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Purpose: To identify differentially expressed immune-related genes (DEIRGs) and construct
a model with survival-related DEIRGs for evaluating the prognosis of patients with pancreatic
cancer (PC).
Methods: Six microarray gene expression datasets of PC from the Gene Expression
Omnibus (GEO) and Immunology Database and Analysis Portal (ImmPort) were used
to identify DEIRGs. RNA sequencing and clinical data from The Cancer Genome Atlas
Program-Pancreatic Adenocarcinoma (TCGA-PAAD) database were used to establish the
prognostic model. Univariate, least absolute shrinkage and selection operator (LASSO) and
multivariate Cox regression analyses were applied to determine the final variables of the
prognostic model. The median risk score was used as the cut-off value to classify samples
into low- and high-risk groups. The prognostic model was further validated using an internal
validation set of TCGA and an external validation set of GSE62452.
Results: In total, 142 DEIRGs were identified from six GEO datasets, 47 were survival-related
DEIRGs. A prognostic model comprising five genes (i.e., ERAP2, CXCL9, AREG, DKK1, and
IL20RB) was established. High-risk patients had poor survival compared with low-risk pa-
tients. The 1-, 2-, 3-year area under the receiver operating characteristic (ROC) curve of
the model reached 0.85, 0.87, and 0.93, respectively. Additionally, the prognostic model
reflected the infiltration of neutrophils and dendritic cells. The expression of most character-
istic immune checkpoints was significantly higher in the high-risk group versus the low-risk
group.
Conclusions: The five-gene prognostic model showed reliably predictive accuracy. This
model may provide useful information for immunotherapy and facilitate personalized moni-
toring for patients with PC.

Introduction
Pancreatic cancer (PC) is a highly malignant cancer and the seventh leading cause of mortality worldwide
[1]. It is predicted that PC will become the second leading cause of cancer-related deaths by the year
2030 in U.S.A. [2]. Thus far, surgical therapy is the only curative strategy for resectable PC. However, only
10% of the patients are able to undergo standard resection at diagnosis due to the presence of atypical
symptoms and the lack of effective imaging examination and diagnostic biomarkers in the early stage of
disease [3]. At the time of diagnosis, most patients present with unresectable disease, characterized by
nodal metastases, vascular invasion, or distant metastases [4]. Nevertheless, even patients who undergo

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

http://orcid.org/0000-0002-5520-5754
mailto:xuke@cmc.edu.cn


Bioscience Reports (2021) 41 BSR20204301
https://doi.org/10.1042/BSR20204301

surgical resection may not achieve satisfactory survival. Therefore, early detection and development of novel thera-
peutic strategies are urgently warranted to improve the survival of patients with PC.

The immune system plays a pivotal role in tumorigenesis and the progression of human malignancy [5]. A grow-
ing body of evidence suggests that the use of immunotherapy could result in favorable outcomes in cancer therapy.
Blockade of immune checkpoints has shown substantial survival benefit for patients with several types of cancer,
such as hepatocellular carcinoma, renal cell carcinoma, and melanoma [6–8]. Tumor cells could escape recognition
and elimination by the immune system, induce immune tolerance, and promote their own growth and metastasis by
secretion of immunosuppressive cytokines and regulation of the expression of immunoregulatory molecules [9,10].
Previous studies highlighted that the immune-related genes (IRGs) were associated with the prognosis of several types
of cancer [11–13]. However, few studies investigated the role of IRGs in PC. Hence, the identification of genes with
prognostic potential and construction of an effective predictive model may be useful for individualized management
and assessment of prognosis in patients with PC.

In the present study, we utilized the Robust Rank Aggregation (RRA) method to identify differentially expressed
genes (DEGs) between pancreatic tumors and adjacent normal tissues using six microarray datasets obtained from the
Gene Expression Omnibus (GEO). Subsequently, univariate Cox regression was employed to identify survival-related
differentially expressed immune-related genes (DEIRGs). Furthermore, least absolute shrinkage and selection oper-
ator (LASSO) Cox regression and multivariate Cox regression analyses were utilized to construct a prognostic model
comprising survival-related DEIRGs. The median risk score calculated by the model was used to classify patients
into high- and low-risk groups. The association between the model and immune cell infiltration was investigated. In
addition, the expression of immune checkpoints in the low- and high-risk groups was compared. The aimed of the
present study was to identify the survival-related biomarkers and therapeutic targets, establish a predictive model,
and provide a basis for immunotherapy in patients with PC.

