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Abstract
Spinal cord injury (SCI) leads to chronic and multifaceted disability, which
severely impacts the physical and mental health as well as the
socio-economic status of affected individuals. Permanent disabilities
following SCI result from the failure of injured neurons to regenerate and
rebuild functional connections with their original targets. Inhibitory factors
present in the SCI microenvironment and the poor intrinsic regenerative
capacity of adult spinal cord neurons are obstacles for regeneration and
functional recovery. Considerable progress has been made in recent years
in developing cell and molecular approaches to enable the regeneration of
damaged spinal cord tissue. In this review, we highlight several potent
cell-based approaches and genetic manipulation strategies (gene therapy)
that are being investigated to reconstruct damaged or lost spinal neural
circuits and explore emerging novel combinatorial approaches for
enhancing recovery from SCI.
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Introduction
Traumatic spinal cord injury (SCI) can prompt debilitating  
autonomic and sensorimotor impairments, severely limiting the  
patient’s independence, quality of life, and socioeconomic  
status1,2. The prevalence of SCI ranges between 250 and 906  
cases per million, with life expectancy typically spanning  
several decades from the time of injury3. This leads to a  
prolonged life with disabilities and a staggering cost of care  
(estimated between 1.2 and 5.1 million US dollars for the  
patient’s lifespan)4. In addition, concurrent complications, such 
as respiratory difficulty5, autoimmune dysfunction6, neuropathic  
pain7, and autonomic dysreflexia8, further exacerbate the  
patient’s health and wellbeing. While many regenerative  
treatments have been investigated over the years, an effec-
tive therapy does not yet exist in the clinic2. This paper reviews  
several emerging regenerative strategies for SCI and the  
knowledge gaps associated with them. These treatment strate-
gies are 1) regenerative genetic manipulation (gene therapy)  
approaches, 2) cellular transplantation therapy, and 3) combinato-
rial approaches to enhance functional outcomes.

Pathological hallmarks of spinal cord injury
The traumatic fracture and dislocation of the vertebral col-
umn introduces laceration, compression, and contusive damage 
to the spinal cord, impairing local neurons and the supporting  
glial and vascular cells9. The primary mechanical shock to the 
neural tissue and disruption of the cell membrane during the  
primary injury permeabilizes the cells, resulting in a cascade 
of molecular and signaling pathways that initiate a series of  
secondary injuries to the spinal cord10. The formation of free  
radicals and oxidative stress as a consequence of secondary  
injuries result in more neuronal and glial death, mainly due to  
apoptosis. This also results in activation of local microglia and 
astrocytes to produce proinflammatory signals for a greater  
immune response11. In parallel, the acute vascular damage and 
permeabilization will increase hemorrhage, hypoxia, and the  
infiltration of reactive immune cells to the injury epicenter.  
Despite the adaptive role of the introduced immune cells in 
debris clearance, the prolonged activity of immune cells leads to  
swelling and further damages the local cells10.

The injured spinal cord tissue can be divided into three  
distinct histological compartments, including a non-neural  

lesion core, a surrounding astroglial border, and a preserved  
reactive neural tissue12. Each compartment is composed of a  
unique cellular makeup and poses a distinct barrier to func-
tional recovery13. First, the lesion core is the site of the 
fibrotic scar and cystic cavity14. Cavitation results from debris  
clearance but limits axonal growth and neurogenesis12. The  
surrounding astroglial scar is formed from newly differentiated 
astrocytes, which encapsulate the reactive immune cells within 
the damaged tissue zone. The functional role of astrocytic  
production and the integration of inhibitory molecules within 
the astroglial border continues to be under investigation. While 
genetic knockout studies demonstrate the adaptive role of  
astrocyte scar formation15, the prevailing paradigm suggests 
that this border constitutes a major impediment to neural  
regeneration16. In the perilesional zone, synaptic damage and  
demyelination result in circuit inactivation17. Circuit reorgani-
zation can be either maladaptive—leading to neuropathic pain,  
muscle spasticity, and autonomic dysreflexia—or adaptive, as it  
can restore function after incomplete SCI12.

