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Ovarian serous cancer (OSC) is one of the leading causes of death across the world.
The role of the tumor microenvironment (TME) in OSC has received increasing attention.
Targeted maximum likelihood estimation (TMLE) is developed under a counterfactual
framework to produce effect estimation for both the population level and individual
level. In this study, we aim to identify TME-related genes and using the TMLE method
to estimate their effects on the 3-year mortality of OSC. In total, 285 OSC patients
from the TCGA database constituted the studying population. ESTIMATE algorithm was
implemented to evaluate immune and stromal components in TME. Differential analysis
between high-score and low-score groups regarding ImmuneScore and StromalScore
was performed to select shared differential expressed genes (DEGs). Univariate logistic
regression analysis was followed to evaluate associations between DEGs and clinical
pathologic factors with 3-year mortality. TMLE analysis was conducted to estimate the
average effect (AE), individual effect (IE), and marginal odds ratio (MOR). The validation
was performed using three datasets from Gene Expression Omnibus (GEO) database.
Additionally, 355 DEGs were selected after differential analysis, and 12 genes from DEGs
were significant after univariate logistic regression. Four genes remained significant after
TMLE analysis. In specific, ARID3C and FREM2 were negatively correlated with OSC 3-
year mortality. CROCC2 and PTF1A were positively correlated with OSC 3-year mortality.
Combining of ESTIMATE algorithm and TMLE algorithm, we identified four TME-related
genes in OSC. AEs were estimated to provide averaged effects based on the population
level, while IEs were estimated to provide individualized effects and may be helpful for
precision medicine.

Keywords: targeted maximum likelihood estimation, ovarian cancer, tumor microenvironment, gene expression,
prognostic biomarker
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INTRODUCTION

Ovarian cancer is one of the most common cancers and the
leading cause of death of all gynecological cancers among women
across the world (Bray et al., 2018). Ovarian serous cancer (OSC)
is the most common histologic subtype, and it accounts for about
90% of all ovarian tumors (Bell et al., 2011). In the United States,
approximately 1 in 78 women will develop ovarian cancer in
their lifetime while the all-stage 5-year survival rate of ovarian
cancers is only 47% (Torre et al., 2018). Over 70% of ovarian
cancers are diagnosed at advanced stages (stage III or IV) and
usually exhibit poor prognosis with a 5-year overall survival rate
of ∼30% (Howlader et al., 2016; Torre et al., 2018). The high
mortality may partly due to the non-specific symptoms, lack of
specific screening tools, and non-specific clinical drugs (Diaz-
Padilla et al., 2012). Therefore, the identification of biomarkers
with a poor short time prognosis remains significant. In this
study, we focused on OSC 3-year mortality to evaluate short
survival time-related biomarkers.

The role of the tumor microenvironment (TME) in OSC
has been discussed increasing in recent years. TME refers to
the constitution of a complex network that includes different
subsets of stromal cells, immune cells, fibroblasts, blood vessels,
extracellular matrix (ECM), endothelial cell precursors, and
secreted factors (Kenny et al., 2007). It is now established that
TME plays an important role in cancer progression, metastasis,
and resistance to the therapies through complex interactions (Luo
et al., 2016; Sung et al., 2016; Wang et al., 2017; Finkernagel et al.,
2019). In particular, a positive correlation was observed between
cancer-associated fibroblasts (CAFs) and the clinical stage. The
co-culture of CAFs with ovarian cancer cells further showed
stimulation of cancer cell invasion and migration (Zhang et al.,
2011). Moreover, biomarkers like CD163, CD206/CD68 ratio,
B7-H4, and IL-10 produced by tumor-associated macrophages
(TAMs) were associated with survival and clinical outcome of
ovarian cancer patients (Bartlett et al., 2001; Lan et al., 2013).
However, it may still lack a full understanding of the molecular
interactions between immune and stromal components in TME
and how they affect ovarian cancer progression. Therefore, a
further and deeper understanding of TME is urgently needed to
better understand how their stromal and immune components
affect OSC survival and clinical outcome.

To identify such relationships, classic epidemiologic analysis
such as the regression method has discovered numerous
biomarkers. However, those associations can be biased by
confounding factors or misspecification of a parametric outcome
model. Targeted maximum likelihood estimation (TMLE) is an
efficient, double robust, semi-parametric methodology that has
been proposed for estimating marginal effects (van der Laan and
Rubin, 2006; van der Laan et al., 2009). TMLE is developed under
the causal inference framework and allows researchers to estimate
the average effect (AE) for binary treatment (Rubin, 1974;

Abbreviation: TMLE, targeted maximum likelihood estimation; TME, tumor
microenvironment; OSC, ovarian serous cancer; AE, average effect; IE, individual
effect; ECM, extracellular matrix; TAMs, tumor-associated macrophages; DEG,
differentially expressed gene; GEO, Gene Expression Omnibus; ROC, receiver
operating characteristic; AUC, area under the curve.

Greenland and Robins, 1986; Luque-Fernandez et al., 2018).
Though TMLE usually shows advantages over the commonly
used propensity score method or G-computation with both point
and interval estimation, it has not been widely implemented
in epidemiologic research including biomarkers discovering and
omics data mining.

In this study, we aimed to discover TME associated
biomarkers that have effects on the 3-year mortality of
OSC patients. OSC patients were collected from The Cancer
Genome Atlas (TCGA) database with RNA-sequencing data
employed for gene expression data. We present our study
using the ESTIMATE algorithm to access the immune and
stromal components level in ovarian tumor samples. Differential
expression genes possibly representing TME status were selected.
Univariate analysis followed by covariates selection analysis
was performed to determine candidate prognostic biomarkers
and their confounding factors sets. The TMLE method was
conducted to evaluate average and individual effects, respectively.
Four genes, ARID3C, CROCC2, FREM2, and PTF1A, were
successfully selected as potential OSC 3-year mortality-related
prognostic biomarkers.

