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Abstract: Given the current epidemic of multidrug-resistant tuberculosis, there is an urgent need
to develop new drugs to combat drug-resistant tuberculosis. Direct inhibitors of the InhA target
do not require activation and thus can overcome drug resistance caused by mutations in drug-
activating enzymes. In this work, the binding thermodynamic and kinetic information of InhA to
its direct inhibitors, phenoxyphenol derivatives, were explored through multiple computer-aided
drug design (CADD) strategies. The results show that the van der Waals interactions were the main
driving force for protein–ligand binding, among which hydrophobic residues such as Tyr158, Phe149,
Met199 and Ile202 have high energy contribution. The AHRR pharmacophore model generated by
multiple ligands demonstrated that phenoxyphenol derivatives inhibitors can form pi–pi stacking
and hydrophobic interactions with InhA target. In addition, the order of residence time predicted
by random acceleration molecular dynamics was consistent with the experimental values. The
intermediate states of these inhibitors could form hydrogen bonds and van der Waals interactions
with surrounding residues during dissociation. Overall, the binding and dissociation mechanisms at
the atomic level obtained in this work can provide important theoretical guidance for the development
of InhA direct inhibitors with higher activity and proper residence time.

Keywords: InhA direct inhibitors; phenoxyphenol derivatives; hotspot residues; pharmacophore
model; molecular dynamics simulation; dissociation pathway; residence time

1. Introduction

The enoyl-acyl carrier protein reductase (InhA) is a key enzyme in catalyzing fatty
acid synthesis, which is essential for the survival of mycobacteria. Studies have shown that
inhibiting the function of InhA protein will block the synthesis of mycolic acid, thereby de-
stroying the formation of bacterial cell walls and further leading to morphological changes
and cell lysis [1]. As prodrugs, isoniazid and ethionamide are activated by KatG/EthA
to form adducts with NADH, and then the adduct acts on InhA to inhibit its protein
function [2,3]. However, mutations in the KatG/EthA genes confer severe resistance to
isoniazid and ethionamide [4]. In contrast, the direct inhibitors of InhA can skip the drug
activation step and avoid the drug resistance problems. Therefore, the study of direct
inhibitors against InhA target has attracted widespread interest.

In recent years, a series of phenoxyphenol derivatives designed based on the antibac-
terial drug triclosan (TCL) showed high binding affinity to InhA [5–7]. In particular, the
derivatives have longer residence time than TCL and can act on the InhA target for a
long time [6,8]. Additionally, some direct inhibitors, including thiazoles, pyridines and
carboxamides [9–11], etc., have also been discovered through high-throughput screening
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and fragment-based drug design. Unfortunately, none of the inhibitors have entered clinical
studies. So, it is very meaningful to understand the interaction essence between InhA and
its direct inhibitors to provide the valuable information of future design and modification
of InhA direct inhibitors.

In modern drug discovery, accurate evaluation of thermodynamic and kinetic infor-
mation of drug–target interactions can provide a useful theoretical basis for understanding
how drugs and their targets interact and how to improve drugs’ efficacy [12,13]. With the
development of computer-aided drug design (CADD), the binding free energy [14–16] and
residence time [17,18] of protein–ligands can be accurately predicted by computational
methods. Compared to traditional experiments, CADD strategy is more time-efficient,
labor-saving and cost-effective, allowing the prediction of thermodynamic and kinetic
information for many molecules in a short period of time.

In this paper, the binding thermodynamics of TCL and its five derivatives (PT70, PT91,
PT119, PT501 and PT506) with InhA was first explored by classic molecular dynamics (MD)
simulations. The binding free energy calculated by the molecular mechanics–generalized
Born surface area (MM–GBSA) [19] showed that these inhibitors bound to InhA mainly
through the van der Waals interaction. Residue energy decomposition revealed that
residues such as Phe149, Tyr158, Met199 and Ile202 had higher energy contributions to
the binding of inhibitors. In addition, the conformation of the substrate binding loop (H6)
and H7 directly affected the binding affinity of the inhibitors. Secondly, pharmacophore
model analysis further showed that the common structural features of this class of in-
hibitors include a hydrogen bond acceptor group, a hydrophobic group and two aromatic
centers. The results of tau random accelerated MD (τRAMD) [18] simulations indicated
that the six inhibitors mainly have two different dissociation pathways, and the predicted
order of residence time was consistent with the experimental order. Meanwhile, steered
MD [20] simulations further characterize the intermediate states of each inhibitor during
the dissociation process.