During both primary and secondary injury, the secretion of  
inhibitory molecules is a critical barrier to regeneration. 
For instance, disintegration of myelin and demyelination  
releases potent inhibitory extracellular molecules, such as  
myelin-associated glycoprotein (MAG), oligodendrocyte- 
myelin glycoprotein (OMgp), and neurite outgrowth inhibitor 
A (Nogo A)18,19. Furthermore, reactive glia secrete tenascin as 
well as chondroitinase sulfate proteoglycans (CSPGs), which  
include brevican, phosphacan, neurocan, versican, and neural/ 
glial antigen 2 (NG2) proteoglycans20. These molecules lead 
to the activation of the Rho–ROCK signaling pathway, which  
intrinsically inhibits neuronal repair and regeneration21. Hence, 
despite the wide distribution of oligodendrocyte progenitor cells 
(OPCs) and the localization of neural progenitor cells (NPCs)  
along the ependymal layers of the spinal central canal,  
limited endogenous neural regeneration occurs in the injured  
spinal cord22,23. Numerous therapeutics aimed at mitigating  
these barriers to regeneration have been examined over the past  
few decades in both clinical and preclinical studies24–27  
(Figure 1). This review provides a concise overview of the  
newly developed regenerative gene and cell therapies following 
traumatic SCI.

Figure 1. Spinal cord injury pathology and regenerative therapeutics. The endogenous attempts for recovery following traumatic spinal 
cord injury (SCI) are hindered by 1) inactivated regenerative pathways within neurons and their progenitor cells, 2) myelin debris and the 
associated inhibitory molecules, such as neurite outgrowth inhibitor (Nogo), myelin-associated glycoprotein (MAG), and oligodendrocyte-
myelin glycoprotein (OMgp), 3) the formation of a cystic cavity, and 4) the inhibitory extracellular matrix. Cell and gene therapies are emerging 
treatment strategies for traumatic SCI.
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Regenerative gene therapy
Gene therapy is the introduction of new genetic material to  
modify maladaptive transcription in a cell or to introduce  
downregulated or novel genes28. The advent of CRISPR/Cas9 
genome editing approaches and recombinant replication- 
defective viral constructs enables targeted interventions in the 
injured spinal cord, mitigating the risk of potential adverse off- 
target effects. Gene therapy has gained promising advance-
ment in the past decade, as six therapies have gained clinical  
approval for conditions such as spinal muscular atrophy or  
Leber’s congenital amaurosis29. Two potential applications of  
gene therapy for SCI include in vivo gene delivery to the spinal  
cord or ex vivo transduction of cells for subsequent transplan-
tation into the spinal cord. The advancement of in vivo gene  
delivery via non-integrating adeno-associated viral (AAV)  
constructs allows durable and sustained episomal expression 
of a therapeutic gene or a gene silencer (Figure 2)30. Thus far,  
preclinical investigations reveal the applications of in vivo  
gene therapy in the injured spinal cord to 1) enhance the  
expression of pro-regenerative factors, 2) molecularly modulate 
neural circuits, 3) block the expression of detrimental proteins, 
and 4) introduce matrix-modifying enzymes for the degradation  
of inhibitory particles.

Expression of pro-regenerative factors
The injured axons at the lesion core possess limited regen-
erative ability. The expression of pro-regenerative factors can 
increase the regenerative potential of damaged neurons. Krüppel- 
like factors (KLFs) are a family of transcriptional factors  
which are crucial for axonal regeneration and plasticity. 
Although KLF4 inhibits axon regeneration, KLF6 and KLF7 are 
important promoters of axon regeneration31,32. Therapeutically  
induced KLF7 overexpression stimulates axonal sprouting32. 
Another pro-regenerative gene therapy target is SOX11, which 
is a transcriptional factor actively involved in neurogenesis.  

SOX11 overexpression via an AAV-mediated strategy promotes 
axonal sprouting in preclinical SCI models33. There is growing 
evidence that combined overexpression of growth factors will  
have a greater effect on axonal regeneration. Multiple genes 
can be combined into the same viral construct, which ease their  
therapeutic administration. The combined AAV-induced  
overexpression of osteopontin, insulin-like growth factor 1 (IGF1), 
ciliary-derived neurotrophic factor (CNTF), fibroblast growth  
factor 2 (FGF2), glial-derived neurotrophic factor (GDNF), and 
epidermal growth factor (EGF) suggests a 100-fold increase in 
axonal growth34.