Materials and methods
Gene expression datasets
Six gene expression datasets (i.e., GSE15471, GSE60979, GSE62165, GSE71989, GSE91035, GSE102238) of PC were
obtained from the GEO. All datasets met the following criteria: (1) included tumor and adjacent tissues of human PC;
(2) comprised case and control groups; (3) contained >20 samples. Detailed information regarding these datasets is
listed in Supplementary Table S1. A total of 170 PC sample profiles with available survival data were generated from
The Cancer Genome Atlas-Pancreatic Adenocarcinoma (TCGA-PAAD) dataset. A training dataset with 102 samples
and an internal validation dataset with 68 samples were randomly generated from the TCGA-PAAD dataset in a ratio
of 3:2. In addition, a microarray dataset (GSE62452) containing 64 samples with survival data was obtained from the
GEO for external validation. The characteristics of the training and the validation datasets are listed in Table 1.

Identification of DEIRGs
The Limma package was utilized to identify DEGs between tumor tissues and adjacent normal tissues of each dataset
in the R platform (v3.6.1) [14]. The RobustRankAggreg package, which is based on the RRA method, was employed
to normalize multiple datasets and conduct gene integration analysis for the identification of the most significant
DEGs [15]. Genes with |log2 fold change| >1 and adjusted P-value <0.05 were selected as significant DEGs.

Screening for survival-related DEIRGs
The IRG list (1811 genes) was obtained from the Immunology Database and Analysis Portal (ImmPort) [16]. DEIRGs
were obtained by intersecting the IRG and DEG lists identified from the six GEO datasets. Subsequently, we performed
univariate Cox regression analysis of DEIRGs to identify survival-related DEIRGs. Genes with P-value <0.01 were
selected as survival-related DEIRGs.

Functional enrichment analysis of DEIRGs
Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
were carried out by the Clusterprofiler package to investigate the potential function of DEIRGs [17]. Adjusted P-value
less than 0.05 was selected as the cut-off criteria for GO terms and KEGG pathway.

Construction of a prognostic model
In the training set, LASSO regression through the glmnet package was utilized to determine the most powerful prog-
nostic genes among the survival-related DEIRGs [18]. Next, multivariate Cox stepwise regression was applied to

2 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2021) 41 BSR20204301
https://doi.org/10.1042/BSR20204301

Table 1 The clinicopathological characteristics of patients in training set and internal validation set of TCGA and an
external GEO validation set

Characteristics TCGA training set TCGA validation set GSE62452 validation set
n=102 n=68 n=64

Age at diagnosis (years) 64.23 +− 10.68 64.79 +− 11.11 NA

Gender (%) NA

Female 53 (52.0) 25 (36.8)

Male 49 (48.0) 43 (63.2)

Tumor stage (%) NA

T1+T2 17 (16.7) 10 (14.7)

T3+T4 83 (81.4) 58 (85.3)

Not reported 2 (2.0) 0 (0.0)

Node stage (%) NA

N0 30 (29.4) 17 (25.0)

N1 70 (68.6) 48 (70.6)

Not reported 2 (2.0) 3 (4.4)

Pathologic stage (%)

I+II 95 (93.1) 65 (95.6) 47 (73.4)

III+IV 5 (4.9) 3 (4.4) 16 (25.0)

Not reported 2 (2.0) 0 (0.0) 1 (1.6)

Histologic grade (%)

G1+G2 75 (73.5) 44 (64.7) 33 (51.6)

G3+G4 25 (24.5) 24 (35.3) 30 (46.9)

Not reported 2 (2.0) 0 (0.0) 1 (1.6)

Events (%)

Alive 44 (43.1) 36 (52.9) 16 (25.0)

Dead 58 (56.9) 32 (47.1) 48 (75.0)