2. Results and Discussion
2.1. Van der Waals Interactions Are the Main Driving Force for the Binding of InhA Inhibitors

The root-mean-square deviations (RMSDs) value can be used to examine the deviation
between the target coordinate set and the reference coordinate set during the simulation
process, which reflects the positional change of the molecular structure over time. The fluc-
tuations of RMSD can also characterize the stability and convergence of the system. Here,
the RMSD values of protein and ligand over time were monitored during the simulation. It
can be seen from Figure 1A that after 150 ns, the protein RMSD fluctuations in each system
were all within 1.0 Å, indicating that the system tended to be stable. As shown in Figure 1B,
all ligands were also relatively stable after 50 ns (fluctuated within 1.0 Å). The RMSD of
TCL changed greatly at about 30 ns (from 1.0 Å to 8.0 Å), which indicated that the binding
position of TCL may have changed. In addition, the root-mean-square fluctuations (RMSFs)
of proteins were also monitored. From Figure 1C, we can see that among the six systems,
the H6 and H7 were more flexible than the other domains. The α-helix of H6 and H7 are
located around the binding pocket, which directly affects the stability of inhibitor binding.
The flexibility of H6 and H7 was the smallest in PT70 system, which may be the reason for
the best binding affinity of PT70.

To predict the binding affinity between these inhibitors and InhA, the equilibrated
trajectories were used to calculate the binding free energies by the MM–GBSA method. As
shown in Table 1, the binding free energies of PT70, PT91, PT119, PT501, TCL and PT506
to InhA were −32.84 kcal/mol, −32.23 kcal/mol, −32.27 kcal/mol, −32.09 kcal/mol,
−28.34 kcal/mol and −28.11 kcal/mol, respectively. By comparing the contributions of
various energy terms, it can be seen that the van der Waals interaction energies were
much higher than the electrostatic interaction energies, indicating that the van der Waals
interaction was the main driving force for the binding of inhibitors. In addition, the order
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of the enthalpy changes was basically consistent with the order of the Ki values measured
experimentally.
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Table 1. The binding free energy and the contribution of different energy terms (kcal/mol).

Energy PT70 PT91 PT119 PT501 TCL PT506

∆Eele −9.00 ± 0.09 −17.01 ± 0.10 −6.81 ± 0.11 −11.72 ± 0.19 −4.71 ± 0.08 −7.56 ± 0.12
∆Evdw −39.18 ± 0.08 −39.63 ± 0.07 −40.74 ± 0.07 −42.63 ± 0.08 −34.01 ± 0.06 −38.94 ± 0.07
∆EMM −48.18 ± 0.11 −56.64 ± 0.11 −47.55 ± 0.12 −54.35 ± 0.19 −38.72 ± 0.10 −46.49 ± 0.16
∆GSA −5.58 ± 0.006 −5.70 ± 0.006 −5.82 ± 0.005 −5.67 ± 0.007 −4.38 ± 0.004 −5.12 ± 0.007
∆GGB 20.91 ± 0.06 30.11 ± 0.09 21.09 ± 0.09 27.93 ± 0.15 14.77 ± 0.07 23.51 ± 0.10
∆Gsol 15.34 ± 0.06 24.42 ± 0.08 15.27 ± 0.09 22.26 ± 0.15 10.38 ± 0.07 18.38 ± 0.10

∆Hbind −32.84 ± 0.08 −32.23 ± 0.07 −32.27 ± 0.07 −32.09 ± 0.08 −28.34 ± 0.07 −28.11 ± 0.09
Ki (nM) 0.022 0.96 2.14 70 220 370