Expression of circuit-modifying factors
The majority of SCI patients suffering from complete func-
tional loss (classified as grade A by the American Spinal  
Injury Association) continue to possess anatomically preserved  
neural tissue around the lesion core, which remains dormant  
after injury17,35. Neural circuit modulation utilizes the neuro-
plastic nature of local synapses to reform functional “bypass”  
circuits around the lesion core, hence activating the dormant 
preserved neural tissue36. The staggered double hemisection  
(SDH) SCI model enables the examination of local relay  
circuits, as it interrupts all supraspinal inputs while sparing  
contralateral relay connections in the spinal cord37. Although 
advances in rehabilitative training and epidural stimulation have 
shown incremental progress in stimulating dormant circuits,  
these therapies can be strengthened and supplemented with  
molecular modulators of relay circuits to maximize their  
effects. Recent pharmacological screening in mouse SDH 
has identified chloride potassium symporter 5 (KCC2) as an  
important modulator of neural circuits38. KCC2 plays an  
important role in inhibitory neurotransmission at the synaptic  
cleft and subsequently balances the excitatory/inhibitory (E/I)  
ratio. Although pharmacological KCC2 agonists can improve 
behavioral recovery after SCI, this improvement diminishes 

Figure 2. Gene therapy applications investigated in preclinical spinal cord injury models. Adeno-associated viruses (AAVs) introduce 
non-integrating genetic material, which can express 1) pro-regenerative factors, 2) circuit-modifying factors, 3) gene silencers for inhibitory 
factors, and 4) matrix-modifying enzymes.
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upon cessation of daily drug administration38. Gene therapy is an  
effective tool for continuous expression of neuro-modulatory  
factors, such as KCC2, and circumvents the continuous modu-
lation required for modification of the spinal neural circuit. 
AAV-mediated KCC2 overexpression, under the influence of a  
synapsin promoter, is shown to improve functional recovery  
without the risk of adverse off-target effects associated with  
pharmacological strategies38.

Suppression of inhibitory molecules
Transcriptional suppression of intrinsic inhibitory molecules  
can circumvent the inability of adult neurons to regenerate 
across the injured spinal cord. Short-hairpin RNA (shRNA)  
constructs are capable of therapeutically silencing the expres-
sion of inhibitory factors. For instance, phosphatase and 
tensin homolog (PTEN) is a tumor suppressor, which converts  
phosphatidylinositol-3,4,5-triphosphate (ROP3) to phosphati-
dylinositol-4,5-bisphosphate (RIP2). PTEN blocks the growth 
and extension of adult neurons, as it is known to inhibit axonal  
protein synthesis through negative regulation of the mecha-
nistic target of rapamycin (mTOR)39. The downregulation of 
mTOR both in adulthood and after axonal injury limits the  
regenerative potential of damaged neurons39. PTEN deletion via 
an AAV-mediated Cre–LoxP system enables axonal regeneration 
in the mouse corticospinal tract following injury39,40. Additionally, 
shRNA-mediated suppression of PTEN increases the regrowth  
of the corticospinal tract injury41.

Enzymatic degradation of the glial scar
The secretion of CSPGs by reactive astrocytes and other glial 
and non-neural cells in the glial scar is one of the major barriers 
to axonal outgrowth and regeneration16. Enzymatic degradation 
of CSPGs, using the bacterial enzyme chondroitinase ABC 
(ChABC), has been proven in preclinical studies to improve  
regeneration and functional recovery after SCI42,43. However, 
ChABC has a low half-life and limited thermal stability, which 
requires its repetitive administration to the spinal cord44. Gene ther-
apy is one of the delivery options for ChABC, as it avoids the need 
for repetitive invasive enzymatic infusion while still promoting  
neuroplasticity and functional improvement. The application 
of lentiviral constructs allows temporal control of ChABC  
expression under inducible promoters (e.g. TetON promoters), 
suggesting that long-term expression of ChABC is critical 
for the recovery of fine motor movement after cervical SCI45.  
This paves the way for a future clinical trial for ChABC gene  
therapy in SCI patients.

Regenerative cellular therapies
Cellular approaches hold promise as a regenerative therapy for  
SCI, as they address multiple facets of the injury pathophysi-
ology concurrently46–48. Transplanted cells can replace lost  
neurons and glial cells, immunomodulate local and systemic  
environments, secrete critical neurotrophic factors, and produce 
a growth-permissive extracellular matrix to influence both  
cell survival and differentiation46,47. While numerous cell types, 
including mesenchymal stem cells, olfactory ensheathing cells, 
and Schwann cells, have been studied49, the stem/progenitor 
cells with the potential to differentiate into neural cell lineages  
(neurons, astrocytes, and oligodendrocytes) are uniquely poised 