Overall survival time (years) 14.12 (9.21–22.02) 15.86 (11.48–22.84) 15.45 (9.20–27.63)

Abbreviation: NA, not available.

determine the best prognostic model. Subsequently, a prognostic model was established using a linear combination
of the relative gene expression values (Expi) and coefficient (βi) generated in the multivariate Cox regression. The
risk score calculation formula is as follows: Risk score = Exp1 × β1+ Exp2 × β2 + . . . . . . + Expn × βn. The median
risk score was used as the cut-off value to classify the PC samples into low- and high-risk groups. Kaplan–Meier
curves analysis and log-rank test were performed to identify differences in survival. Time-dependent receiver operat-
ing characteristic (ROC) curve analysis was applied to evaluate the predictive ability of the prognostic model via the
timeROC package [19]. Furthermore, we performed univariate and multivariate Cox regression analyses to investi-
gate the independent factors between the risk score and clinical parameters, including age, sex, T stage, N stage, AJCC
stage, and histologic grade. In addition, we performed gene set enrichment analysis (GSEA) utilizing the ClusterPro-
filer package to investigate the significantly enriched pathways between high- and low-risk groups in TCGA-PAAD
dataset. We retrieved KEGG gene sets (c2.cp.kegg.v7.0.symbols.gmt) by using the msigdbr package.

Correlation analysis of risk score and immune cells infiltration
Tumor Immune Estimation Resource (TIMER) is a comprehensive analytical web tool, which includes 10897 samples
across 32 cancer types from TCGA to estimate the abundance of six tumor-infiltrating immune cell (TIIC) subsets (B
cells, CD4 T cells, CD8 T cells, macrophages, neutrophils, and dendritic cells) [20]. Immune cells infiltration levels of
PC patients which obtained from TIMER were applied for exploring the correlation between risk score and immune
cells infiltration.

Comparison of relative expression of immune checkpoints in low- and
high-risk groups
Immunotherapy has achieved promising results in the treatment of many cancers in recent years. The most efficient
strategy focused on the blockade of the immune checkpoints [21]. We compared the expression of most characteris-
tic immune checkpoints, including programmed cell death 1 (PDCD1), PDCD1 ligand 1 (PDCD1-L1), cytotoxic T
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lymphocyte-associated protein 4 (CTLA4), CD80, CD86, V-domain immunoglobulin suppressor of T-cell activation
(VISTA), T cell immunoglobulin mucin receptor 3 (TIM3), and T cell Ig and immunoreceptor tyrosine-based inhi-
bition motif (ITIM) domain (TIGIT), between low- and high-risk groups aiming to provide information to optimize
immunotherapeutic strategies for patients with PC.

Statistical analysis
R software v3.6.1 (www.r-project.org) was used for statistical analyses in the present study. The Limma package was
used to obtain DEGs. Kaplan–Meier curves analysis and log-rank test were performed using the survival package.
Time-dependent ROC curve analysis was applied via the timeROC package. Univariate and multivariate Cox regres-
sion analyses were employed to determine independent factors for OS. Spearman correlation analysis was applied
to investigate the correlation between risk score and immune cells infiltration. Difference of expression of immune
checkpoints in low- and high-risk groups were compared using Wilcoxon’s test. Analysis results with P-value <0.05
indicated statistical significance.

Results
Identification of DEGs
A total of 985 DEGs, including 619 up- and 366 down-regulated genes were identified. The top 20 up- and
down-regulated DEGs are shown in Figure 1A. We obtained a total of 142 DEIRGs by intersecting the DEG list
with the IRG list (Figure 1B).

GO and KEGG enrichment analysis for DEIRGs
The following GO categories were enriched: biological process (BP), cellular component (CC), and molecular func-
tion (MF) (Figure 2A–C). The results showed that the significantly enriched terms were defense response to other
organism (BP), extracellular matrix (CC), and receptor ligand activity (MF). Furthermore, according to the KEGG
pathway analysis, the cytokine–cytokine receptor interaction pathway was markedly enriched (Figure 2D). The top
ten pathways of DEIRGs are listed in Supplementary Table S2.

