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Biotic and abiotic Fe(III) reduction of clay minerals (illite IMt-1) under

low-temperature (0 and 4◦C, pH 6) was studied to evaluate the effects

of bioalteration on soil properties including clay structure and elemental

composition. The extent of Fe reduction in bioreduced samples (∼3.8 % at

4◦C and ∼3.1 % at 0◦C) was lower than abiotic reduction (∼7.6 %) using

dithionite as a strong reductant. However, variations in the illite crystallinity

value of bioreduced samples (◦12θ = 0.580–0.625) were greater than those

of abiotic reduced samples (◦12θ = 0.580–0.601), indicating that modification

of crystal structure is unlikely to have occurred in abiotic reduction.

Moreover, precipitation of secondary-phase minerals such as vivianite

[Fe2+
3(PO4)2·8H2O] and nano-sized biogenic silica were shown as evidence

of reductive dissolution of Fe-bearing minerals that is observed only in a

bioreduced setting. Our observation of a previously undescribed microbe–

mineral interaction at low-temperature suggests a significant implication for

the microbially mediated mineral alteration in Arctic permafrost, deep sea

sediments, and glaciated systems resulting in the release of bioavailable Fe

with an impact on low-temperature biogeochemical cycles.

KEYWORDS

microbe-mineral interaction, psychrophilic bacteria, biomineralization, Fe sources,
illite (IMt-1)

Introduction

Microbe–mineral interactions have been studied for the last three decades across
many fields, including mineral diagenesis, nutrient cycling, biomineralization, organic
matter maturation, and the planetology of outer space, to understand environmental
processes. This is because microbes and clay minerals are ubiquitous in natural
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sediments and play a significant role in environmental
processes, such as surface area, cation exchange capacity, and
clay particle flocculation (Pollastro, 1993; Kim et al., 2004, 2012;
Dong et al., 2009; Bishop et al., 2013). According to previous
studies, microbial Fe(III) respiration can catalyze the alteration
of Fe oxides and Fe-bearing clay minerals in mesophilic and
thermophilic conditions representing the surface and deep
biosphere (Kostka et al., 1999; Zhang et al., 2007a; Jaisi
et al., 2011; Stucki, 2011; Koo et al., 2014; Kim et al., 2019).
Mineral alteration by psychrophilic bacteria in Antarctic marine
sediments (Jung et al., 2019) were recently reported, providing
scientific communities, such as those conducting mineralogy
and biogeochemistry, with new evidence for microbial mineral
alteration in the cryosphere. Microbes have been detected in
diverse glacio-marine environments (Mikucki et al., 2009), ice
sheets (Karl et al., 1999), permafrost (Margesin et al., 2016), and
subglacial lakes (Gill-Olivas et al., 2021), introducing growing
evidence (Sharp et al., 1999; Skidmore et al., 2005; Wadham
et al., 2010; Montross et al., 2013) for the possibility that
microbes may play a role in biogeochemical weathering, even
at low-temperatures (Montross et al., 2013; Nixon et al., 2017).
Biogeochemical reactions can modify in the oxidation state of
iron in mineral structure resulting in physical and chemical
properties of clay minerals (Kim et al., 2004), which are generally
sensitive to redox conditions in the system (Gorski et al., 2013).
These physicochemical changes in bioreduced clay minerals
increase the amount of residual Fe(II) in clay structure and Fe
in solution form, suggesting that the Fe released from sediments
could be a consequence of microbial Fe(III) reduction in the clay
structure (Stucki, 2011; Koo et al., 2014). However, microbial
mineral alteration at low-temperature is still poorly understood
because it challenges the conventional concept of kinetic and
thermodynamic models.

