ∈ {0, }A B . By expanding Eq. (25), the 
terms satisfying the above conditions are

γ η η

γ η η

− − + +

− − + + .

θ θ θ θ θ

θ θ θ θ θ

+

+

e e e e

i e e e e
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[ 1 ( )] 1 1 1 ;

4
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A B EA A B
A

1 1 1

1 1 2

When Eve synchronizes the light source with Alice and Bob’s measurements, he randomly sets the value of θEA
 

to 0 or π, and infers the value of θ from the detection results. Here by setting θ = 0EA
, then we have the joint detec-

tion probabilities

θ γ η η η θ

θ γ η η η θ

= + + −

= + − − .

P E

P E

( , )
16

(1 3 4 (1 ) cos );

( , )
16 (1 3 4 (1 ) cos ) (28)

A

A

1

4

2

4

There are phase-independent joint detection events between Alice, Bob and Eve, whose probability is equal to 
γ
8

6
. The joint probability matrix between Alice and Bob’s phase θ and Eve’s detection results EA is

θ =


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where η γ+ +2 6 4 2 is the normalization constant. Of course, Eve can also carry out similar beam-splitting 
attacks on EB and get the same results.
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