Construction and internal validation of prognostic model
We obtained 47 survival-related DEIRGs via univariate Cox regression analysis (Supplementary Table S3). LASSO
Cox regression was applied to narrow down the number of relevant genes in the training dataset. The LASSO co-
efficient profiles of 47 survival-related DEIRGs are presented in Figure 3A. We obtained 12 genes with minimum
partial likelihood deviance according to ten-fold cross-validation results (Figure 3B). Furthermore, the best prog-
nostic model with the smallest Akaike Information Criterion was identified via multivariate Cox stepwise regression
analysis. Finally, a prognostic model involving five genes, namely endoplasmic reticulum aminopeptidase 2 (ERAP2),
amphiregulin (AREG), C–X–C motif chemokine ligand 9 (CXCL9), dickkopf-1 (DKK1), and interleukin-20 receptor
subunit β (IL20RB) was constructed. Figure 3C shows that CXCL9, DKK1, and IL20RB exhibit the characteristics of
independent prognostic factors in the training dataset. The prognostic risk score for each patient was calculated as
follows: Risk score = (expression level of ERAP2 × 0.158) + (expression level of CXCL9 × 0.357) + (expression level
of AREG × 0.195) + (expression level of DKK1 × 0.172) + (expression level of IL20RB × 0.231).

The patients in the training dataset were divided into low- and high-risk groups applying the median risk score
as the cut-off criteria. The Kaplan–Meier curve shows that high-risk patients had a significant worse overall survival
(OS) than low-risk group patients (Figure 4A). A time-dependent ROC curve was generated, and the area under the
ROC curve (AUC) was calculated to assess the predictive ability of the model. In the training dataset, the 1-, 2-, and
3-year AUCs were 0.85, 0.87, and 0.93 (Figure 4B), respectively. The risk score distribution and the expression of the
five genes in the training dataset are shown in Figure 4C,D. The prognostic model was further validated using the
internal validation dataset. Similarly, patients with higher risk scores were associated with worse OS (Figure 4E). In
the internal validation dataset, the 1-, 2-, and 3-year AUCs were 0.79, 0.74, and 0.8, respectively (Figure 4F). Figure
4G,H demonstrate the distribution of the risk score and a heatmap of the five gene expression data in the validation
dataset, respectively. This indicates that this prognostic model is able to predict the OS of patients with PC in TCGA
cohort.

External validation of the prognostic model in GEO dataset
A GEO dataset (GSE62452) of PC with survival data was used as an external validation dataset to assess the predictive
capability of the prognostic model. The risk score of each patient in the dataset was calculated using the formula of
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Figure 1. Identification of DEIRGs in GEO datasets

(A) A heatmap of the top 20 up- and down-regulated DEGs in the integrated analysis. Red and green represent up- and down-regu-

lated genes in each dataset, respectively. The numbers in each rectangle indicate the value of log2FC in each dataset calculated by

‘Limma’ package. The color gradient from green to red represents the log2FC from small to large. (B) Venn diagrams of the DEIRGs

between DEGs in the integrated analysis and IRG list obtained from ImmPort.

the model, and all patients were divided into high- and low-risk groups according to the median risk score. The OS
observed in the high-risk group patients was significantly worse than that recorded in the low-risk group. In the
external validation dataset, the 1-, 2-, and 3-year AUCs were 0.6, 0.75, and 0.77, respectively. External validation
further confirmed the stable and accurate prognostic value of the present model in PC (Figure 4I–L).

Evaluation of the independence of the prognostic model
To investigate the independent predictive ability of the prognostic model, we performed univariate and multivariate
Cox regression analyses for the relationship between risk score and clinicopathological characteristics. The results
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Figure 2. GO and KEGG analysis of DEIRGs

(A–C) The top ten terms significantly enriched in the GO categories of BP, CC, and MF. (D) KEGG pathway analysis of DEIRGs.

The bubble size is proportional to the number of DEIRGs involved. The color gradient from blue to red represents the P-value from

small to large, respectively.

showed that age, N stage, histologic grade, and risk score were associated with worse prognosis (Figure 5). Meanwhile,
age and risk score were independent prognostic factors for OS. Moreover, higher risk scores were associated with
advanced disease grade in TCGA-PAAD dataset (Supplementary Figure S1F).

