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Abstract

Background: Early diagnosis of sepsis enables timely resuscitation and antibiotics and prevents subsequent morbidity and
mortality. Clinical approaches relying on point-in-time analysis of vital signs or lab values are often insensitive, non-specific
and late diagnostic markers of sepsis. Exploring otherwise hidden information within intervals-in-time, heart rate variability
(HRV) has been documented to be both altered in the presence of sepsis, and correlated with its severity. We hypothesized
that by continuously tracking individual patient HRV over time in patients as they develop sepsis, we would demonstrate
reduced HRV in association with the onset of sepsis.

Methodology/Principal Findings: We monitored heart rate continuously in adult bone marrow transplant (BMT) patients
(n = 21) beginning a day before their BMT and continuing until recovery or withdrawal (1264 days). We characterized HRV
continuously over time with a panel of time, frequency, complexity, and scale-invariant domain techniques. We defined
baseline HRV as mean variability for the first 24 h of monitoring and studied individual and population average percentage
change (from baseline) over time in diverse HRV metrics, in comparison with the time of clinical diagnosis and treatment of
sepsis (defined as systemic inflammatory response syndrome along with clinically suspected infection requiring treatment).
Of the 21 patients enrolled, 4 patients withdrew, leaving 17 patients who completed the study. Fourteen patients
developed sepsis requiring antibiotic therapy, whereas 3 did not. On average, for 12 out of 14 infected patients, a significant
(25%) reduction prior to the clinical diagnosis and treatment of sepsis was observed in standard deviation, root mean
square successive difference, sample and multiscale entropy, fast Fourier transform, detrended fluctuation analysis, and
wavelet variability metrics. For infected patients (n = 14), wavelet HRV demonstrated a 25% drop from baseline 35 h prior to
sepsis on average. For 3 out of 3 non-infected patients, all measures, except root mean square successive difference and
entropy, showed no significant reduction. Significant correlation was present amongst these HRV metrics for the entire
population.

Conclusions/Significance: Continuous HRV monitoring is feasible in ambulatory patients, demonstrates significant HRV
alteration in individual patients in association with, and prior to clinical diagnosis and treatment of sepsis, and merits further
investigation as a means of providing early warning of sepsis.
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Introduction

Severe sepsis and septic shock are major causes of mortality and

costs in critically ill patients [1–2]. Acute neutropenia is a frequent

and intended iatrogenic side effect of cytotoxic chemotherapy and

radiotherapy, commonly employed in the management of

malignant hematological diseases, most commonly leukemia and

lymphoma, leading to increasing risk of opportunistic infections

and sepsis [3]. This is particularly apparent in individuals

undergoing induction chemotherapy and bone marrow transplan-

tation (BMT) for acute leukemia due to severe prolonged

neutropenia [4]. Thus, patients undergoing bone marrow

transplantation comprise a group which is at a high risk of

systemic infection (approximately 80%) and mortality (approxi-

mately 5%) [5–6].

Results of a large single-centre randomized trial [7–8] indicate

that, in early septic shock, mortality can be greatly reduced by

employing early goal directed therapy (EGT). In addition, early

effective antibiotic therapy is essential to minimize mortality

secondary to septic shock [9]. Thus, early diagnosis of sepsis

leading to aggressive resuscitation involving antibiotic administra-

tion, and maintaining adequate systemic oxygen delivery and
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tissue perfusion is vital to survival. Current clinical approaches for

diagnosing sepsis are based on an increased absolute value of one

or more vital signs in addition to laboratory tests such as blood

cultures to look for evidence of a pathogen. Although this is the

best clinical approach currently available, it represents a crude and

potentially non-sensitive and non-specific means for early

diagnosis of sepsis.

An alternative approach is to consider the host response to

sepsis as a complex system, and utilize variability analysis as a

means to better characterize the system [10]. Evidence from

experimental and clinical studies indicates that heart rate

variability (HRV) is altered in the presence of systemic infection

[11–13] and correlates with its severity [14–15]. Investigators

studying the prognostic value of HRV have shown it to be an early

predictor of death [16] and multiple organ dysfunction syndrome

(MODS) [17] in adult septic patients. Studies on infants and

neonates have shown HRV to be predictive [18–19] and

diagnostic [20] of sepsis.