Illite crystallinity (IC), also known as the Kübler index, has
frequently been used as a proxy for low-grade metamorphism
(Cashman and Ferry, 1988; Eberl and Velde, 1989) due to it
being closely linked with burial temperature and time, fluid
pressure, lithology, and illite composition (Weaver et al., 1971;
Frey, 1987). IC comprises the half-height width of illite 10-
Å peak from XRD profiles (Kübler, 1964) that reflects X-ray
scattering domain size and structural distortions (Eberl and
Velde, 1989), and it measures crystal alterations (Roberts and
Merriman, 1985). Recently, analysis of IC has been employed
beyond metamorphism to reconstruct paleoclimate conditions
such as Holocene warming (Pandarinath, 2009; Wang and
Yang, 2013; Jung et al., 2019). Chemical weathering in organic-
rich sediments is accelerated in wet and warm monsoonal
conditions, resulting in the alteration of illite structure and
a corresponding change in IC. Thus, IC has been proven
to have a broader impact than simply as a diagnostic for
metamorphism. However, none of these studies have taken
into account specifically the biotic/abiotic effects on IC.
Here, we addressed this issue by conducting low-temperature

biotic/abiotic reduction experiments (0 and 4◦C, pH 6) designed
to simulate cold environments and compared the degree of
alteration by biotic and abiotic processes.

Materials and methods

Material, bacterial strain, and media
preparation

Illite (IMt-1) (Ca0.01Na0.08K1.58)(Al2.78Fe3+
0.67Fe2+

0.08

Mg0.47)(Si6.89Al1.11)O20(OH)4, purchased from the source
clays repository of the Clay Minerals Society, was used in the
present study. The IMt-1 contained 12.3 % total Fe content,
and the Fe(II)/total Fe ratio was 0.10 (Bishop et al., 2011). Size
fractions < 2◦µm of IMt-1 were separated by gravitational
settling in a deionized water column and then freeze-dried to
acquire a homogeneous illite (Köster et al., 2019). Psychrophilic
bacteria (Shewanella vesiculosa sp.), which are known to be
cold-adapted and cold-tolerant facultative Fe-reducing bacteria
(Bozal et al., 2009), were isolated from King Sejong Station,
Antarctica, by the Korea Polar Research Institute (KOPRI).
S. vesiculosa were grown aerobically in a Luria–Bertani broth
liquid medium at 15◦C for 7◦days to increase cell density and
activity. The cells were then washed three times with 0.1 mM
NaCl in order to remove the residual medium (Myers and
Nealson, 1988). The final cell density for the batch experiments
was ∼1.0 × 107 CFU/mL, which was determined by viable-
cell count and optical density measurement at 660 nm with
a UV/VIS spectrometer (DR4000UV, Hach, Loveland, CO,
United States). Washed cells were inoculated in the N2-purged
M1 medium with IMt-1 (4 g/L) as the sole electron acceptor
and with Na-Lactate (20 mM) as the electron donor for the
microbe–mineral interaction (Table 1). The medium was
buffered by MOPS to maintain pH 6 during the reaction.
Control and chemical reduction sets were prepared in the same

TABLE 1 Experimental settings for bioreduced, control, and chemical
reduced condition.

Experimental set Composition

Clay mineral Medium Dithionite

Bioreduced v v

Control v v

Chemical reduced v v

pH 6.0

Temperature 0◦C, 4◦C

Medium composition M1 Basal salts, M1 Trace element, M1 Phosphate,
M1 metal supplement, MOPS, 15 mM Sodium
selenate, 0.2 M NaHCO3 , M1 Amino acid, 2 M
C3H5O3Na, 2 M HCOONa
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way as the experimental set, except that the microbes were
not suspended in the solution. The abiotic chemical reduction
set (2 h) was reduced using dithionite (Na2S2O4) as a strong
reductant. A sample of 100 mL of this suspension was placed in
each serum bottle (4 and 0◦C). The reaction was stopped at time
points of 1, 2, 4, 8, 12, and 24◦weeks by freezing the samples
in a deep freezer (−70◦C) and then thawing them in ambient
temperature water for further analysis.