Correlation between the risk score and immune cell infiltration
We investigated the correlation between the risk score and the abundance of six tumor infiltrating immune cell subsets
(i.e., B cells, CD4 T cells, CD8 T cells, macrophages, neutrophils, and dendritic cells). The results shown that the risk
score was positively correlated with the infiltration of neutrophils and dendritic cells (Figure 6).
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Figure 3. LASSO profiles and multivariate Cox regression analysis

(A) LASSO coefficient profiles of 47 survival-related DEIRGs. (B) Ten-fold cross-validation result of the 47 survival-related DEGs.

(C) Multivariate Cox regression analysis of the association between the five genes and overall survival in training set from TCGA.

Differences between the expression of immune checkpoints in the low-
and high-risk groups
We compared the relative expression of most characteristic immune checkpoints between the low- and high-risk
groups. The expression of PDCD1, PDCD-L1, CTLA4, CD80, CD86, TIM3, VISTA, and TIGIT were significantly
higher in the high-risk group compared with the low-risk group, indicating that immunosuppression may contribute
to worse OS in high-risk patients (Figure 7).

GSEA results
We performed GSEA to further investigate the different functional phenotype between the high- and low-risk groups.
The results are listed in Supplementary Table S4. The four most significantly enriched pathways were: pathways in
cancer, cytokine–cytokine receptor interaction, regulation of actin cytoskeleton, and chemokine signaling pathway
(Figure 8).
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Figure 4. Establishment and validation of prognosis model

Kaplan–Meier survival curves for low- and high-risk groups’ patients in TCGA training set (A), TCGA internal validation set (E) and

external validation set (I). Time-dependent ROC curve analysis of the risk score model for predicting 1-, 2-, 3-year OS in TCGA

training set (B), TCGA internal validation set (F) and external validation set (J). Distribution of the risk score (C,G,K). The expression

of five survival-related IRGs in TCGA training set (D), TCGA internal validation set (H) and external validation set (L).

Discussion
PC remains a disease with dismal prognosis, namely poor survival and unfavorable therapeutic efficacy. Although
numberous studies have investigated the relationship between IRGs and tumor prognosis, only a few focused on
PC. In the present study, we identified DEIRGs with prognostic value in PC and established a prognostic model
with five IRGs (i.e., ERAP2, CXCL9, AREG, DKK1, and IL20RB). Throughout the course of the study, 142 DEIRGs
were identified by integrated analysis of six GEO datasets and intersected with an IRG list. The 47 survival-related
DEIRGs were identified by univariate Cox regression. The five-IRG prognostic model was established by LASSO
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Figure 5. Univariate and multivariate Cox regression analyses for prognostic model and clinicopathological characteristics

Figure 6. Association of risk score and immune cells infiltration

(A) B cells, (B) CD4 T cells, (C) CD8 T cells, (D) dendritic cells, (E) macrophages, and (F) neutrophils.

Cox regression and multivariate stepwise Cox regression. Notably, in the validation of the prognostic model, the
1-, 2-, and 3-year AUCs were 0.79, 0.74, and 0.8 (internal validation) and 0.59, 0.75, and 0.77 (external validation),
respectively. The results indicated the reproducibility and generalizability of the prognostic model. Collectively, these
results showed that this five-gene prognostic model was an effective predictive tool for OS.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

9



Bioscience Reports (2021) 41 BSR20204301
https://doi.org/10.1042/BSR20204301

Figure 7. Different expression of immune checkpoints between low- and high-risk groups

(A) PDCD1, (B) PDCD-L1, (C) CTLA4, (D) CD80, (E) CD86, (F) TIM3, (G) VISTA, (H) TIGIT.