For adult patients, prior studies have only assessed HRV for

short intermittent epochs of 5–15 minutes. To our knowledge,

there have been no published attempts to accomplish continuous

HRV analysis in adult patients at high risk of sepsis, and no

comprehensive analysis of HRV has been performed during the

process of development of sepsis. The method that we propose

examines a panel of HRV metrics computed continuously over

time prior to and during the clinical diagnosis of sepsis (defined as

systemic inflammatory response syndrome along with clinically

suspected infection requiring treatment) in patients at high risk for

systemic infection, namely neutropenic patients following bone

marrow transplant. In this pilot study, we demonstrate that (a) it is

feasible to enroll and perform continuous HRV analysis of

prospectively collected non-stationary heart rate (HR) data in

ambulatory patients, (b) continuous variability analysis demon-

strates a reduction in individual patient HRV in association with

the presence of sepsis, and (c) the alteration in HRV occurs within

a clinically relevant period prior to when standard clinical

measures lead to clinical diagnosis and treatment.

Methods

Ethics Statement
Written informed consent was obtained from all participants

and the Ottawa Hospital Research Ethics Board authorized the

study.

Design
This is a descriptive study in which prospective continuous HR

recording, and retrospective analysis of both HRV and change in

HRV were analyzed over time in ambulatory outpatients as they

underwent BMT, and developed neutropenia associated with high

risk for developing systemic infection.

Participants
Our subjects included patients (n = 21) undergoing BMT for

hematological malignancy or other disorders (see Table 1) at the

Ottawa Hospital (General Campus), Ontario, Canada. All patients

were enrolled between 05/2007 to 05/2008. Inclusion criteria

included treatment with myeloablative chemoradiotherapy fol-

lowed by an allogeneic or autologous BMT, and informed consent.

Exclusion criteria were pre-existing cardiopulmonary disease,

taking beta-blockers or calcium-channel blockers, pre-existing

arrhythmia (e.g. atrial fibrillation, atrial bigeminy), contraindica-

tion to electrocardiogram adhesives (e.g. allergy, severe psoriasis),

and not being fluent in English or French (which precluded

patients from understanding and signing the informed consent).

Heart Rate (HR) Monitoring
We collected continuous Holter ECG data (average 12 [SD 4]

days of HR monitoring) for all patients in the study, starting

approximately 24 h before their BMT and continuing through

neutropenia until its resolution or until withdrawal from the study.

3M Cavilon spray combined with daily replacement and

relocation of gel ECG electrodes was utilized to reduce any skin

irritation. We used a Zymed DigiTrak-Plus Holter system (Philips

Healthcare, Markham, Ontario, Canada), which annotated all

normal QRS peaks and arrhythmias, including premature atrial

and ventricular beats. Only the beats that characterized normal

sinus rhythm (NSR) were included, while all premature beats were

excluded. RR intervals were derived from R wave annotations.

Thus, for each patient, the input to our signal processing

algorithms comprised time-stamped NSR-based RR intervals in

seconds.

Feasibility
The feasibility measures evaluated included the number of

patients dropping out of the study, the ability of patients to

maintain a diary of clinical events (for example, temperature,

diarrhea, vomiting, etc.), and compliance with Holter HR

monitoring during enrollment. A patient was considered to be

a dropout if he or she enrolled in the study, and subsequently

discontinued Holter HR monitoring (i.e. due to discomfort, or

other factors). A minimum of 72 h of monitoring was necessary to

include patients in the study. We examined patient diaries for

Table 1. Study and patient characteristics, along with reason
and type of BMT.