Chemical analysis

The structural Fe of IMt-1 was extracted by 3.6 N H2SO4

and 48 % HF, and then 1,10-phenanthroline reagent was added
to the samples (Stucki, 1981). Triplicate copies of each set
were prepared to measure the Fe(II)/Fetotal and minimize the
measuring error. The concentration of the Fe(II) was measured
with a UV/VIS spectrometer (DR4000UV, Hach, Loveland,
CO, United States) at 510 nm of wavelength. Hydroxylamine
was added to reduce residual Fe(III) to Fe(II), and then
Fe(II) concentration was measured again for Fetotal content.
The concentration of dissolved Fe [Fe(II)aq + Fe(III)aq] in
the solution was determined by inductively coupled plasma
atomic emission spectroscopy (ICP-AES; ICAP 7000, Thermo
Scientific, Germany) at the Korea Polar Research Institute
(KOPRI). The liquid aliquots were collected after centrifugation
(11,000 rpm, 3 min) and then filtered with a 0.45◦µm filter to
remove residual particles (Kim et al., 2010; Jeong et al., 2012).

X-ray diffractometer

X-ray diffraction (XRD) analyses were obtained at 30◦kV
and 10◦mA with an X’PERT-PRO automated diffractometer
utilizing Cu-Kα radiation. XRD profiles were recorded at a scan
speed of 0.02 step and 1.0◦/min over the range of 2θ angles
(2–40◦2θ), and then Crystallographica Search-Match software
(version 2.0.3.1) was used to identify the mineralogical change.
IC refers to the full width at half-maximum height (FWHM)
of illite (001) XRD peak (Kübler, 1964; Jaboyedoff et al., 2001)
utilizing OriginPro8 software after the background removal by
Chebyshev polynomial (≤ 20 coefficients) and the pseudo-Voigt
function suggested by Thompson (Thompson et al., 1987).

Electron microscopic observation

A field emission scanning electron microscope (FE-
SEM; Gemini500, Zeiss, Germany) with energy dispersive
X-ray spectroscopy (Ultim max100, Oxford Instruments,
United Kingdom), operating at a working distance of 10 mm
and 15◦keV, was used to observe the precipitation of secondary-
phase minerals. SEM specimens were prepared following a

FIGURE 1

Extent of biotic and abiotic Fe reduction in IMt-1 during batch
experiment at various temperatures (0 and 4◦C) and incubation
times.

method to improve their image resolution and elemental
composition (Dong et al., 2003a). The prepared specimens were
air-dried for 24 h prior to Pt coating 10 nm in thickness.

Results

Biotic/abiotic Fe reduction

A series of dissolution experiments (0 and 4◦C at pH 6)
was performed using IMt-1 with S. vesiculosa to estimate Fe(II)
generated biotically and abiotically (Figure 1). The extent of
Fe(III) reduction in the bioreduced sample at 0◦C reached
∼2.3% after 4◦weeks and then slightly increased to ∼3.1% after
24◦weeks of incubation. The bioreduced sample at 4◦C reached
up to ∼3.8% after 4◦weeks and then decreased to ∼2.6% after
8◦weeks of incubation. After that, the extent of Fe(III) reduction
slowly increased to∼3.1% after 24◦weeks. After the first 4◦weeks
of incubation, the highest rate of Fe(III) reduction was observed
at both temperatures, while no measurable Fe(III) reduction
(∼0.2%) was shown in the control samples (0 and 4◦C). Abiotic
reduction using the dithionite reduced more Fe(III) in IMt-1
(∼7.6%) than biotic reduction.

The concentration of the total dissolved Fe upon biological
dissolution from IMt-1 at both temperatures (Figure 2)
increased rapidly for up to 8◦weeks of incubation (44.2 µM
in 0◦C and 47.3 µM in 4◦C) and decreased after 12◦weeks
(32.9 µM in 0◦C and 26.8 µM in 4◦C), and 24 weeks (36.5 µM in
0◦C and 32.1 µM in 4◦C). Abiotic reduction showed the highest
concentration of dissolved Fe (431.5 µM). On the other hand, a
small variation in dissolved Fe (6.0 µM in 0◦C and 1.3 µM in
4◦C) in the solution was measured in the control samples.
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FIGURE 2

Production of total dissolved Fe from IMt-1 during batch
experiment at various temperatures (0 and 4◦C) and incubation
times.