to regenerate the injured spinal cord. As a general term, these  
cells are referred to as neural stem/progenitor cells (NSPCs) 
or simply NPCs. NPCs are self-renewing, tripotent stem cells  
capable of differentiating into synaptically integrating neurons, 
myelinating oligodendrocytes, and astrocytes after transplan-
tation into SCI44,50–53 (Figure 3). There are also studies that have  
used bipotent or unipotent cells that are lineage restricted54. 
Oligodendrocytes and neurons differentiated from NPCs are  
capable of remyelinating denuded axons and can re-establish  
interrupted neuronal pathways via intra- and trans-segmental 
relay circuits50. Our lab and others have shown that the two major  
mechanisms for functional recovery following NPC transplan-
tation are 1) integration of NPC-derived neurons into discon-
nected circuits to relay neural signals and 2) myelination of  
denuded axons by NPC-derived oligodendrocytes53,55–57.

NPCs have historically been derived from adult tissue sources 
(e.g. subventricular zone of the forebrain, subgranular zone of  
the dentate gyrus, and central canal in the spinal cord) or by  
differentiation of embryonic stem cells (ESCs)47,48. ESC-derived  
NPCs present ethical challenges, and the clinical derivation of  
NPCs from adult tissues for autologous transplantation is not  
feasible. However, exciting advances have facilitated safe 
NPC derivation from translationally relevant human induced 
pluripotent stem cells (hiPSCs). This is particularly advan-
tageous, as iPSCs can be made from easily accessible  
autologous somatic cells (e.g. skin or blood) using non-viral  
techniques, which provides a clinically attractive approach to  
cell therapy47,48.

Remyelination of the denuded axons
While recent work suggests the degree of endogenous remy-
elination by oligodendrocyte progenitor cells is higher than 
previously reported50, it remains widely accepted that the  
functional benefits from these populations are limited owing 
to high rates of apoptosis and poor proliferation50. Fortunately, 
it has been shown that transplanted NSPCs can differentiate 
to oligodendrocytes in the injured spinal cord to remyelinate  
denuded axons58,59 and concurrently promote preservation of 
endogenous myelin55,60. Importantly, we have found that this 
neurobehavioral effect is lost when adult NPCs are derived  
from myelin basic protein (MBP)-deficient Shiverer mice  
incapable of producing functional myelin61,62. Recognizing 
these preclinical discoveries, Lineage Cell Therapeutics is  
currently undertaking a phase I/II clinical trial for SCI employ-
ing human ESC-derived OPCs (clinicaltrials.gov identifier: 
NCT02302157). While this is an important first-in-human  
study, several limitations exist. First, the use of allogeneic  
ES-derived cells brings ethical, technical, and safety concerns.  
Human iPSC-derived cells would instead allow for the poten-
tial generation of autologous cell lines whilst avoiding ethical  
issues. Second, the bipotent OPCs cannot efficiently differ-
entiate into neurons and, therefore, have limited potential to  
restore lost neuronal populations. In contrast, the proportion of 
mature oligodendrocytes that differentiate from typical tripotent 
NPCs is low in the injured spinal cord microenvironment,  
limiting functional recovery. To address this challenge, our 
lab has generated myelinating oligodendrogenic tripotent  
NPC (oNPCs)63. oNPCs transplanted into rodents with SCI  
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Figure 3. Neural progenitor cells as promising cells for the treatment of spinal cord injury. Neural progenitor cells (NPCs) are self-
renewing, tripotent cells capable of differentiating into synaptically integrating neurons, myelinating oligodendrocytes, and supportive 
astrocytes. NPCs can be derived from adult or embryonic tissue sources or pluripotent cells like embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs).

showed differentiation to both neurons and ensheathing  
oligodendrocytes with clear graft–host synapse formation and  
structural myelination53. The transplanted cells also showed 
significant migration along the rostrocaudal axis and pro-
portionally greater differentiation into oligodendrocytes.  
The oNPCs promoted perilesional tissue sparing and axonal 
remyelination, which resulted in motor function recovery. Our  
findings showed that biasing NPC differentiation along an  
oligodendroglial lineage represents a promising approach to  
promote tissue sparing, axonal remyelination, and neural repair 
post-SCI44,53.