Ottawa (n = 17)

Study characteristics

Follow-up (days), median (IQR) 12(9–14)

Clinical diagnosis of sepsis 14(82%)

Admitted to ICU 0

Deaths 0

Patient characteristics

Age (years), median (IQR) 51(46–62)

Women 5(29%)

Diabetes mellitus 1(6%)

History of heart disease 0

Reason for BMT

Chronic idiopathic myelofibrosis 1(6%)

Crohn’s disease 1(6%)

Myelodysplastic syndrome 1(6%)

Non-hematologic malignancy 1(6%)

Leukemia 3(18%)

Myeloma 4(24%)

Lymphoma 6(35%)

Type of BMT

Allogeneic Transport BMT 4(24%)

Autologous BMT 13(76%)

Data are number (%) unless otherwise stated.
doi:10.1371/journal.pone.0006642.t001
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completeness and regularity in reporting clinical events as per

given schedule and instructions. To quantify compliance with

monitoring, we computed a ratio between the total time for

which patients were monitored and the total time of lost data

during the monitoring period. More specifically, percentage of

data lost was computed as DL = 100*[TL/(TE2TS)], where DL is

percentage of data lost, TS is monitoring start time, TE is

monitoring end time, and TL is total time of lost data between

TS and TE.

Diagnosis of Sepsis
In this study, sepsis was defined as systemic inflammatory

response syndrome along with clinically suspected infection

requiring treatment. Patients who were administered broad

spectrum antibiotics by the physician (attending hematologist)

were considered to have been clinically diagnosed with sepsis.

Since exact time of diagnosis was uncertain, we assumed the time

(hour and minute) of first administration of antibiotics as the time

of clinical diagnosis of sepsis for consistency in procedure. It was

not possible to identify precisely the actual time of physician

diagnosis. Review of cases and procedures indicated that the

diagnosis preceded the first administration of antibiotics by 30 to

90 minutes. The clinical indication to treat sepsis and the clinical

diagnosis of sepsis are included in Table 2. Over 50% of the

patients had sepsis diagnosed based on the presence of fever,

defined a priori as one recording greater than 38.5 degrees

centigrade or two recordings greater than 38.0 degrees centigrade

within 12 h.

Variability Analysis
We have developed a novel system for continuous individual-

ized multiorgan variability analysis (CIMVA), with single-organ

(the heart) application in this study. The CIMVA system

(developed in WindowsH MatlabH) comprises algorithms for

computing and visualizing diverse measures of HRV. Details of

diverse HRV measures computed by CIMVA are provided

elsewhere [21], but in Table 3 we present a brief summary.

To accomplish continuous variability analysis over time,

CIMVA employs a moving window approach, whereby a window

(interval-in-time) of user specified width and step marches through

the input signal, computing and time-stamping different variability

metrics at each step, thus making it possible to monitor a change in

HRV over time. A standard RR cleaning algorithm [22] is

Table 2. Indication for antibiotics and bacteriological
diagnosis.

Ottawa (n = 14)

Clinical indication for antibiotics

Bacteremia 1(7%)

Productive cough 2(14%)

Mucositis 2(14%)

Clinical suspicion 5(36%)

Fever 7(50%)

Bacteriological diagnosis

Escherichia coli 1(7%)

Streptococcus salivarius 1(7%)

Staphylococcus aureu 1(7%)

Klebsiella pneumoniae 2(14%)

Viridans group streptococcus 2(14%)

Unknown 9(64%)

Data are number (%) unless otherwise stated.
doi:10.1371/journal.pone.0006642.t002

Table 3. Summary of signal analysis capabilities of CIMVA.

Summary

Time Domain

Standard Deviation (SD) Computed as SD = SQRT [(1/N)*SUM(RRi-M)2], i = 1 to N, where RRi is ith of N inter-beat intervals and M is their mean.
Measures signal variability from its mean value.

Root Mean Square Successive Difference
(RMSSD)

Computed as RMSSD = SQRT[{1/(N-1)}*SUM(RRi-RRi-1)2], i = 2 to N, where RRi is ith of N inter-beat intervals. Measures
variability of successive signal values.