FIGURE 3

X-ray diffraction (XRD) profiles for illite and vivianite main peaks
for bioreduced, abiotic reduced, and control samples after
24◦weeks.

Mineralogical change

The XRD profiles (Figure 3) of the IMt-1 samples at pH 6
for the 24◦weeks of incubation all showed main peaks of illite,
including (001), (002), and (003) peaks. The values of IC in
◦12θ showed variation with conditions in a range of 0.580–
0.613 (0◦C bioreduced IMt-1), 0.580–0.625 (4◦C bioreduced
IMt-1), and 0.580–0.601 (abiotic reduced IMt-1). A particularly

abrupt increase in corresponding IC values for bioreduced IMt-
1 was noticed (Table 2); however, a small variation in IC values
(0.580–0.583 ◦12θ) was measured in the control samples (0
and 4◦C).

The unaltered initial IMt-1 showed a bulky-, flaky-looking
texture (Figure 4A), and corresponding elemental compositions
of Al/Si (0.58) and K [K/(K+2Ca) = 0.83] in SEM-EDS
were observed. In the abiotic reduced IMt-1, initial illite
remained at the end of the incubation period, but the elemental
compositions of Al/Si (0.59) and K [K/(K+2Ca) = 1] were
increased (Figure 4B), and no interlayer Ca was measured. After
bioreduction, bioreduced IMt-1 displayed altered crystalline
boundaries and small euhedral crystals of illite (Figure 4C).
The elemental compositions of Al/Si (0.59), K content
[K/(K+2Ca) = 1], and no interlayer Ca were measured. Many
dissolution pits were observed in the bioreduced samples
(Figure 4C). The magnified image of bioreduced IMt-1
(Figure 4D) showed the size of dissolution pits (∼1–2◦µm).
A new mineral phase, vivianite [Fe2+

3(PO4)2·8H2O], was
detected at 11.15 ◦2θ and 13.15 ◦2θ in the XRD profile only
for the 4◦C bioreduced sample after 24◦weeks of incubation, in
contrast to the abiotic reduced and control samples (Figure 3).
Direct observation of euhedral crystal at approximately 10–
20◦µm in size and elemental composition of Fe, P, and O in
EDS measurement indicated the precipitation of secondary-
phase mineral precipitation (Figure 5). Moreover, nano-sized
and aggregated biogenic silica was detected only in the
bioreduced sample.

Discussion

Biotic/abiotic reduction of clay
minerals

The extent of microbial Fe(III) reduction in clay minerals
varies depending on elements of the experimental setting, such
as the type of bacterial species, concentration of inoculated cells
and minerals, medium chemistry (pH, buffer, and elemental
composition), temperature, and presence of electron shuttle
(Kostka et al., 1999; Jaisi et al., 2005, 2007; Furukawa and
O’Reilly, 2007; Zhang et al., 2007a,b). Moreover, the limited
reduction of structural Fe(III) in clay minerals has been
attributed to multiple factors (Roden and Wetzel, 2002; Jaisi
et al., 2007). Additional inoculation of fresh cells is the most
effective way for electron acceptors such as clay minerals or
Fe-oxides to promote the biotic reaction (Urrutia et al., 1998).
However, none of these studies have compared the degree
of biotic/abiotic effects on mineral alteration, such as the
modification of IC. Microbial alterations of IMt-1 responded
to increases in the extent of Fe(III) reduction (Figure 1),
and consequently, the soluble form of Fe concentration
(Figure 2) from reductive dissolution was clearly displayed
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TABLE 2 Full width at half maximum (◦12θ) of biotic/abiotic reduced IMt-1.