RESULTS

Clinical Characteristics of the Study
Patients
Figure 1 demonstrates the flowchart for the identification of
prognostic biomarkers. 285 OSC patients from the TCGA
database were included for statistical analysis. The detailed
clinical characteristics of the studying population were
summarized in Table 1.

DEGs Shared by ImmuneScore and
StromalScore in OSC
By comparing the gene expression profiles of patients with high
immune scores against those with low immune scores, a total
of 894 (580 upregulated and 314 downregulated) DEGs were
identified (Figures 2A,C,D). A total of 723 (467 upregulated
and 256 downregulated) DEGs were identified by comparing
the high and low stromal score groups (Figures 2B–D).
| Log2 (fold-change)| > 1.5 and FDR < 0.05 were used
as criterions for screening DEGs. A total of 230 DEGs
were in common among the high immune/stromal score
groups. A total of 125 DEGs were in common among the
low immune/stromal score groups. These DEGs (total 355
genes) were possibly determinate factors for the status of
TME. Results from gene ontology (GO) enrichment analysis
indicated that the DEGs were mainly enriched for the
immune-related GO terms, such as chemokine signaling
pathway and immunoglobulin binding (Figure 2E). Based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis, chemokine signaling pathway, cytokine–
cytokine receptor interaction, and hematopoietic cell lineage
were significantly enriched pathways (Figure 2F). In all,
these DEGs mainly mapped to immune-related functions and
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FIGURE 1 | The flowchart for identification of prognostic biomarkers.

therefore indicate that immune components as the leading
feature of TME in OSC.

Selection of Candidate Potential
Prognostic Biomarkers and Confounding
Factors
In the process of screening for prognostic-related biomarkers,
the 355 DEGs shared by the high immune/stromal score and
low immune/stromal score groups together with clinical variables
were subjected to a univariate analysis. Out of these, 12 DEGs,
age, and tumor residual disease were found to be significantly
(with p-value < 0.05) correlated with the 3-year mortality of
OSC patients from the TCGA database. The detailed information
regarding the associations of univariate analysis is provided in
Table 2. To determine the proper covariates set to control in
the following TMLE analysis, each one of 12 candidate markers
was subsequently undergoing a covariates selection procedure.
Supplementary Figure 1 shows the covariates set and their
correlations for 12 candidate potential prognostic biomarkers.
The number of confounding factors for each gene varied from
7 to 13, with FREM2 had maximum covariates set while
SOHLH1 owning minimum covariates set. Age was the common
confounding factor shared by all 12 candidate genes, indicating
the essential role of age as a confounder. Besides, FREM2 had
maximum confounders as well as the common confounder
shared by the other 11 candidate genes, indicating that FREM2
may be a hub gene in the OSC prognosis regulation network.

TMLE Estimation
After TMLE analysis, the association of four genes (ARID3C,
CROCC2, FREM2, and PTF1A) with OSC 3-year mortality
remained significant (p < 0.05). Their marginal odds ratio
(MOR), AE, and 95% CI estimates are shown in Table 3.
TMLE analysis suggesting positive associations between a high
expression level of ARID3C and FREM2 with promising
prognosis and negative associations for CROCC2 and PTF1A.
The Violin plot of individual effect (IE) estimates for all candidate
genes was shown in Figure 3. The meaning of IE is different
from AE for the former one representing individualized effect
estimates and the minority may have opposing effects compare
with the average effect. Those inconsistent was observed in
the IE of FREM2, indicating that the effect of this gene may
differ in different population subsets. Compared with AE, IE
may be more meaningful in terms of personalized treatment for
precision medicine.

Validation in the Gene Expression
Omnibus (GEO) Dataset
To further validate the expression of four TMLE significant
genes (ARID3C, CROCC2, FREM2, and PTF1A), we conducted
external validation using Gene Expression Omnibus (GEO)
database. Due to the fact that GEO datasets contain limited gene
expression profiles, three GEO datasets (GSE53963, GSE26193,
and GSE13876) were obtained and successfully validated the
expression of three genes (PTF1A, FREM2, and CROCC)
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TABLE 1 | Description of clinic pathologic factors for 285 ovarian cancer
patients from TCGA.

Clinic pathologic variable* Dead (N = 115) Alive (N = 170)

Age (years) 63.89 (11.26) 59.03 (10.2)

FIGO Stage

I 1 (0.87) 0 (0.00)

II 2 (1.74) 10 (5.88)

III 88 (76.52) 135 (79.41)

IV 23 (20.00) 25 (14.71)

Unknown 1 (0.87) 0 (0.00)

Grade

GB 1 (0.87) 1 (0.59)

G2 8 (6.96) 25 (14.71)

G3 104 (90.43) 140 (82.35)

G4 0 (0.00) 1 (0.59)

Unknown 2 (1.74) 3 (1.76)

Venous invasion

NO 9 (7.83) 17 (10.00)

YES 17 (14.78) 24 (14.12)

Unknown 89 (77.39) 129 (75.88)

Lymphatic invasion

NO 9 (7.83) 19 (11.18)

YES 32 (27.83) 33 (19.41)

Unknown 74 (64.35) 118 (69.41)

Tumor residual disease

No macroscopic disease 11 (9.57) 27 (15.88)

1–10 mm 53 (46.09) 85 (50.00)

11–20 mm 8 (6.96) 12 (7.06)

>20 mm 32 (27.83) 25 (14.71)

Unknown 11 (9.57) 21 (12.35)

*Data are mean ± SD and frequency (percent) for numeric and category
variables, respectively.