Complexity Domain

Sample Entropy (SampEn) Computed as negative logarithm of estimate of conditional probability that RR interval epochs of length m that
match pointwise within tolerance r also match at the next point. Characterizes ‘‘meaningful structural richness’’,
information, or disorder of signal.

Multiscale Entropy (MSE) Measures SampEn on multiple timescales. Multiscaling is achieved by averaging non-overlapping samples. Accounts
for dependence of entropy measures on timescale.

Frequency/Time-Frequency Domain

Fast Fourier Transform (FFT) Computed by transforming RR interval signal to frequency domain. AUC of bands (HF: 0.18–0.4 Hz, LF: 0.04–0.15 Hz)
in power spectrum plot characterizes signal variability.

Maximal Overlap Discrete Wavelet Transform
(MODWT)

Computed by transforming RR interval signal to time-frequency domain by convolving it with least asymmetric 8-tap
(LA8) wavelet filter. AUC of spectral density plot characterizes variability (fluctuations) in time and frequency
simultaneously.

Fractal Domain

Detrended Fluctuation Analysis (DFA) Computed as overall root-mean-square fluctuation F(n) of integrated and detrended RR signal on multiple timescales
n. Linear log-log plot of F(n) versus n indicates fractal scaling and AUC (or intercept) and slope characterizes
variability.

Power Law Analysis (PLA) Computed as frequency distribution of squared difference between RR signal and its mean. Linear log-log plot of
frequency versus value indicates fractal scaling and intercept and slope characterizes variability.

doi:10.1371/journal.pone.0006642.t003
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employed inside each window to detect gross artifact or noise, and

HRV analysis is performed on the cleaned data. The cleaning

algorithm excludes RR intervals less than 0.25 s and greater than

2.5 s, as well as those that differ by more than 15% from the

previous one. The CIMVA system stores the number of samples

lost due to RR cleaning in each window instance, thus keeping

track of signal quality.

We employed a window width of 1200 samples (,10 minutes)

and step of 200 samples (,2 minutes) to compute HRV over time.

In Table 4, we present an example of the output from the CIMVA

system.

Subsequently, the variability time series (HRV over time)

underwent a second data integration step or ‘‘smoothing’’ process.

That is, the change in HRV over time was smoothed utilizing a

moving average and hourly data interpolation technique. This

smoothing approach stabilized the change in variability over time

to characterize long-term behavior of various variability metrics

and facilitated the study of lead times (DTP) for percentage

changes (DHRV) from baseline HRV.

Continuous Analysis
We defined baseline variability as the mean variability for the

first 24 h of recording, prior to transplantation. Given expected

variation in baseline variability from patient to patient, for all

measures of HRV, we computed an individualized percentage change in

variability with respect to the baseline variability (DHRV = 100 *

[baseline-current]/baseline). We studied the extent and timing of

DHRV achieved by various metrics for infected and non-infected

patients. To this end, we evaluated individual and between-patient

average DHRV data. We defined a priori a significant DHRV as a

25% loss of variability. We also computed mean population

correlation amongst all diverse HRV measures for the entire

monitoring period.

Results

Monitoring was initiated in 21 patients. Four patients dropped

out within 24 h of initiation of monitoring due to discomfort or

other reasons, leaving 17 (81%) datasets for analysis. We observed

that the requirement for patients to keep a diary of clinical events

on a regular basis was difficult. We found general errors in the

diaries. These included the inability to record the correct time of

the occurrence of an event, and reporting inaccurate frequency

ranges of occurrence of events like vomiting and loose motions.

For n = 17 patients who completed the study, for a total

monitoring time of 188 days, 12 days (6%) of data was lost due

to non-compliance to monitoring. The reasons for non-compli-

ance to monitoring included taking off the Holter due to

discomfort or in order to take a bath, or arriving late at the

hospital which led to a delay in attaching a new Holter after the

old one had reached its recording limit. In terms of data quality,

for n = 17, for 176 days (monitoring days - lost days of

data = 188212 = 176) of available RR-interval data, the data lost

to RR cleaning was 1.06 days (0.6%).