2.2. Critical Roles of Hotspot Residues and the Conformation of H6/H7 on the Binding of
InhA Inhibitors

To further identify hotspot residues for the binding of these inhibitors to InhA, residue
energy decomposition was carried out. As shown in Figure 2, the residues with large
energy contributions mainly included Phe149, Tyr158, Met161, Met199, Ile202 and Leu218.
To analyze the relationship between the residue energy contribution and the binding
mode, principal component analysis was performed, and the free energy landscapes were
plotted based on the top two principal components (Figure S1). It can be seen that the
conformational distribution of each system was relatively concentrated, tending to form a
single conformational state. The structures located at the lowest energy well were selected
as the representative conformations of each system and the detailed binding modes between
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them and InhA were shown in Figure 3. It can be seen that the residue Tyr158 can not
only form pi–pi stacking with the benzene rings on TCL and PT501 molecules, but also
form hydrogen bonds with the hydroxyl groups on PT70 and PT91 molecules. Therefore,
the interaction between the residue Tyr158 and the inhibitor is very important for the
binding of inhibitors. Moreover, the benzene rings and hydrophobic tails of TCL, PT70,
PT91 and PT119 can also form van der Waals interactions with residues Phe149, Phe97,
Met103, Met155, Tyr158, Met161, Met199 and Ile202. In the PT501 system, the N atom of
the triazole ring can act as a hydrogen bond acceptor to form a hydrogen bond with Gln214.
The triazole and cyclopropane substituent of PT501 protruded into the hydrophobic pocket
formed by Met155, Leu217, Ile202, Ala157 and Pro156 (Figure 3E). The above residues were
also critical to the binding of PT501 and InhA (Figure 2). The triazole ring of PT506 can
form pi–pi stacking interaction with Phe149. In addition, the triazole ring and cyclopropane
substituents also extended into the hydrophobic pocket formed by Met199, Val203, Leu218,
Met155, Trp222, Ile202 and Pro193.
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Previous studies have shown that H6 and H7 were critical for inhibitor binding and
the above RMSF analysis also indicated that the flexibility of H6 and H7 was quite different
among different inhibitors. Therefore, to further explore the conformational differences of
H6 and H7, the H6 and H7 structure of PT70 were superimposed with the other systems,
respectively (Figure S2). Compared to PT70 system, the α-helix structure of H6 was
converted into a loop structure in the TCL system, and the helix structure of H7 also
underwent a conformational change. The binding conformation of PT91 was similar to
that of PT70, with both their hydrophobic tails extending to the hydrophobic sub-binding
pocket above. However, the α-helix of H6 in the PT91 system was also converted to a loop
structure, which increased the flexibility of the binding pocket and reduced the binding
affinity of PT91 to InhA. In the PT501 system, the conversion of the helix structure of H6
and H7 to loop was more obvious. Additionally, we found the binding conformations of
cyano substituents of PT119 and PT506 were similar. The conformations of H6 and H7
in both PT119 and PT506 systems underwent large shifts, which ultimately exposed their
binding pockets to solvent, thereby reducing their binding stability to InhA.

2.3. Pharmacophore Model Analysis Reveals the Structural Motifs of Phenoxyphenol Derivatives as
InhA Direct Inhibitors

The structural features of phenoxyphenol derivative inhibitors were further explored
by the pharmacophore model. As shown in Table 2, there are three pharmacophore models
based on multiple-ligand generation: AHRR, HHRR and AHHRR. Among them, the AHRR
model has the highest AUC value (0.89), which contained a hydrogen bond acceptor (A), a
hydrophobic group (H) and two aromatic rings (R). Furthermore, all six inhibitors fit the
AHRR pharmacophore profile. The alignment of the AHRR pharmacophore model with
each inhibitor is shown in Figure 4. Therefore, the AHRR pharmacophore model can best
display the common structural features of phenoxyphenol derivative inhibitors.

Table 2. Validation of the multiple ligand-based pharmacophore models.

Pharmacophore Phase Hypo Score ROC EF1% AUC

AHRR_1 1.01 0.83 60.43 0.89
AHRR_3 0.93 0.67 60.43 0.77
HHRR_2 0.71 0.53 30.21 0.74

AHHRR_2 0.71 0.38 30.21 0.68
(A) hydrogen bond acceptor; (H) hydrophobic group; (R) aromatic ring. Phase Hypo score, ROC (Receiver
Operating Characteristic), EF1% (Enrichment Factors) and AUC (Area Under the Curve) are the evaluation
parameters for the quality of the models.
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From the pharmacophore model, it can be seen that the aromatic ring and hydrophobic
center of these inhibitors play key roles in protein–ligand binding, further supporting that
van der Waals interactions are the main driving force for the ligand binding. The benzene
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rings and triazole ring on the inhibitors can generate an aromatic center, which can further
form pi–pi stacking interaction with Tyr158 or Phe149 residues. At the same time, the
hydrophobic tails of the inhibitors can generate a hydrophobic center, which penetrated
deep into the hydrophobic pocket of the receptor. On the other hand, the pharmacophore
model also shows that there are fewer polar centers (such as hydrogen bond acceptors and
hydrogen bond donors) in the inhibitors, so the polar interactions between the ligands
and the acceptors are relatively weak. Therefore, the introduction of polar groups into the
inhibitor can be considered in the future molecular design, which can increase the solubility
of the molecule on the one hand and can also enhance the polar interaction between the
molecule and the target. At the same time, virtual screening based on the pharmacophore
model can also further search for analogs with more possible polar groups.