separately (Supplementary Table 1). The expression of two
genes (CROCC and PTF1A) were upregulated while FREM2 was
downregulated in OSC patients with poor prognosis compared to
promising prognosis. These results were largely consistent with
our results in TCGA data. The sensitivity and specificity of each
verified gene were evaluated. The sensitivity and specificity of
PTF1A calculated from the GSE53963 dataset were 0.74 and 0.56,
respectively. The sensitivity and specificity of FREM2 calculated
from the GSE26193 dataset were 0.61 and 0.62, respectively.
The sensitivity and specificity of CROCC calculated from the
GSE13876 dataset were 0.59 and 0.63, respectively. The receiver
operating characteristic (ROC) curve analyses and the area under
the curve (AUC) were used to assess the discriminatory ability
of four genes (ARID3C, CROCC, FREM2, and PTF1A) among
67 OSC patients with promising prognosis and 90 patients with
poor prognosis derived from GSE13876 dataset. The AUC of all
four genes was 0.763 (Figure 4). The specificity and sensitivity
were 0.746 and 0.689, respectively.

DISCUSSION

In the presented study, we attempted to identify TME-related
genes that have an effect on the 3-year mortality of OSC patients

from the TCGA database. TMLE algorithm was performed
to derive AE, IE, and MOR with doubly robust to model
misspecification. ARID3C, CROCC2, FREM2, and PTF1A were
identified as prognostic biomarkers for OSC patients. Two of
them (FREM2 and PTF1A), alongside CROCC, were successfully
validated in three GEO datasets. In addition to averaged effects
estimation, individualized effects were estimated for each patient.
Functional analysis indicated that ARID3C, CROCC2, and
FREM2 might be involved in the immune status of TME.

In our research, increased expression of AT-rich interaction
domain 3C (ARID3C) was found to be significantly associated
with better OSC prognosis. ARID3C was recently characterized
and belongs to the AT-rich interaction domain (ARID) family
of proteins (Tidwell et al., 2011). The ARID3 subfamily consists
of 3 members ARID3A, B, and C, which are expressed
throughout most of hematopoietic development (Heng et al.,
2008). The expression of ARID3A, the founding member of the
subfamily, is tightly regulated during B cell differentiation (Webb
et al., 1998; Heng et al., 2008). A recent study demonstrated
that ARID3B also plays an important role in normal B
cell development (Kurkewich et al., 2016). Similarly, ARID3C
transcripts and proteins are expressed especially within B lineage
lymphocytes and significantly co-activates ARID3A-dependent
immunoglobulin heavy chain gene (IgH) transcription (Tidwell
et al., 2011). In recent research, high IgH mRNA levels were
reported positively associated with improved prognosis of breast
cancer (Larsson et al., 2020). Indicating that ARID3C could
modulate IgH activity to enhance immune response and improve
the prognosis of cancers. The function of B lymphocytes in
tumor development has contradictory opinions. Their presence
has been found to be associated with a good prognosis in ovarian
cancer through the priming of CD4+ and CD8+ T cells and
the production of tumor-specific IgGs (Stumpf et al., 2009;
Nielsen et al., 2012). Conversely, high B cell infiltration negatively
correlates with patient survival in ovarian cancer (Gentles et al.,
2015). In addition, ARID3A and ARID3B, two closely related
paralogs of ARID3C, are reported to be important associated
with tumorigenesis (Samyesudhas et al., 2014; Chien et al., 2015;
Nakahara et al., 2017; Tu et al., 2019; Dausinas et al., 2020).

The FRAS1-related extracellular matrix 2 (FREM2) is an
extracellular matrix protein that localizes in the lamina densa of
epithelial basement membranes (Kiyozumi et al., 2006; Chiotaki
et al., 2007). In the extracellular matrix (ECM), FREM2, and
FRAS1 form a self-stabilizing complex with FREM1, which
plays an important role in cell adhesion and intercellular
signaling (Kiyozumi et al., 2006). ECM, as important content
of TME, provides structural support as well as biochemical and
biomechanical cues for cancer cell growth (De Palma et al., 2017).
Previous studies have reported that mutations in this gene are
associated with Fraser syndrome and play an important role
in various tumorigenesis. In glioblastomas, FREM2 expression
is positively associated with a favorable prognosis of IDH-
WT glioblastomas, which is consistent with our research result
(Jovčevska et al., 2019). In ovarian cancer, the differential
expression of FREM2 has been reported in a few studies (Dakubo,
2019; Zhu et al., 2020). FREM2 has been identified as a target
gene of transcription factor AP-2 gamma (TFAP2C, AP-2γ)
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FIGURE 2 | Identification and functional enrichment of differentially expressed genes. (A) Heatmap for DEGs generated by comparison of the high ImmuneScore
group with the low ImmuneScore group. Rows and columns represent DEGs and samples, respectively. Significant DEGs were determined with FDR < 0.05 and
| fold-change| > 1.5 after log2 transformation. (B) Heatmap for DEGs in StromalScore, similar with (A). (C,D) Venn plots showing common upregulated and
downregulated DEGs shared by ImmuneScore and StromalScore. (E) GOChord plot of GO enrichment analysis for common DEGs showing enriched GO terms and
corresponding genes. The significance level was set to be with both FDR and q < 0.05. (F) Cnetplot of KEGG enrichment analysis for common DEGs showing
enriched KEGG terms and corresponding genes. The significance level was set to be with both FDR and q < 0.05.

(Woodfield et al., 2010), which is a sequence-specific DNA-
binding transcription factor and belongs to the AP-2 family.
AP-2γ has been established as a prognostic factor in human
breast cancer (Cyr et al., 2015). Its paralog, AP-2α, has been
observed to play a tumor-suppressive role in ovarian cancer
(Sumigama et al., 2004).