Time 0◦C bioreduced 0◦C control 4◦ bioreduced 4◦C control Abiotic reduced

Time zero 0.580 0.580 0.580 0.580 0.580

2 h 0.601

1 week 0.582 0.580 0.583 0.581

2 weeks 0.587 0.582 0.599 0.582

4 weeks 0.608 0.582 0.621 0.581

8 weeks 0.611 0.583 0.623 0.582

12 weeks 0.613 0.582 0.624 0.584

24 weeks 0.613 0.583 0.625 0.583

FIGURE 4

SEM images of the (A) unaltered initial IMt-1, (B) chemically reduced IMt-1, (C) bioreduced IMt-1 after 24◦weeks incubation, and (D)
magnification of dissolution pits in bioreduced IMt-1.

in the modification of mineral structure (Table 2) and
precipitation of secondary phase minerals (Figures 3, 5).
Interestingly, variations in IC value abruptly increased in
bioreduced samples compared with abiotic reduced samples
(Table 2), which showed a much higher extent of Fe(III)
reduction. In other words, low crystalline illite (high IC
value) has a correlation with the activity of microbial Fe
respiration, which causes the alteration of illite structure in
anaerobic low-temperature conditions. Progressive changes
in morphology of bioreduced IMt-1 (Figure 4C), compared
with abiotic reduced and control samples (Figures 4A,B),
supported a reductive dissolution of clay minerals and

secondary-phase mineral formation (Figure 5), as shown in the
solution chemistry (Figure 2) and mineralogy (Figure 3 and
Table 2). Furthermore, many dissolution pits in bioreduced
IMt-1 showed similar sizes to microbes (Figure 4C). The
magnified image of bioreduced IMt-1 (Figure 4D) further
confirmed that the size of the dissolution pits was similar
to those of microbes (∼1–2◦µm). The formation of nano-
sized aggregated biogenic silica also strongly supported the
dissolution of illite (Figure 5). Furthermore, biogenic minerals
show much smaller in crystal size (Zhang et al., 2007a) and
have fewer impurities than those that are inorganically formed
(Carvallo et al., 2008).
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FIGURE 5

SEM image of euhedral vivianite crystal and nano-sized aggregated silica in bioreduced sample after 24◦weeks incubation. Elemental
composition of Fe, P, and O in EDS measurement.

Mineral transformation by microbial
reduction

Diverse microorganisms have been shown to get energy
from Fe respiration using solid minerals to maintain their
growth and metabolism (Kostka et al., 1996, 1999; Lovley, 2004),
resulting in mineralogical and chemical changes. Generally,
two possible mechanisms for mineral transformation by
microbial Fe(III) reduction have been proposed: (1) solid-
state reaction and (2) dissolution–precipitation (Dong et al.,
2009). Microbial Fe(III) reduction in clay minerals occurs
without any dissolution in the solid state model. If any,
mineralogical modifications such as dissolution are very small,
and reaction is completely reversible after reoxidation (Gates
et al., 1996; Kashefi et al., 2008). However, mineral dissolution
occurs, either before or after microbial Fe(III) reduction, in
the dissolution–precipitation model. In this case, reactions are
irreversible, and secondary-phase minerals are often observed
resulting from bioreduction (Dong et al., 2003a; Jaisi et al.,
2007; Zhang et al., 2012). The euhedral vivianite crystals
and nano-sized aggregated biogenic silica observed in this
study (Figure 5) demonstrated that psychrophilic bacteria
were capable of dissolving illite IMt-1 and precipitating new
minerals in low-temperature conditions (Figures 5, 6). The
initial increase in concentration of the total dissolved Fe in
bioreduced samples (Figure 3) may result from the reductive
dissolution of IMt-1, and the subsequent decrease could be
attributed to the precipitation of vivianite (hydrated iron
phosphate mineral). The dissolution of IMt-1 and formation of

biogenic secondary-phase minerals suggest that psychrophile-
mediated redox cycling of IMt-1 is not a reversible reaction.
Moreover, the bioreduced IMt-1 was more enriched in the
interlayer cation (K) than abiotic-reduced sample (Figure 4C).
These additional cations were expected to rebalance the negative
charge resulting from the Fe-reduction [Fe(III) to Fe(II)] in
the octahedral sheet of the illite structure (Zhang et al., 2012).
Over an extended time in natural soil environments, Fe-bearing
minerals such as smectite, illite, smectite–illite (S-I) mixed-
layer, and Fe-oxides may undergo reductive dissolution in
anoxic conditions and supply the bioavailable iron (Stucki,
1988; Kostka et al., 1999; Stucki and Kostka, 2006; Jaisi et al.,
2011; Liu et al., 2012). On the other hand, they could have
been re-oxidized partially when they were exposed to oxygen
and other oxidants (Stucki, 2011). Therefore, Fe-bearing clay
minerals may go through repetitive cycles of the Fe redox
state and play an important role in the elemental cycle in
low-temperature environments.