2.4. The Order of Residence Time Predicted by τRAMD Is Consistent with the Experiment

To explore the dissociation kinetics of InhA inhibitors, each inhibitor was dissociated
using the tau random acceleration molecular dynamics simulation (τRAMD) method. For
the six inhibitors studied in this work, we found a total of three possible dissociation
pathways (as shown in Figure 5A). Among them, in the path1 channel, the inhibitors
dissociated along the H7 side, and in the path2 channel, they dissociated along the H6
side, while in the path3 channel, the inhibitors dissociated from the gap formed by H6
and H7. Furthermore, the dissociation orientations of the 120 trajectories for each inhibitor
were classified and counted (as shown in Table S1). The results showed that the two most
dominant dissociation pathways adopted by the six inhibitors were path1 and path2, while
path3 was rarely present. It can be seen from Table S1 that the number of dissociated
trajectories of TCL according to path1, path2 and path3 were 50, 69 and 1, respectively. It
can be speculated that TCL is relatively small and can dissociate from both path1 and path2
channels (Figure 5B,C). For the PT70, PT91 and PT501, their main dissociation pathways
were mainly according to the path1 channel, while PT119 and PT506 were mainly along the
path2 channel (Table S1 and Figure S3).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 14 
 

 

of TCL according to path1, path2 and path3 were 50, 69 and 1, respectively. It can be spec-
ulated that TCL is relatively small and can dissociate from both path1 and path2 channels 
(Figure 5B,C). For the PT70, PT91 and PT501, their main dissociation pathways were 
mainly according to the path1 channel, while PT119 and PT506 were mainly along the 
path2 channel (Table S1 and Figure S3).  

 
Figure 5. (A) Schematic diagram of three possible dissociation pathways (path1 to path3). (B) Sche-
matic diagram of the dissociation path of TCL along path1. (C) Schematic diagram of the dissocia-
tion path of TCL along path2. 

Furthermore, we averaged the dissociation times of 120 simulated trajectories to pre-
dict the residence times for each inhibitor (as shown in Table 3). The residence times of 
TCL, PT91, PT70, PT119, PT501 and PT506 predicted by τRAMD were 33.9 ps, 91.4 ps, 
177.4 ps, 386.5 ps, 518.9 ps and 2529 ps, respectively. Compared to the experimental value, 
the predicted residence times were much shorter (only at the ps level) due to the applied 
external force in τRAMD. However, the order of the predicted residence times of the six 
molecules was consistent with the order that was measured experimentally. In addition, 
τRAMD also predicted the residence time of TCL that cannot be experimentally moni-
tored due to its too-fast dissociation. From the predicted residence time, we found that 
inhibitors containing cyano substitutions have longer residence times, such as PT119 and 
PT506. Through the analysis of the binding mode, we found that the N atom of the cyano 
group of PT119 and PT506 can form hydrogen bonds with the oxygen atoms of the pyro-
phosphate region of NADH (as shown in Figure S4), which was not shown in PT70, PT91 
and PT501 systems. Therefore, PT119 and PT506 required longer time to overcome the 
hydrogen bonds between them and NADH during the dissociation process. Therefore, 
the cyano group substitution may prolong the residence time of the molecule, which is 
information that can guide the design of the inhibitor of InhA with long residence time. 

Table 3. Residence time ranking of InhA inhibitors predicted by τRAMD. 

Ligand 
Experiment  

(min) 
τRAMD  

(ps) Path 

TCL - 33.9 path1 or path2 

PT91 20 91.4 path1 

PT70 24 177.4 path1 

PT119 80 386.5 path2 

PT501 190 518.9 path1 

PT506 194 2529.0 path2 

  

Figure 5. (A) Schematic diagram of three possible dissociation pathways (path1 to path3).
(B) Schematic diagram of the dissociation path of TCL along path1. (C) Schematic diagram of
the dissociation path of TCL along path2.