Pancreas-associated transcription factor 1a (PTF1A) plays a
critical role in controlling the development and physiological
function of many organs, including the pancreas, brain, spinal
cord, retina, and others (Jin and Xiang, 2019). Although there are
limited studies about PTF1A outside pancreas, PTF1A protein
abundance is highest in the ovary at the tissue level, indicating
that it may have an important role in the ovary (Jin and Xiang,
2019). Furthermore, PTF1A is involved in the Notch-mediated
HES/HEY network, which has been found by many studies being
activated in ovarian cancer (Bell et al., 2011; Bocchicchio et al.,
2019; Huang et al., 2019; Hubbard et al., 2019; Eoh et al., 2020).
The Notch signaling has been found to be able to ensure the
proliferation and migration of ovarian cancer cells and therefore

controls ovarian cancer cell survival (Bocchicchio et al., 2019). In
addition, we found that one study showed that T follicular helper
(Tfh) cell generation and function are reliant on Notch signaling
(Dell’aringa and Lee Reinhardt, 2018).

CROCC2 is a newly annotated protein in Gascoigne et al.
(2012) that has similarity to CROCC and belongs to the ciliary
rootlet coiled-coil rootletin family. Rootletin is a structural
component of the ciliary rootlet (Yang et al., 2002) and
primary cilia that has been suggested to have an important role
in carcinogenesis through facilitating cell signaling pathways
platelet-derived growth factor receptor-a and Wnt pathways that
are commonly dysregulated in many tumors (Yasar et al., 2017).
Our study suggesting a positive effect between high expression of
CROCC2 with poor 3-year OSC mortality. Further studies should
focus on the biological function of CROCC2 on the prognosis
of ovarian cancer.

To our knowledge, our work is the first to use the ESTIMATE
algorithm combined with TMLE methodology to explore
molecular markers that have effects on OSC 3-year prognosis.
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TABLE 2 | Univariate logistic regression showing significant associations with
3-year mortality of OSC.

Variable* Levels OR/
Coefficient

95% CI P-value

IGLV5-37 High expression level 1.82 (1.13; 2.93) 0.014

IGHJ3 High expression level 1.63 (1.01; 2.63) 0.046

IGHV1OR15-1 High expression level 1.82 (1.05; 3.15) 0.033

PTF1A High expression level 1.73 (1.06; 2.84) 0.029

ARID3C High expression level 0.59 (0.37; 0.96) 0.032

FREM2 High expression level 0.61 (0.38; 0.99) 0.046

CLDN19 High expression level 1.65 (1.02; 2.65) 0.040

CROCC2 High expression level 1.65 (1.02; 2.65) 0.040

SPAG6 High expression level 1.73 (1.07; 2.79) 0.025

MAGEA9B High expression level 1.97 (1.13; 3.41) 0.016

ONECUT1 High expression level 1.71 (1.01; 2.91) 0.046

SOHLH1 High expression level 1.67 (1.03; 2.69) 0.036

Tumor residual
disease

No macroscopic
disease

Ref – –

1–10 mm 1.53 (0.70; 3.34) 0.285

11–20 mm 1.64 (0.53; 5.10) 0.396

>20 mm 3.14 (1.31; 7.54) 0.010

Unknown 1.29 (0.47; 3.54) 0.626

Age year 0.01 (0.00; 0.01) <0.001

*Data are odds ratio and 95% confidence interval for category variables as well as
coefficient (β) and 95% confidence interval for the numeric variable (Age).

The covariate selection procedure makes sure appropriate
confounding factors are selected to reduce bias or loss of power.
The prognostic biomarkers were driven from a causal inference
framework-based TMLE algorithm. Such methodologies can be
used to better inform future clinical therapy. Individual effect
estimates were provided to display personal differences and may
be helpful for precision medicine. There are also limitations to
this study. To gain explainable effect estimation, we dichotomized
the exposure (gene expression) and define the 3-year mortality
of OSC instead of overall survival as the outcome variable.
Therefore, we lost 88 samples due to the missing outcome
variable. Further studies can be focused on the biological function
role of identified genes in the network of TME.

MATERIALS AND METHODS

Data Source and Outcome Definition
Transcriptome RNA-seq read counts data of 379 OSC samples
and the corresponding clinical data were downloaded from

the TCGA database1 using the R package “TCGAbiolinks”
(Colaprico et al., 2016). The mRNA data was already processed
using the GDC mRNA quantification analysis pipeline, which
measures gene-level expression in HT-Seq raw read count. These
values are generated through this pipeline by first aligning reads
to the GRCh38 reference genome and then by quantifying the
mapped reads. More information on the GDC pipeline can
be found at: https://docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/Expression_mRNA_Pipeline/. Gene mapping was
performed using the gencode v22 annotation file. The samples
were trimmed to 378 to include only patients with corresponding
clinical information. The data from 373 primary solid tumors
patients were further retained after removing five recurrent solid
tumor samples. Finally, 88 samples were excluded with the vital
status being alive but overall survival time <3 years. In total, 285
OSC patients were kept after quality control and were included
in the following analysis. The outcome binary was defined as
3-year mortality of OSC, alive status was defined as patients with
OS time ≥ 3 years, and dead status was defined as patients with
the vital status being dead and OS time <3 years.

TME Construction
ESTIMATE algorithm was performed to estimate immune
and stromal components in TME for each sample using
the R package “estimate” (Yoshihara et al., 2013). The
ImmuneScore, StromalScore, and ESTIMATEScore were
calculated corresponding to the level of immune cells,
stromal cells, and the sum of both, respectively. A higher
ESTIMATEScore, StromalScore, and ImmuneScore, respectively,
represent the lower tumor purity and higher infiltration levels of
stromal and immune cells in tumor tissue.