Environmental implications

The microbe–mineral interactions are commonly anaerobic
reactions and are found in various soils and sediments
distributed in glacial, deep sea, and hydrothermal vents (Bishop
et al., 2013). A new challenge for testing the modification of
IC for the biogeochemical reaction was initiated to simulate
cold environments and compare the degree of alteration by
biotic and abiotic processes. It is the first measured evidence
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FIGURE 6

Schematic diagram showing possible pathway of Fe cycle and electron transfer from microbe to the structural Fe(III) of the clay minerals.

of IC responding to biotic and abiotic Fe reduction at low-
temperature. These results also can be applied to search for
biosignatures in clay minerals on the primitive Earth and
Mars (Bishop et al., 2013). Furthermore, bioavailable iron is
a necessary nutrient for the growth and metabolic process
of phytoplankton in marine environments (Morel and Price,
2003; Wadley et al., 2014). For this reason, the increase in
primary productivity is restricted due to insufficient iron in
some areas of the global ocean that causes outgassing of
upwelled CO2 that serves as a regulator of climate change
(Martin, 1990). However, the source of bioavailable iron to the
global ocean still remains an open question. Low crystalline
illite (high value of IC) has a strong relation with the
activity of microbial Fe respiration, which causes the alteration
of illite structure in low-temperature anaerobic conditions
(Jung et al., 2019). The psychrophilic Fe-reduction in illite
resulted in structural and chemical modification similar to the
consequences presented in our previous reports for mesophilic
(Dong et al., 2003b; Kim et al., 2004) and thermophilic reactions
(Zhang et al., 2007a). Illite appears prominently on continental
shelves (Petschick et al., 1996; Wang and Yang, 2013), and the
concentration of dissolved Fe(II) is higher near the coastline
than in the open ocean (Schlosser et al., 2012), suggesting
that bioavailable iron may be transported from terrigenous
sediments to the ocean through microbial Fe(III) reduction in
Fe-rich sediments. An approximation of the total Fe released
to the solution through microbial Fe(III) reduction in Fe-
rich smectite was about ∼5% of calculated total structural
Fe in our previous experiment for psychrophilic microbe and
NAu-2 interaction (Keeling et al., 2000; Jung et al., 2019). In
consideration of the clay content in marine sediments [clay
content is generally < 30% and partly < 10% of the bulk
sediment (Petschick et al., 1996)], microbial activity positively

related to the modification of illite structure corresponding to
redox conditions plays an important role in nourishing the
bioavailable Fe(II) in global oceans.

Conclusion

The evidence of microbially weathered illite was identified
through the progressive increase in extent of Fe reduction
and dissolved Fe concentration, and dissolution features
corresponding to the increases in K-content (K/K+Ca) and
Al/Si. The extent of Fe reduction in bioreduced samples was
lower than abiotic reduction using dithionite as a strong
reductant. However, variations in the illite crystallinity value
of bioreduced samples were greater than those of abiotic
reduced samples, suggesting that modification of mineral
structure is unlikely to have occurred in abiotic reduction.
Moreover, precipitation of secondary-phase minerals such as
vivianite and nano-sized silica were shown as evidence of
reductive dissolution of Fe-bearing minerals that is observed
only in a bioreduced setting. In summary, our observation
of a previously undescribed microbe–mineral interaction at
low-temperature suggests an important implication for the
microbially mediated mineral alteration in Arctic permafrost,
deep sea sediments, and glaciated systems resulting in the supply
of bioavailable Fe with an impact on biogeochemical cycles in
low-temperature environments.
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