Furthermore, we averaged the dissociation times of 120 simulated trajectories to
predict the residence times for each inhibitor (as shown in Table 3). The residence times
of TCL, PT91, PT70, PT119, PT501 and PT506 predicted by τRAMD were 33.9 ps, 91.4 ps,
177.4 ps, 386.5 ps, 518.9 ps and 2529 ps, respectively. Compared to the experimental value,
the predicted residence times were much shorter (only at the ps level) due to the applied
external force in τRAMD. However, the order of the predicted residence times of the six
molecules was consistent with the order that was measured experimentally. In addition,
τRAMD also predicted the residence time of TCL that cannot be experimentally monitored
due to its too-fast dissociation. From the predicted residence time, we found that inhibitors
containing cyano substitutions have longer residence times, such as PT119 and PT506.
Through the analysis of the binding mode, we found that the N atom of the cyano group of
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PT119 and PT506 can form hydrogen bonds with the oxygen atoms of the pyrophosphate
region of NADH (as shown in Figure S4), which was not shown in PT70, PT91 and PT501
systems. Therefore, PT119 and PT506 required longer time to overcome the hydrogen
bonds between them and NADH during the dissociation process. Therefore, the cyano
group substitution may prolong the residence time of the molecule, which is information
that can guide the design of the inhibitor of InhA with long residence time.

Table 3. Residence time ranking of InhA inhibitors predicted by τRAMD.

Ligand Experiment
(min)

τRAMD
(ps) Path

TCL - 33.9 path1 or path2
PT91 20 91.4 path1
PT70 24 177.4 path1

PT119 80 386.5 path2
PT501 190 518.9 path1
PT506 194 2529.0 path2

2.5. Steered MD Identifies the Intermediate States during the Dissociation Process

To further explore the key residues and interactions between these inhibitors and InhA
during the dissociation process, steered MD simulations were performed. As shown in
Figure 6, the position of the maximum force of TCL in the two dissociation pathways was
about 3 Å. The results show that during the dissociation of TCL along path1, the hydroxyl
group on its benzene ring can form a hydrogen bond with the backbone oxygen atom
of Met103. In addition, hydrophobic residues such as Gln214, Pro107 and Ala157 at the
dissociation exit can also form van der Waals interactions with the benzene ring, thereby
hindering the dissociation of TCL here. However, when TCL dissociated along path2, the
benzene ring of TCL just fell into the hydrophobic pocket formed by Ile202 on H6 and
residues, such as Met103, Met161 and Pro99, at the exit.
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For PT70 and PT91, they have two different intermediate states during dissociation
along the path1 channel (as shown in Figure 7). For the PT70 system, the first intermediate
state indicated that the hydroxyl group of PT70 can form a hydrogen bond with the
oxygen atom of NADH. In the second intermediate state, the hydrophobic tail of PT70 had
dissociated out of the pocket, and the hydrogen bond was formed between the hydroxyl
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group and the oxygen of Pro156. Meanwhile, PT70 also formed van der Waals interactions
with surrounding residues such as Tyr158, Phe149, Pro156, Leu207 and Gln214 during
dissociation process (Figure 7A). For PT91, its first intermediate state was mainly hindered
by the van der Waals interaction of some hydrophobic residues including Tyr158, Phe149,
Pro156, Leu218 and Gln214. In the second intermediate state, the hydrophobic tail of PT91
also had dissociated like PT70, while its ether oxygen atom can form a hydrogen bond with
the Gln214. As for PT501, it was also hindered by hydrophobic residues such as Tyr158,
Phe149, Pro156, Met155 and Val203 during dissociation along the path1 channel. However,
since the volume of the triazole ring and cyclopropane on the PT501 molecule is larger than
that of the hydrophobic tail of PT70 and PT91, it experienced greater resistance during the
dissociation process. Therefore, the dissociation time of PT501 was also longer. For PT119
and PT506, their main dissociation pathways were along the path2 channel.
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As shown in Figure 8A, PT119 can form van der Waals interactions with residues
such as Phe97, Met98, Pro99 and Met103 during dissociation. Although the dissociation
direction of PT506 molecule was consistent with that of PT119, the structure of PT506 was
larger than that of PT119, therefore it can form more interaction with surrounding residues,
such as with Ile202, Met199, Met161, Pro99 and Phe97 (Figure 8B). In addition, the hydroxyl
group of PT506 can also form hydrogen bonds with the oxygen atom of NADH. Therefore,
the dissociation time of PT506 was much longer than that of the PT119 molecule.
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3. Materials and Methods
3.1. System Preparation