Differentiation Analysis Between
High-Score and Low-Score Groups
Regarding ImmuneScore and
StromalScore
To better understand the correlation between gene expression
profiles and immune and/or stromal scores, patients were divided
into two groups based on the median value of the ImmuneScore
and StromalScore, respectively. R package “DESeq2” was used
to perform differentiation analysis. Genes where all counts were
less than half sample numbers were filtered. The differentiation
analysis was conducted in the high immune score group vs. the
low immune score group and the high stromal score group vs.
the low stromal score group, separately. For each DE analysis, we

1https://portal.gdc.cancer.gov/

TABLE 3 | Four genes shown significant association after TMLE analysis.

Gene Chromosome MOR 95% CI P-MOR AE 95% CI P-AE

ARID3C 9 0.51 (0.32, 0.82) 0.005 −0.16 (−0.27, −0.05) 0.004

CROCC2 2 1.76 (1.12, 2.78) 0.015 0.14 (0.03, 0.24) 0.014

FREM2 13 0.57 (0.36, 0.90) 0.016 −0.14 (−0.24, −0.03) 0.015

PTF1A 10 1.63 (1.02, 2.60) 0.042 0.12 (0.00, 0.23) 0.043
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FIGURE 3 | Violin plot showing IE estimates the distribution of 12 candidate genes. IE was calculated as the marginal risk difference of 3-year mortality for each OSC
patient with high gene expression versus low gene expression.

specified | log2FC(fold-change)| > 1.5 (high immune/stromal
score group vs. low immune/stromal score group) and false
discovery rate (FDR) <0.05 as cutoffs to identify significant
DEGs. The qualified DEGs that both upregulated immune and
stromal scores or downregulated immune and stromal scores
were finally selected for further analysis.

GO and KEGG Enrichment Analysis
For shared DEGs between high ImmuneScore and low
ImmuneScore as well as high StromalScore and low
StromalScore, GO and KEGG pathway enrichment analyses
were conducted to investigate the shared biological function by
using R packages “clusterProfiler,” “enrichplot,” “GOplot,” and
“ggplot2.” Only terms with both FDR and q-value of <0.05 were
considered significantly enriched.

Univariate Analysis of Associated Genes
and Clinical Pathologic Factors
In the presented study, all OSC samples were grouped into
a high-expression group and low-expression group compared

with the corresponding median expression level for each DEG.
Univariate analysis of the association of binary DEGs and
other clinical pathologic factors with 3-year mortality was
evaluated using logistic regression. Statistical significance was
defined as p < 0.05. For factors significantly associated with
3-year mortality in univariate analyses, a covariates selection
procedure was conducted.

Selection of the Minimal Sets of
Confounding Covariates
It is crucial to select a proper set of covariates for estimating
unbiased effects between a treatment effect and an outcome
variable in observational studies. Including unnecessary
covariates may result in a loss of power or biased variance while
lack of covariates may lead to unadjusted confounding effects. De
Luna, Waernbaum, and Richardson (Luna et al., 2011) proposed
a data-driven algorithm for the selection of minimal sets of
covariates. Let G = {G1,G2,. . .,Gp} denote p binary candidate
potential prognostic biomarkers, X = {X1,X2,. . .,Xm} denote m
selected clinical covariates and Y denote OSC 3-year mortality.
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FIGURE 4 | Receiver operating characteristic (ROC) curves and area under the curve (AUC) of the combination of four gene biomarkers for 3-year mortality
prediction of OSC patients in GEO dataset.

Then C = {(G\Gj)+X} denotes the complete covariate set for gene
Gj and Y. We aimed to determine a minimum of confounding
covariates of set W that satisfy 1) Y⊥C| W and 2) Gj⊥C| W.
To do so, we first found V to be a minimal set of C, making Y
and the covariates not included in V conditionally independent,
Y⊥C\V| V. Then, W is determined as the minimal set of V,
which means the Gj and the covariates are not included in the
W that is conditionally independent: Gj⊥V\W| W. R package
CovSel was performed to select the minimal covariate sets V for
each Gj.

TMLE Estimation Method
In this study, we aimed to estimate the effects of gene expression
levels on OSC 3-year mortality. We are interested in three
estimates of the effects: the AE, interpreted as the marginal
risk difference of 3-year mortality for OSC patients with high
gene expression versus low gene expression compared to median
expression level; the IE, defined as the marginal risk difference of
3-year mortality for each OSC patient with high gene expression

versus low gene expression; and the MOR, interpreted as the
odds ratio of death for patients with high gene expression versus
low gene expression. Effects formalized by Rubin (1974) were
developed under the potential outcome framework, and the
casual parameters are therefore defined as the following:

AE = E [Y (1)− Y (0)] (1)

IE = Y(1) − Y(0) (2)

MOR ={E[Y(1)] × E[1 − Y(0)]}/{E[1− Y(1)] × E[Y(0)]}
(3)

where Y(1) represents OSC 3-year potential outcome they would
have received had they been exposed to high gene expression level
compared with median expression level (G = 1); and Y(0) denotes
OSC 3-year potential outcome had they been unexposed. In our
study, OSC 3-year outcome Y has two possible values: 1 denotes
death while 0 denotes alive.
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Identification of the Effect Estimates
For the effect estimates to have a theoretical interpretation,
several key assumptions are required: (1) there is the stable
unit treatment value assumption (SUTVA), which assumes that
the gene expression level of a given individual does not affect
the potential OSC 3-year mortality of any other individuals
(i.e., non-interference) and that the exposure level is the same
for all individuals who were exposed at that level; (2) there
are no unmeasured confounders, and this is formalized as
(Y(1), Y(0))⊥G| W, meaning that the gene expression level and
potential mortality outcomes are independent after conditioning
on the set of covariates (this assumption cannot be tested using
the observed data); and (3) there is positivity, which requires that
within strata of G, every individual has a non-zero probability
of receiving either exposure condition; this is formalized as
0 < P(G = 1| W) < 1 for a binary exposure. If the positivity
assumption is violated, effects will not be identifiable.