Figure 8. The top four significantly enriched pathways of this prognostic model

(A) Pathways in cancer, (B) cytokine–cytokine receptor interaction, (C) regulation of actin cytoskeleton, (D) chemokine signaling

pathway.
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Regarding the prognostic markers for PC, carbohydrate antigen 19-9 (CA19-9) is currently the most widely used
marker in clinical practice. CA19-9 has shown a certain prognostic capability in both postoperative and advanced PC
[22,23]. However, CA19-9 is not applicable to Lewis antigen-negative individuals, and false positive results may be
obtained in cases with biliary infection and other malignant tumors [24,25]. Thus, there is a need to discover accurate
prognostic markers for PC. In terms of immune-related molecules, a recent study reported that the expression of MET,
2′-5′-oligoadenylate synthetase 1 (OAS1) and 2′-5′-oligoadenylate synthetase like (OASL) was closely related to the
progression of PC. Their expression was up-regulated in PC tissues and was associated with poor prognosis [26]. Sim-
ilarly, from the perspective of RNA-binding proteins, a close relationship between OAS1 and the prognosis of PC was
also found [27]. Guanylate-binding protein 2 (GBP2) is a guanylate-binding protein involved in response to viral or
microbial infection; it is induced by Type I and Type II interferons. Recently, researchers found that GBP2 was highly
expressed in PC and positively correlated with the expression of immune checkpoints (e.g., PDCD1, PDCD1-L1,
CTLA4 etc.) Patients with PC and high expression of GBP2 were linked to a poor prognosis and an AUC of 0.69 for
3-year survival [28]. In addition, the effect of BRCA1/2 mutation on the prognosis of PC has been a focus of research
in this field. Studies found that the BRCA1 rs1799966 polymorphism was correlated with the prognosis of PC. It was
demonstrated that patients with advanced PC with BRCA2 mutation have a better response to platinum and a better
prognosis [29–31]. Some non-coding RNAs and circulating tumor DNA have also been linked to the prognosis of PC;
nevertheless, the usefulness of these markers is compromised by their limited predictive capability [32–35]. Therefore,
the combination of these markers and construction of prognostic models may enhance the predictive capability.

Previously, researchers constructed some predictive models for PC based on prognosis-related genes. Representa-
tive studies were performed by Wu et al. [36] and Yan et al. [37] The former research group established a nine-gene
signature to predict the OS of PC [36]. The latter research group constructed a four-gene prognostic model based on
transcription factors and kinases associated with dysregulation genes [37]. However, these two prognostic models did
not include immune-related DEG and did not investigate the association between the expression of immune check-
points and risk score. In addition, the present model exhibited better capability in predicting the 1-, 2-, and 3-year
survival of patients with PC.

Among the five genes of the model, ERAP2 is an aminopeptidase which is present in the lumen of the endo-
plasmic reticulum. It trims and generates peptide ligands for antigen presentation by major histocompatibility class
I molecules [38,39]. Previous studies suggested that ERAP2 plays a pivotal role in vessel regeneration by inducing
the migration and proliferation of endothelial cells [40,41]. ERAP2 could accelerate anti-tumor immune responses;
hence, modulating the activity of ERAP2 may be a novel immunological strategy for cancer immunotherapy [42].
Chemokines are a family of small cytokines inducing directed chemotaxis, which can be found in most types of hu-
man cancer [43,44]. A member of the chemokine family, namely CXCL9, recruits leukocytes to sites of inflammation
and plays a critical role in tumor progression. Previous studies reported that CXCL9 was correlated with worse OS
in renal cell carcinoma, promoted tumor metastasis in melanoma, and enhanced the invasive ability of hepatocel-
lular carcinoma [45–47]. Gao et al. demonstrated that CXCL9 was overexpressed in PC; this finding was consistent
with the results of the present study [48]. They also found that CXCL9 could promote tumor progression in an or-
thotropic murine PAAD model by regulating the CD8+ T lymphocytes in the tumor microenvironment (TME). AREG
is a ligand of epidermal growth factor receptor (EGFR), which is aberrantly expressed and plays a vital role in nu-
merous types of cancer by mediating the motility, metastasis, and proliferation of cancer cells [49,50]. Stimulation
of AREG increased the invasiveness, metastasis, and epithelial–mesenchymal transition of PC cells in vivo [51,52].
DKK1, a member of the DKK family, participates in the WNT/β-catenin pathway [53]. High expression of DKK1
was associated with aggressive features and shorter OS in patients with PC [54]. Previous studies demonstrated that
DKK1 was correlated with accumulation of myeloid-derived suppressor cells in PC, contributing to the suppression
of the responses of anti-tumor T cells [55]. DKK1 has been utilized as a potential target for immunotherapy in pa-
tients with myeloma [56]. IL20RB, a receptor of the IL20 subfamily, is involved in both amplified inflammatory and
anti-inflammatory responses. Dysregulated expression of IL20RB has been observed in various studies, including
the present study [57–59]. Overexpression of IL20RB was correlated with poor outcome in patients with papillary
renal cell carcinoma, the ability of papillary renal cell carcinoma cells to invade and metastasize could be inhibited by
silencing IL20RB in vivo [60].