The complex of InhA with each inhibitor was extracted from the PDB database
(https://www.rcsb.org/) (accessed on 2 September 2021) (as shown in Figure 9). First,
the Protein Preparation Wizard module of Schrödinger 2021 [21] was used to complete
the missing side chains of protein and assign the protonation states of histidine at pH 7.0
automatically. Then, Gaussian 16 [22] software was used to calculate the RESP charges
of the inhibitors at the Hartree–Fock 6–31G* level [23]. After that, RESP charge fitting
was performed using the antechamber program in Amber 20 software (Version 2020,
Case, D. A. et al., University of California, San Francisco, CA, USA) [24]. The parmchk
module further generated the parameters for inhibitors. The tleap module was employed
to generate topology and coordinate files for each complex. In addition, the GAFF [25]
and ff19SB [26] force fields were used to describe inhibitors and proteins, respectively.
Subsequently, each system was placed in a TIP3P water box [27]. The complex was set to be
10 Å away from the box edge, and periodic boundary conditions were employed to avoid
boundary effects. Finally, the counter ions (Na+) were added to each system to neutralize
the entire system [28].

https://www.rcsb.org/
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inhibitors as well as their crystal structures with InhA: TCL (1P45 [29]), PT70 (2X23 [30]), PT91
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colored with magenta cartoon, the α-helix (H1–H8) was colored with cyan cartoon and the loop
region was colored with pink.

3.2. Classic Molecular Dynamics Simulations

The PMEMD module [32] of Amber 20 was used to minimize the energy of each
system to eliminate atomic collisions. With the complex restrained, each system was heated
from 0 K to 310 K in three steps under the NVT ensemble [33]. Subsequently, equilibrium
simulation was performed for each system. Finally, 350 ns production simulations were
performed using the GPU version of Amber 20 [24] under the NPT ensemble [34]. During
the simulations, the particle mesh Ewald (PME) algorithm [35] was used to treat long-range
electrostatic interactions, and the SHAKE algorithm [36] was used to limit the vibrations
of all covalent bonds involving hydrogen atoms. A structure was saved every 5 ps. Each
system contains approximately 110,000 atoms.

3.3. Pharmacophore Modeling

A pharmacophore is a collection of chemical features and spatial properties necessary
for ligand recognition by biological macromolecules. In this work, the pharmacophore
models based on multiple ligand (6 inhibitors studied in this paper) were constructed
by Schrödinger 2021 [21]. In addition, the discriminative ability of the pharmacophore
model was also evaluated. The active set contained 13 active phenoxyphenol derivatives
listed in literature [37] (not the same as the studied 6 inhibitors). The decoy set (including
2300 compounds) was downloaded from the DUD–E (Directory of Useful Decoys) [38].
Next, parameters such as phase hypo score, ROC (receiver operating characteristic), EF1%
(enrichment factors) and AUC (area under the curve) were used to evaluate the pros and
cons of the model. A pharmacophore model with a higher AUC value can more accurately
find active inhibitors from the screened compounds.

3.4. Tau Random Acceleration Molecular Dynamics Simulation

The random acceleration molecular dynamics (RAMD) [39] simulation is a method
developed by Lüdemann et al. to explore possible dissociation pathways for ligands. Based
on this method, Kokh et al. developed τRAMD [18] to predict the residence time for a range
of HSP90 inhibitors. τRAMD simulations require neither prior knowledge about protein–
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ligand binding nor extensive parameter fitting. The only parameter is the magnitude of
the random force that affects the simulation time. In this paper, the τRAMD simulations
were performed in NAMD program [40]. Firstly, 10 ns conventional MD simulations were
performed to generate different initial structure and velocity for τRAMD simulation. Six
structures were extracted from the trajectory (one frame every 2 ns) for τRAMD simulations.
In addition, the magnitude of the random force was set to be 16 kcal/mol. To increase the
repeatability of the simulations, 20 parallel dissociation simulations (with random force
direction changes) were performed for each structure. Finally, a total of 120 dissociation
trajectories were obtained for each system.