Under these assumptions, the effect estimates from Eqn. (1–3)
can be expressed as follows:

AE = EW [E (Y |G = 1, W) − E (Y |G =0,W)] (4)

IEi= E (Y |G =1, Wi) − E (Y |G = 0,Wi) (5)

MOR =
EW[E(Y|G = 1,W)] × {1− EW[E(Y|G = 0,W)]}

{1− EW[E(Y|G = 1,W)]} × EW[E(Y|G = 0,W)]
(6)

where IEi refers to the individual effect for the i-th individual, and
Wi denotes the i-th individual’s vector of covariates.

Estimation of Effect Estimates
In this article, the TMLE method was implemented to detect
the potential prognostic biomarkers of OSC 3-year mortality
and estimate their effects, including AE, IE and MOR. Note
that, we estimate ATE and MOR from a population level to
gain averaged effect and IE from individual level to demonstrate
personalized information. In specific, effect estimation with
TMLE begins with initial estimates of E(Y| G, W) and
P(G = 1| W), then the following “targeting” step would optimize
the bias-variance tradeoff for above estimates. Finally, the
updated estimation of E(Y| G, W) is used to generate above
effect estimates. To avoid model misspecification and improve
the robustness, Super Learner algorithm was constructed for
parameter estimation. Five models (glm, glm.interaction, glmnet,
xgboost, and randomforest) were selected in this study. R
package “tmle,” “randomForest,” “glmnet,” and “xgboost” were
performed. All statistical analyses were performed using software
R version 3.6.1 from CRAN2 and p < 0.05 was considered
statistically significant.

Validation in the Gene Expression
Omnibus (GEO) Dataset
For the verification of TMLE significant genes, the GEO
database was searched. Due to different experiment types

2http://cran.r-project.org/

and platforms, a single GEO dataset does not generally
contain all TMLE significant genes. Hence, three ovarian
cancer datasets were chosen, GSE53963 (n = 174), GSE26193
(n = 107) and GSE13876 (n = 157) as validation sets.
Data of GSE53963 was obtained by GPL6480 Agilent-014850
Whole Human Genome Microarray 4x44K G4112F (Probe
Name version). Data of GSE26193 was obtained by GPL570
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array. Data of GSE13876 was obtained by GPL7759 Operon
human v3 ∼35K 70-mer two-color oligonucleotide microarrays.
All three datasets include complete survival information. The
overlapped genes with 355 DEGs were first extracted from
GEO datasets. The expression profile of CROCC2 was not
available for most GEO datasets. We considered its family
member CROCC as the replacement. We then used the average
value when a duplicate sample was found and discretized
the gene expression data according to the median value.
Further, univariate logistic regression was performed between
binary DEGs and other clinical pathologic factors with 3-
year mortality. Covariates selection and TMLE analysis were
followed among DEGs that were significant in univariate
analyses. Sensitivity and specificity were calculated for verified
TMLE significant genes separately. ROC curve analyses and
AUC were used to assess the discriminatory ability of four
genes (ARID3C, CROCC, FREM2, and PTF1A) using the
GSE13876 dataset. Sensitivity and specificity were calculated for
the combination of four genes.

CONCLUSION

In summary, with a combination of the ESTIMATE and
TMLE algorithms, we identified four TME-related genes in
OSC using the TCGA database. With the help of TMLE,
effects were estimated for gene expression level on OSC
prognosis. ARID3C and FREM2 were potential prognostic
biomarkers for promising 3-year survival while CROCC2
and PTF1A might be biomarkers for poor 3-year survival.
More importantly, in addition to AE, IE was estimated and
provided to present a personalized effect on recognized
genes, which may be useful for predicting individual
therapy effects. Therefore, further investigation should be
conducted to clarify the biological role in metastasis or
recurrence of OSC.
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Jovčevska, I., Zottel, A., Šamec, N., Mlakar, J., Sorokin, M., Nikitin, D., et al.
(2019). High FREM2 gene and protein expression are associated with favorable
prognosis of IDH-WT glioblastomas. Cancers (Basel) 11:1060. doi: 10.3390/
cancers11081060

Kenny, P. A., Lee, G. Y., and Bissell, M. J. (2007). Targeting the tumor
microenvironment. Front. Biosci. 12:3468–3474. doi: 10.2741/2327

Kiyozumi, D., Sugimoto, N., and Sekiguchi, K. (2006). Breakdown of the reciprocal
stabilization of QBRICK/Frem1, Fras1, and Frem2 at the basement membrane
provokes Fraser syndrome-like defects. Proc. Natl. Acad. Sci. U.S.A. 103, 11981–
11986. doi: 10.1073/pnas.0601011103

Kurkewich, J. L., Klopfenstein, N., Hallas, W. M., Wood, C., Sattler, R. A., Das,
C., et al. (2016). Arid3b is critical for B Lymphocyte development. PLoS One
11:e0161468. doi: 10.1371/journal.pone.0161468

Lan, C., Huang, X., Lin, S., Huang, H., Cai, Q., Wan, T., et al. (2013). Expression
of M2-polarized macrophages is associated with poor prognosis for advanced
epithelial ovarian cancer. Technol. Cancer Res. Treat. 12, 259–267. doi: 10.7785/
tcrt.2012.500312