In the course of a median follow-up of 12 (IQR 9-14, SD 4) days

for n = 17, we observed that 14 patients were diagnosed and

treated for sepsis, whereas 3 were not. All patients recovered; no

patient was admitted to the ICU or died. Out of the 14 infected

patients, on an average, 12 (86%) showed a significant (25%) drop

(DHRV) prior to sepsis for standard deviation (SD), root mean

square successive difference (RMSSD), sample entropy (SampEn),

multiscale entropy (MSE) area under curve (AUC), fast Fourier

transform (FFT) low frequency (LF), FFT high frequency (HF),

detrended fluctuation analysis (DFA) AUC, and wavelet spectral
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Table 5. Mean population (n = 17) correlation amongst diverse HRV measures. Correlations greater than +30% are bolded and
shown in parenthesis.

SD RMSSD
Power Law
Slope

Power Law
Intercept SampEn MSE AUC FFT LF/HF FFT LF FFT HF DFA AUC DFA Alpha

RMSSD (0.61)

Power Law Slope 0.16 20.21

Power Law Intercept (0.73) (0.31) (0.70)

SampEn (0.45) (0.72) 20.22 0.24

MSE AUC (0.39) (0.54) 20.21 0.23 (0.87)

FFT LF/HF 20.07 20.41 0.03 20.02 20.25 20.08

FFT LF (0.61) (0.70) 20.17 (0.33) (0.60) (0.57) 20.02

FFT HF (0.50) (0.84) 20.15 0.26 (0.58) (0.48) 20.43 (0.79)

DFA AUC (0.80) (0.70) 20.14 (0.55) (0.67) (0.67) 20.05 (0.72) (0.57)

DFA Alpha 0.30 20.30 (0.47) (0.51) 20.28 20.25 0.13 20.20 20.23 0.07

Wavelet AUC (0.77) (0.72) 20.17 (0.51) (0.69) (0.68) 20.08 (0.72) (0.58) (0.99) 0.01

doi:10.1371/journal.pone.0006642.t005

Figure 1. Individual smoothed percentage change. ((HRV) in wavelet variability. Individual wavelet (HRV is studied every 1 h in infected (n = 14)
and non-infected (n = 3) patients from 0 h (time after baseline variability) up to the end of the study. Green plots are non-infected patients whereas
red plots are infected patients. Solid vertical line denotes the time of sepsis. Lead time (TP is studied for 25% drop (dashed vertical line and dot) from
baseline (first 24 h) HRV.
doi:10.1371/journal.pone.0006642.g001
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density AUC measures of variability. In addition, for 3 out of 3

non-infected patients, all measures, except RMSSD, SampEn and

MSE, showed no significant reduction. Notably, these measures

also showed a substantial correlation (.+30%) amongst each other

(Table 5).

Figure 1 shows the difference in individual patterns of variability

for infected (n = 14, red plots) and non-infected (n = 3, green plots)

patients for the wavelet measure (AUC) of DHRV. In addition,

Figure 1 shows the timing of a 25% drop in wavelet DHRV

(dashed vertical line and dot) in comparison to the time of sepsis

(solid vertical line for infected patients) for all patients. Except two

patients (Patient #s 4 & 16) out of the 14 infected (n = 14, red

plots), all show a 25% drop in DHRV in the neighborhood of

sepsis. For all non-infected patients (n = 3, green plots), no 25%

drop was observed in wavelet DHRV. In Figure 1, a positive lead

time DTP means the 25% drop occurred prior to sepsis, a negative

DTP means it occurred after sepsis, and DTP = NaN (not a

number) means no 25% drop occurred. Table 6 summarizes the

lead time (DTP) for all patients (n = 17) studied for 25% drop in

DHRV for SD, RMSSD, power law intercept, FFT HF, FFT LF,

DFA, wavelet, SampEn, and MSE metrics of HRV. We note that

except for power law analysis, the 25% drop in DHRV occurs

prior to sepsis (positive DTP) for majority of the infected patients.