Restoring the interrupted neuronal pathways
NPC-derived neurons have the potential to integrate into  
endogenous neural networks and re-establish interrupted  
neuronal pathways. Despite recent progress, the level of graft–
host integration and the degree of intra- and trans-segmental 
relay circuits regenerated by the transplanted neurons has been  
modest64–66. This is partly because of suboptimal differentia-
tion of transplanted NPCs in the injured cord microenvironment 
to non-neuronal cells51,55 and partly because of the difference  
in the identity of transplanted NPCs within the spinal cord 
niche. Spinal cord trauma initiates a cascade of cellular and  
molecular changes that drastically alter the composition of  
factors and extracellular matrix proteins in the local niche67–69.  
These perturbations affect the fate determination of transplanted 
cells and impair their ability to effectively integrate with host 
tissue70. In the post-injury niche, transplanted tripotent NPCs  
predominantly differentiate to astrocytes71,72. When endogenous 

adult NPCs proliferate in response to injury, the vast majority 
of the newly generated cells are glial fibrillary acidic protein- 
positive (GFAP+) astrocytes22,73. Similarly, when differ-
ent types of NPCs are transplanted to a lesioned spinal cord  
microenvironment, they mainly differentiate into cells with an 
astrocytic phenotype71,74. Although differentiation to astrocytes 
may be important for regeneration15,75 to improve functional  
recovery after transplantation, it is important that NPC grafts 
can also differentiate into synaptically integrating neurons.  
Recently, we have shown that enhancing trophic support by 
overexpression of GDNF in the niche can greatly increase 
the differentiation profile of NPCs exposed to injured cord  
conditions—transitioning the profile from pro-astrocytic to 
pro-neuronal—which enhances functional recovery following  
SCI76.

In addition to suboptimal differentiation, another reason for the  
poor integration of transplanted cells is a mismatch in cell  
identity. Native NPCs, along the entire rostrocaudal neural 
axis, possess a unique region-specific identity (e.g. forebrain,  
midbrain, cervical, thoracic, etc.)77, which is accompanied by 
distinct neural differentiation in terms of channel composition,  
axonal projection pattern, and neurotransmitter phenotype. 
These distinct characteristics allow proper integration during  
development and in adulthood. Most of the NPCs currently 
used in preclinical and clinical studies possess a cortical brain  
identity, which is poorly suited for the spinal cord niche26,78.  
These cells terminally differentiate into neuronal cell subtypes 
(e.g. cortical, subcortical, or deep nuclear neurons), which do 
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not reside in the spinal cord. Moreover, after SCI, there is a  
significant loss of spinal motor neurons and spinal interneurons 
(for example, propriospinal interneurons and Renshaw cells),  
which are likely required for a successful cell replacement  
approach. Evidence is now emerging that the limited integra-
tion of transplanted cells after SCI may be in part due to the  
graft’s discordant regional identity51. Recent studies using  
hiPSC-derived cells have demonstrated that neural cell deriva-
tives must possess a regional identity that mimics the respective  
endogenous CNS tissue in order to effectively engraft and 
regenerate. A plethora of research is currently focusing on  
differentiating stem cells into a V2a excitatory interneuron  
phenotype to optimize forelimb and hindlimb functional recov-
ery following SCI79. This appears to be a promising approach, 
as ESCs differentiated to express Chx10+ V2a interneurons  
have been shown to enhance functional recovery post-SCI80.  
However, improved functional recovery using V2a differenti-
ated stem cells does not equate to optimal functional recovery 
in all SCI contexts. The following are research questions that 
remain open in the field: what endogenous connections are  
these stem cell grafts forming, and which endogenous  
targets are best for restoring functional recovery to its original  
competency? To date, there are few to no publicly accessible 
data that elucidate which stem cells are interacting within an  
in vivo environment or which parameters are biasing their choice  
of neural connection (such as regional identity).

Combinatorial strategies to enhance regeneration 
after spinal cord injury
The heterogeneity of SCI and the described pathophysiologi-
cal complexity warrants the development of combinatorial and  
personalized treatment strategies81. Over the years, multiple  
combinatorial approaches involving gene and cell therapies 
have been investigated for SCI. Here, we review the most recent  
findings employing rehabilitation training, neuromodulation, and 
biomaterials to enhance regenerative treatments and ultimately  
SCI recovery.