Frontiers in Genetics | www.frontiersin.org 10 June 2021 | Volume 12 | Article 625145

https://www.frontiersin.org/articles/10.3389/fgene.2021.625145/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.625145/full#supplementary-material
https://doi.org/10.1385/1-59259-071-3:121
https://doi.org/10.1038/nature10166
https://doi.org/10.1038/nature10166
https://doi.org/10.1002/jcp.28775
https://doi.org/10.3322/caac.21492
https://doi.org/10.1158/0008-5472.CAN-14-2215
https://doi.org/10.1016/j.modgep.2006.12.001
https://doi.org/10.1016/j.modgep.2006.12.001
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1038/onc.2013.569
https://doi.org/10.1007/978-3-030-24725-6_13
https://doi.org/10.1007/978-3-030-24725-6_13
https://doi.org/10.1016/j.gene.2020.144458
https://doi.org/10.1038/nrc.2017.51
https://doi.org/10.1038/nrc.2017.51
https://doi.org/10.1038/s41385-018-0012-9
https://doi.org/10.1038/s41385-018-0012-9
https://doi.org/10.1016/j.ctrv.2012.02.001
https://doi.org/10.3390/ijms21165813
https://doi.org/10.7150/thno.37549
https://doi.org/10.1093/bioinformatics/bts582
https://doi.org/10.1093/bioinformatics/bts582
https://doi.org/10.1038/nm.3909
https://doi.org/10.1093/ije/15.3.413
https://doi.org/10.1093/ije/15.3.413
https://doi.org/10.1038/ni1008-1091
https://doi.org/10.1038/ni1008-1091
https://doi.org/10.1038/s41388-018-0658-5
https://doi.org/10.1038/s41388-018-0658-5
https://doi.org/10.1210/en.2019-00564
https://doi.org/10.1007/s00018-018-2972-z
https://doi.org/10.1007/s00018-018-2972-z
https://doi.org/10.3390/cancers11081060
https://doi.org/10.3390/cancers11081060
https://doi.org/10.2741/2327
https://doi.org/10.1073/pnas.0601011103
https://doi.org/10.1371/journal.pone.0161468
https://doi.org/10.7785/tcrt.2012.500312
https://doi.org/10.7785/tcrt.2012.500312
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-625145 May 28, 2021 Time: 17:14 # 11

Wang et al. Biomarkers for Ovarian Cancer

Larsson, C., Ehinger, A., Winslow, S., Leandersson, K., Klintman, M., Dahl, L.,
et al. (2020). Prognostic implications of the expression levels of different
immunoglobulin heavy chain-encoding RNAs in early breast cancer. NPJ Breast
Cancer 6:28. doi: 10.1038/s41523-020-0170-2

Luna, X., De Waernbaum, I., and Richardson, T. S. (2011). Covariate selection
for the nonparametric estimation of an average treatment effect. Biometrika 98,
861–875. doi: 10.1093/biomet/asr041

Luo, Z., Wang, Q., Lau, W. B., Lau, B., Xu, L., Zhao, L., et al. (2016). Tumor
microenvironment: the culprit for ovarian cancer metastasis? Cancer Lett. 377,
174–182. doi: 10.1016/j.canlet.2016.04.038

Luque-Fernandez, M. A., Schomaker, M., Rachet, B., and Schnitzer, M. E. (2018).
Targeted maximum likelihood estimation for a binary treatment: a tutorial. Stat.
Med. 37, 2530–2546. doi: 10.1002/sim.7628

Nakahara, S., Fukushima, S., Yamashita, J., Kubo, Y., Tokuzumi, A., Miyashita,
A., et al. (2017). AT-rich interaction domain-containing protein 3B is a new
tumour marker for melanoma. Acta Derm. Venereol. 97, 112–114. doi: 10.2340/
00015555-2449

Nielsen, J. S., Sahota, R. A., Milne, K., Kost, S. E., Nesslinger, N. J., Watson,
P. H., et al. (2012). CD20+ tumor-infiltrating lymphocytes have an atypical
CD27–memory phenotype and together with CD8+ T cells promote favorable
prognosis in ovarian cancer. Clin. Cancer Res. 18, 3281–3292. doi: 10.1158/
1078-0432.CCR-12-0234

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and
nonrandomized studies. J. Educ. Psychol. 66, 688–701. doi: 10.1037/h0037350

Samyesudhas, S. J., Roy, L., and Cowden Dahl, K. D. (2014). Differential expression
of ARID3B in normal adult tissue and carcinomas. Gene 543, 174–180. doi:
10.1016/j.gene.2014.04.007

Stumpf, M., Hasenburg, A., Riener, M. O., Jütting, U., Wang, C., Shen, Y., et al.
(2009). Intraepithelial CD8-positive T lymphocytes predict survival for patients
with serous stage III ovarian carcinomas: relevance of clonal selection of T
lymphocytes. Br. J. Cancer 101, 1513–1521. doi: 10.1038/sj.bjc.6605274

Sumigama, S., Ito, T., Kajiyama, H., Shibata, K., Tamakoshi, K., Kikkawa, F.,
et al. (2004). Suppression of invasion and peritoneal carcinomatosis of ovarian
cancer cells by overexpression of AP-2α. Oncogene 23, 5496–5504. doi: 10.1038/
sj.onc.1207723

Sung, P. L., Jan, Y. H., Lin, S. C., Huang, C. C., Lin, H., Wen, K. C., et al. (2016).
Periostin in tumor microenvironment is associated with poor prognosis and
platinum resistance in epithelial ovarian carcinoma. Oncotarget 7, 4036–4047.
doi: 10.18632/oncotarget.6700

Tidwell, J. A., Schmidt, C., Heaton, P., Wilson, V., and Tucker, P. W.
(2011). Characterization of a new ARID family transcription factor
(Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated
immunoglobulin gene transcription. Mol. Immunol. 49, 260–272.
doi: 10.1016/j.molimm.2011.08.025