Figure 2 shows the difference in average patterns of variability

every 12 h for the infected (n = 14) and non-infected (n = 3)

population for five diverse HRV measures. For these measures, the

infected population (plotted in red) shows a distinct and continuous

drop in variability from 24–120 h whereas no such drop is

observed for the non-infected population (plotted in green).

Figure 3 shows the mean variation every 6 h in the above diverse

HRV measures zoomed to (72 h around sepsis (time = 0 h) for

infected patients (n = 14). Plots in Figure 2 and Figure 3 show a

visually evident drop in diverse HRV measures before sepsis; led

by entropy measures, followed by standard deviation, wavelet, and

power law measures of HRV.

Discussion

This study represents a pilot investigation of the methods and

clinical relevance of tracking HRV continuously in high-risk

patients prior to, during, and following clinical diagnosis and

treatment for sepsis. We observed a significant loss (defined as a

25% reduction) in multi-parameter HRV in 12/14 or 86% of

patients treated for sepsis. None of the patients (0/3) without sepsis

demonstrated a significant loss in multi-parameter HRV. Evalu-

ating individual patients as their own control, we observed that the

occurrence of loss of HRV was temporally associated with clinical

diagnosis and treatment of sepsis in individual patients. The onset

of drop of HRV occurred prior to clinical diagnosis and treatment

of sepsis, and importantly, recovery of HRV was observed as the

patients improved (see Figures 1, 2 & 3). Although this study must

be interpreted in light of the small sample size and observational

nature, the temporal association demonstrated in this study

utilizing continuous variability analysis is in keeping with past

Table 6. Lead time DTP (hours) at 25% drop from baseline (first 24 h) HRV.

Non-infected

ID SD RMSSD Power Law FFT HF FFT LF DFA Wavelet SampEn MSE

5 NaN NaN NaN NaN NaN NaN NaN NaN NaN

13 NaN 228 NaN NaN 32 NaN NaN 227 239

15 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Infected

ID SD RMSSD Power Law FFT HF FFT LF DFA Wavelet SampEn MSE

1 69 72 NaN 96 96 7 5 73 72

2 23 156 NaN 32 177 10 8 53 38

3 108 135 NaN 91 97 93 56 130 116

4 47 NaN NaN 6 0 NaN NaN NaN 5

6 68 82 NaN NaN 221 24 220 85 84

7 7 85 211 21 65 2 0 45 65

8 109 110 NaN 68 105 67 63 108 85

9 116 114 18 114 116 109 108 119 118

10 4 7 NaN 9 9 1 0 4 3

11 79 80 NaN 97 97 11 9 82 81

12 138 141 NaN 138 142 122 121 125 127

14 56 80 19 47 79 70 68 78 73

16 227 NaN NaN 235 235 NaN NaN 223 226

17 38 39 NaN 15 39 7 5 16 13

Mean 77.79 91.75 8.67 74.54 88.29 41.25 35.25 87.77 79.00

SD 59.40 42.67 17.04 64.93 69.40 47.41 46.43 56.57 58.47

Observations with NaN excluded for computation of mean and SD.
doi:10.1371/journal.pone.0006642.t006
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investigations utilizing intermittent variability analysis where

reduced HRV was demonstrated in the presence of sepsis in

adults [11–15] and infants [18–20].

For infected patients, we note that DTP values greater than

120 h are probably ‘‘false alarms’’ where the 25% drop does occur

momentarily but is not followed by further sustained drops in

DHRV. For example for Patient #16, the standard deviation

metric shows a DTP of 237 h (Table 6). However, the variability

pattern of standard deviation (not shown) is very similar to that of

the wavelet metric for Patient #16 (Figure 1). This means that

such drops in DHRV cannot be used for prediction of sepsis with

appropriate confidence levels. That is, for infected patients, the

drop in DHRV should be continuous and progressive for the

prediction of sepsis to have more reliability and robustness. We

found that amongst all metrics studied for prediction of sepsis, the

wavelet analysis showed the highest reliability and stability

whereby DTP was within a reasonable timeframe of sepsis, and

‘‘false alarms’’ were minimal with regard to both infected and non-

infected patients (Figure 1 and Table 6). The main reason for the

success of wavelet analysis seems to be the fact that it is a recursive

filtering technique which is capable of analyzing a signal in both

time and frequency domains simultaneously. These attributes

make the wavelet analysis robust to both noise and non-

stationarity in the data, thus allowing it to characterize signal

variability in the most efficient and accurate manner.