Rehabilitation training
Rehabilitation training is the cornerstone of clinical interventions 
for SCI and has been demonstrated to improve the functional  
recovery of people with SCI82,83. Mechanisms behind the  
obtained recovery include the upregulation of neurotrophins  
(e.g. BDNF)84,85, activity-dependent neuroplastic changes of 
the spared networks86,87, increased regeneration, and axonal  
sprouting87,88. While rehabilitation offers functional benefits to  
individuals with SCI, improvements with this intervention 
alone are often limited. Despite the prevalence of rehabilitation  
training in clinical treatment protocols for SCI and its poten-
tially synergistic mechanisms with other regenerative treatment  
strategies, studies of combinatorial treatments are still rare.  
Future preclinical studies should incorporate rehabilitation  
training paradigms to improve the SCI study model and simulate 
clinical conditions more closely89.

Recently, a few studies have investigated combined rehabilita-
tion and stem cell transplantation. One study demonstrated that  
following a T9 contusive injury, rats undergoing treadmill 
training (TT) and transplantation of NPCs showed superior  

functional recovery, graft survival, and remyelination when  
treatments were combined90. In another study, following a T9  
contusion injury in rats, transplantation of NPCs in combina-
tion with TT and ChABC enhanced functional recovery in the  
chronic phase of injury43. Further investigations are needed to  
optimize such combinatorial treatment strategies.

Biomaterial scaffolds
Biomaterial scaffolds have long been investigated as tools  
for the localized and prolonged delivery of drugs91, bridging 
the injury site with a hospitable microenvironment for the  
regeneration of endogenous networks92,93, and the introduction 
of exogenous stem cells into a spinal microenvironment  
promoting cell survival, growth, and plasticity94. A large range 
of biomaterials have been investigated for these goals such as 
the fibrin matrix95, hyaluronan methylcellulose (HAMC)96, and  
polyethylene glycol–gelatin methacrylate (PEG–GelMA)97.

In applications related to stem cell therapies, design param-
eters such as the material, geometrical dimensions, shape98, and  
mechanical properties of the scaffold99 and the scaffold–stem 
cell interactions can influence the outcome100. For instance,  
Leipzig and Shoichet investigated the effect of scaffold stiffness 
on the differentiation profile and proliferation of NPCs. They  
demonstrated that cultures in scaffolds with high stiffness were 
more oligodendrogenic compared with soft scaffolds that favored 
astrocytic and neuronal fates99. Recent advances in the 3D  
printing of biomaterial scaffolds have made their precise  
morphological design possible. For instance, 3D-printed PEG–
GelMA scaffolds can mimic the spinal cord morphology with 
microchannels located in its white matter region97. Transplan-
tation of such scaffolds seeded with NPCs into the spinal cord 
of rats with transection SCIs resulted in the columnar growth 
of exogenous NPC axons throughout the scaffold microchan-
nels. Evidence of endogenous axonal growth into the scaffold  
was also reported97.

Biomaterials are also promising tools for combining appro-
priate cell and drug treatment strategies. For instance, the  
combined transplantation of olfactory ensheathing cells and a 
bridge scaffold containing Schwann cells along with intrathe-
cal administration of ChABC resulted in greater functional  
recovery compared to cell transplantation alone. These  
functional improvements were evident by both behavioral 
and neuroanatomical assessments100. More recently, Nori and  
colleagues combined the transplantation of oligodendrogenic  
NPCs with biomaterial delivery of ChABC in a clip-contusion 
model of chronic thoracic SCI in rats44. In this study, ChABC 
was delivered using a crosslinked methylcellulose (XMC)  
hydrogel capable of sustained ChABC release for 7 days101.  
This combinatorial strategy led to superior functional recovery  
from SCI compared with stem cell transplantation alone.  
Fuhrmann and colleagues took this a step further and used  
biomaterials to deliver both stem cells and drugs into the spinal 
cord parenchyma. In this study, OPCs were delivered using  
injectable methylcellulose hydrogels conjugated with platelet-
derived growth factor-A (PDGF-A) in a clip compression rat  
model of thoracic SCI. This strategy resulted in enhanced early  
survival of the grafted cells102.
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Conclusions
The rate of SCI has been on the rise in the past few decades, 
and this condition currently constitutes the second leading 
cause of paralysis worldwide. Restoring sensorimotor and auto-
nomic function for people with SCI can significantly improve 
their quality of life. Recent innovations in effective gene- and  
cell-based therapies have vastly improved the technical ability 
to induce regeneration in the spinal cord. However, successful  
clinical translation of these techniques requires further  
optimization. Combinatorial strategies can greatly enhance the 
implementation and functional outcomes of these regenerative  
treatments.
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