3.5. Steered Molecular Dynamics Simulation

The steered molecular dynamics (SMD) simulation [20] was used to explore the
intermediate states during the dissociation process. In SMD, the reaction coordinates were
set according to the dissociation pathway obtained in τRAMD simulation. In order to
ensure that the springs in the SMD simulation were hard springs, we performed parameter
corrections. The stretching speed was set to 0.0008 Å/ps, and the elastic coefficient was
set to 10, 20, 30 and 40 kcal/mol·A−2, respectively. The results showed that when the
elastic coefficient was set to 20 kcal/mol·A−2 (taking the PT70 system as an example),
the requirement of a hard spring can be achieved (Figure S5). In addition, other systems
also meet the hard spring requirement at a stretching speed of 0.0008 Å/ps and an elastic
coefficient of 20 kcal/mol·A−2 (Figure S6). To avoid translation and rotation of the protein
during the simulation, some residues away from the binding pocket were restrained. The
simulations were performed in NAMD program.

3.6. MM–GBSA Calculation

The binding affinity of proteins–ligands has always been a research hotspot in the
process of drug design. MM–GBSA is one of the important methods to calculate the binding
free energy between proteins–ligands [41]. The basic principle of MM–GBSA is as follows:

∆Gbind = Gcomplex − Greceptor − Gligand (1)

where ∆Gbind is the binding free energy. Gcomplex ,Greceptor and Gligand represent the free
energies of complex, protein and ligand, respectively, which can be estimated by the
following equations:

G = Egas + Gsol − TS (2)

Gsol = GGB + GSA (3)

GSA = γ× SASA + β (4)

where Egas is the gas–phase energy. Gsol is solvation free energy, which can be calculated by
solving the GB equation [42]. GSA was estimated by the solvent-accessible surface area [43]
determined using a water probe radius of 1.4 Å. The surface tension constant γ was set to
0.0072 kcal/mol·Å2 and β was set to 0 kcal/mol. T and S are the temperature and entropy.

4. Conclusions

In this work, the multiple strategies (including classic MD simulation, MM–GBSA,
pharmacophore model, τRAMD and steered MD simulation) were employed to investigate
the binding thermodynamic and dissociation kinetics information of TCL and its five
derivatives (PT70, PT91, PT119, PT501 and PT506) to InhA. The obtained results indicated
that the residues such as Phe149, Tyr158, Met161, Met199 and Ile202 had high energy
contributions to the binding of inhibitors. Compared with the PT70 system, the larger
conformational changes in the α-helical structures of H6 and H7 in other systems increased
the flexibility of the pocket and exposed the binding pocket to solvent, thereby reducing
the binding affinity of the inhibitors. Furthermore, the pharmacophore model revealed
that the active phenoxyphenol derivatives generally contain aromatic centers, hydrophobic
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centers and a hydrogen bond acceptor. The result also indicated that the aromatic centers
and hydrophobic centers of these inhibitors can form pi–pi stacking interaction with Tyr158,
Phe149 and van der Waals interactions with other hydrophobic residues of InhA. Although
the oxygen atoms and hydroxyl substituents on the inhibitors could form hydrogen bonds
with InhA, the hydrogen bond strength was relatively weak. Therefore, it can be considered
to extend the substituent side chain and add more polar groups to establish stronger
hydrogen bond interactions.

In addition, the dissociation pathways and residence times of these inhibitors were
also predicted by τRAMD simulations. The results of τRAMD simulations showed that the
two main dissociation channels were path1 (along the H7 direction) and path2 (along the
H6 direction). Furthermore, the order of the predicted residence times of the inhibitors by
τRAMD simulation was consistent with the experimental order. The steered MD simula-
tions also identified that hydrophobic interactions (such as with Phe149, Met155, Tyr158,
Ile202, Val203 and Leu207, etc.) and some hydrogen bond interactions (such as TCL and
Met103, PT70 and Pro156, as well as PT91 and Gln214 residues) played important roles in
the dissociation process. In conclusion, this work can deepen our understanding for the
binding mode and dissociation process of InhA with phenoxyphenol derivatives. At the
same time, the identified hotspot residues of InhA and the structural motif of phenoxyphe-
nol derivatives inhibitors can also provide important guidance for the development of
inhibitors in the future.
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