While other studies have clearly documented population-based

changes in HRV in association with sepsis, this study identified

individual patient loss of HRV equal to 25% in association with,

and prior to, clinical diagnosis and treatment of sepsis in all but

two patients. Of note, the patient (Patient #16, Figure 1) who

showed no drop in HRV but was diagnosed and treated for sepsis

was a patient with insulin dependent diabetes. This finding

requires further study, in particular since existing literature

suggests that HRV may not be an effective tool for characterizing

the autonomic nervous system control in patients with diabetes

[23–24].

Although this investigation supports the feasibility of long term

HR monitoring (up to 16 days) along with continuous HRV

analysis in non-stationary HR data sets in ambulatory patients, the

use of Holter monitors with gel electrodes proved demanding for

patients recovering from BMT. A total of 4 patients out of 21

(19%) dropped out prematurely after initiating the study. For the

Figure 2. Average percentage change (DHRV) in multi-parameter variability. Average multi-parameter (HRV is studied every 12 h in
infected (n = 14) and non-infected (n = 3) patients from 0 h (time after baseline variability) up to the end of the study. Green plots are non-infected
patients whereas red plots are infected patients. The error bars represent the standard error mean (SEM). The grey horizontal bar at the bottom
represents the range of hours where sepsis occurred for all infected patients. The blue horizontal line at the bottom represents the mean time
6standard deviation of sepsis for all infected patients.
doi:10.1371/journal.pone.0006642.g002
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17 patients who completed the study, the Holter data lost due to

non-compliance to monitoring was 6%. We note that some of the

reasons for non-compliance were beyond the control of the

patients. For example, if a patient had to bathe or was in

discomfort, the Holter had to be taken off and sometimes a

particular schedule for arrival at the hospital (resulting in delay in

new Holter attachment and data loss) was based on bed

availability, physician availability, and other similar factors. The

quality of the Holter data recorded was clean and satisfactory; the

data lost to RR cleaning was only 1.06 days (0.6%) in a total of 176

days of RR-interval data. We also visually inspected the recorded

RR-interval data and found it to be satisfactory. We encountered

difficulty in motivating patients to accurately and punctually

maintain a diary of clinical events. This precluded us from

rigorously correlating our HRV measures with other clinical data

such as periodic temperature measurements, symptoms such as

frequency ranges of diarrhea and vomiting, etc.

In 2 out of the 3 normal patients, relatively short Holter

monitoring periods of 3 and 5 days, were observed. This was

because these patients withdrew from the study after these

timeframes. However, these patients did not develop sepsis during

the monitoring period. Thus, they were considered as uninfected

patients for the study.

In order to visually observe and computationally detect changes

in HRV over time, we have pioneered a process of double

temporal integration. The first step of this process involves

computing a moving window based change in HRV over time.

The second step involves smoothing of the change in HRV over

time utilizing the moving average and data interpolation

techniques. We observed that this process was instrumental in

highlighting and studying stable and progressive changes in HRV

hours prior to the onset of sepsis.

In addition to the general process of continuous variability

analysis, we had to evolve the process of continuous individualized

monitoring of individual variability metrics, where no guidelines

exist. For example, in the performance of iteratively repeated

sample and multi-scale entropy analysis, it remains an unanswered

question as to whether the tolerance r, calculated as 15% of the

standard deviation (SD), should be fixed, or continuously re-

calculated based on the changing SD for every window instance.