Torre, L. A., Trabert, B., DeSantis, C. E., Miller, K. D., Samimi, G., Runowicz, C. D.,
et al. (2018). Ovarian cancer statistics, 2018. CA Cancer J. Clin. 68, 284–296.
doi: 10.3322/caac.21456

Tu, M. J., Ho, P. Y., Zhang, Q. Y., Jian, C., Qiu, J. X., Kim, E. J., et al. (2019).
Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and

patient-derived xenograft mouse models. Cancer Lett. 442, 82–90. doi: 10.1016/
j.canlet.2018.10.038

van der Laan, M. J., Rose, S., and Gruber, S Eds (2009). “Readings in targeted
maximum likelihood estimation,” in U.C. Berkeley Division of Biostatistics
Working Paper Series. Working Paper 254, (Berkeley, CA: University of
California).

van der Laan, M. J., and Rubin, D. (2006). Targeted maximum likelihood learning.
Int. J. Biostat. 2:11. doi: 10.2202/1557-4679.1043

Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., et al. (2017). Role of
tumor microenvironment in tumorigenesis. J. Cancer 8, 761–773. doi: 10.7150/
jca.17648

Webb, C. F., Smith, E. A., Medina, K. L., Buchanan, K. L., Smithson, G., and
Dou, S. (1998). Expression of bright at two distinct stages of B lymphocyte
development. J. Immunol. 160, 4747–4754.

Woodfield, G. W., Chen, Y., Bair, T. B., Domann, F. E., and Weigel, R. J. (2010).
Identification of primary gene targets of TFAP2C in hormone responsive breast
carcinoma cells. Genes Chromosomes Cancer 49, 948–962. doi: 10.1002/gcc.
20807

Yang, J., Liu, X., Yue, G., Adamian, M., Bulgakov, O., and Li, T. (2002). Rootletin, a
novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell
Biol. 159, 431–440. doi: 10.1083/jcb.200207153

Yasar, B., Linton, K., Slater, C., and Byers, R. (2017). Primary cilia are
increased in number and demonstrate structural abnormalities in human
cancer. J. Clin. Pathol. 70, 571–574. doi: 10.1136/jclinpath-2016-204
103

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/
ncomms3612

Zhang, Y., Tang, H., Cai, J., Zhang, T., Guo, J., Feng, D., et al. (2011).
Ovarian cancer-associated fibroblasts contribute to epithelial ovarian
carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and
tumor cell invasion. Cancer Lett. 303, 47–55. doi: 10.1016/j.canlet.2011.01.
011

Zhu, Q., Zhang, J., Chen, Y., Hu, Q., Shen, H., Huang, R. Y., et al.
(2020). Whole-exome sequencing of ovarian cancer families uncovers
putative predisposition genes. Int. J. Cancer 146, 2147–2155. doi: 10.1002/ijc.
32545

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wang, Sun, Jin, Fan and Xue. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 11 June 2021 | Volume 12 | Article 625145

https://doi.org/10.1038/s41523-020-0170-2
https://doi.org/10.1093/biomet/asr041
https://doi.org/10.1016/j.canlet.2016.04.038
https://doi.org/10.1002/sim.7628
https://doi.org/10.2340/00015555-2449
https://doi.org/10.2340/00015555-2449
https://doi.org/10.1158/1078-0432.CCR-12-0234
https://doi.org/10.1158/1078-0432.CCR-12-0234
https://doi.org/10.1037/h0037350
https://doi.org/10.1016/j.gene.2014.04.007
https://doi.org/10.1016/j.gene.2014.04.007
https://doi.org/10.1038/sj.bjc.6605274
https://doi.org/10.1038/sj.onc.1207723
https://doi.org/10.1038/sj.onc.1207723
https://doi.org/10.18632/oncotarget.6700
https://doi.org/10.1016/j.molimm.2011.08.025
https://doi.org/10.3322/caac.21456
https://doi.org/10.1016/j.canlet.2018.10.038
https://doi.org/10.1016/j.canlet.2018.10.038
https://doi.org/10.2202/1557-4679.1043
https://doi.org/10.7150/jca.17648
https://doi.org/10.7150/jca.17648
https://doi.org/10.1002/gcc.20807
https://doi.org/10.1002/gcc.20807
https://doi.org/10.1083/jcb.200207153
https://doi.org/10.1136/jclinpath-2016-204103
https://doi.org/10.1136/jclinpath-2016-204103
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.canlet.2011.01.011
https://doi.org/10.1016/j.canlet.2011.01.011
https://doi.org/10.1002/ijc.32545
https://doi.org/10.1002/ijc.32545
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Identification of Tumor Microenvironment-Related Prognostic Biomarkers for Ovarian Serous Cancer 3-Year Mortality Using Targeted Maximum Likelihood Estimation: A TCGA Data Mining Study
	Introduction
	Results
	Clinical Characteristics of the Study Patients
	DEGs Shared by ImmuneScore and StromalScore in OSC
	Selection of Candidate Potential Prognostic Biomarkers and Confounding Factors
	TMLE Estimation
	Validation in the Gene Expression Omnibus (GEO) Dataset

	Discussion
	Materials and Methods
	Data Source and Outcome Definition
	TME Construction
	Differentiation Analysis Between High-Score and Low-Score Groups Regarding ImmuneScore and StromalScore
	GO and KEGG Enrichment Analysis
	Univariate Analysis of Associated Genes and Clinical Pathologic Factors
	Selection of the Minimal Sets of Confounding Covariates
	TMLE Estimation Method
	Identification of the Effect Estimates
	Estimation of Effect Estimates
	Validation in the Gene Expression Omnibus (GEO) Dataset

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