Previous studies have shown that the TME of PC was infiltrated by immunosuppressive cells, but not effector lym-
phocytes [61,62]. Moreover, PC was characterized by a low proportion of tumor/stroma ratio in the tumor mass [63].
Notably, the stromal area of the TME was the main site of immune cell infiltration, which contributes to the poor
outcome of PC [64]. In the present study, the correlation between the risk score and six subtypes of tumor-infiltrating
immune cells was investigated. We observed that our prognostic model was positively associated with the infiltration
of dendritic and neutrophil cells. According to the considerable research on immune checkpoints conducted in recent
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decades, immunotherapy has shown great curative potential for several types of cancer, such as hepatocellular carci-
noma, melanoma, and bladder cancer [65–67]. Binding of PDCD1-L1 to its corresponding ligand PDCD1 negatively
regulates the activity of immune cells and induces the immune evasion of tumor cells [68]. Previous studies indicated
that PDCD1-L1 was overexpressed in patients with PC, and its down-regulation could inhibit the proliferation of pan-
creatic tumor cells [69]. CTLA4 is expressed by regulatory T cells, which are highly enriched in PC. The binding of
CTLA4 to its ligands CD80 and CD86 leads to tumor cell immunosuppression. PC tumors are poorly immunogenic;
hence, it is important to discover novel immune checkpoints for immunotherapy and develop more sophisticated
treatment strategies. TIM3, belongs to the immunoglobulin superfamily and plays a dual role in regulating the im-
mune response. It has been proved to be correlated with worse outcome in several types of cancer [70,71]. VISTA is a
novel immune checkpoint overexpressed on CD68+ macrophages in PAAD. It is a potential immunotherapeutic tar-
get based on its high infiltration of the tumor environment and inhibition of T-cell activation [72]. TIGIT is expressed
in several types of tumor cells and regulatory T cells; it is involved in immunosuppression and the immune evasion of
cancer cells [73,74]. We compared the expression of immune checkpoints between patients in the low- and high-risk
groups generated from our prognostic risk score model in TCGA-PAAD cohort. Interestingly, the expression levels of
PDCD1, PDCD1-L1, CTLA4, CD80, TIM3, VISTA, and TIGIT in the high-risk group were notably higher than those
measured in the low-risk group. These results indicated that the immunotherapeutic strategy of immune checkpoint
blockade may be more effective for high-risk patients. GSEA revealed that the significantly enriched pathways in the
high-risk group were associated with immune-related responses and tumorigenesis.

However, limitations in the present study should be realized. As our study was driven from statistical analysis
of retrospective data, multicenter clinical trials and prospective research are required to further assess and vali-
date this prognostic model. Meanwhile, additional experiment should be conducted to evaluate the expression of
survival-related IRGs at protein level. Moreover, the biological function and mechanism of the IRGs in the prognos-
tic model worth to be further elucidated in the future.

Conclusion
In the present study, survival-related DEIRGs were identified, and a five-gene prognostic model with reliable pre-
dictive accuracy was constructed. The risk score calculated from the model is strongly correlated with immune cell
infiltration in tumors and the expression of immune checkpoints. This model may provide new insight into the indi-
vidualization of anti-tumor therapy and facilitate clinical monitoring of PC.
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