We empirically observed marked reduction in both entropy metrics

by keeping the tolerance r fixed as 15% of the SD of the first 24 h

Figure 3. Average percentage change (DHRV) in multi-parameter variability around sepsis. Average multi-parameter DHRV is studied
every 6 h in infected (n = 14) patients672 h around sepsis (0 h). The error bars represent the standard error mean (SEM).
doi:10.1371/journal.pone.0006642.g003
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(baseline) of HR data [r = 0.15*SD(HRbaseline)] as patients devel-

oped sepsis. However, re-calculating the entropy metrics based

upon a variable value for r (a new r based on SD of each window

instance), the reduction in entropy was not evident. This highlights

the inter-dependence of the entropy metrics and the time-domain

SD metric and requires further theoretical and empirical study.

We also observed that the DFA AUC and wavelet spectral

density AUC metrics showed identical HRV patterns when

computed continuously over time (99% correlation between

DFA AUC and wavelet spectral density AUC – see Table 5).

Our empirical observation and the correlation analysis highlight

the interdependence between multiple measures of HRV, and the

unresolved debate regarding the most efficient and effective means

to characterize HRV.

The pathophysiology of altered HRV still remains uncertain,

and was not the focus of this study. The loss of overall variation

and complexity metrics are in keeping with existing hypotheses

regarding augmentation of sympathetic tone, ‘‘decomplexifica-

tion’’ of physiologic signals [25], as well as ‘‘uncoupling of biologic

oscillators’’ [26] that have been proposed to occur in association

with sepsis and critical illness. Regardless of the possible

mechanisms, we interpret the alteration in HRV occurring in

association with sepsis as reflective of a fundamental alteration to

the underlying complex system producing the dynamics.

Although this study was not designed for a comprehensive lead-

time analysis, we observed changes in HRV at least 24 h prior to

the clinical diagnosis and treatment of sepsis. This analysis was

limited by the fact that we were unable to identify the precise time

of onset of sepsis, and rather identified the onset of antibiotic

treatment as a temporal point for comparing the results of the

variability analyses. Half of the patients were diagnosed with sepsis

based upon detection of a fever 60–90 minutes prior to

administration of antibiotics. Thus, intermittent sampling of

temperature (about every 6 h) may have delayed diagnosis by

several hours. Of note, we investigated the technology to monitor

skin temperature continuously, and found it imprecise and

unreliable. However, experimental models of sepsis have noted

changes in HRV at least 6 h prior to the onset of fever [27].

Following these results, it will be worthwhile to correlate the

diverse measures of HRV with circulating biomarkers of sepsis and

inflammation. Our study group comprised ambulatory outpatients

recovering from myeloablative therapy, who were already

encumbered by continuous HR monitoring, and frequent blood

sampling was not perceived as ethical in absence of these data.

Numerous unanswered questions remain. Although the clinical

significance of this investigation lies in its logical extension, namely

the potential of utilizing a system of prospective continuous HRV

monitoring to provide an early warning system for sepsis, a larger

validation cohort is clearly required, along with definitive

investigations regarding generalizability, sensitivity and specificity.

It is entirely unclear if hospitalized patients (e.g. surgical or

critically ill patients) will demonstrate such profound loss of HRV

in association with new onset of sepsis. Although a panel of HRV

metrics has been recommended to optimally characterize

variability, it remains to be seen which offer the optimal means

to herald the presence of sepsis. Last, a more in depth evaluation

of lead-time offered by HRV monitoring is warranted. As evident

above from the discussion regarding double temporal integration,

a process of prospective continuous HRV monitoring will

necessarily lead to a delay inherent to the interval of time

necessary to characterize variability and thus the underlying

system. Akin to the uncertainty principle, there is a balance

between the need for an adequate interval of time to characterize

the system, and the need to characterize the system at any point in

time. Optimization of this balance may depend on clinical

applications. Nonetheless, the promise of a novel dimension of

monitoring based on continuous variability analysis is supported

by this observational trial, and merits the attention of future

investigations.
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